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The calculations, presented earlier for the elastic breakup-fusion reactions, is extended here to in-
clude inelastic breakup-fusion reactions. As we did before, we take the necessary precautions to el-
iminate unphysical contributions, which are otherwise mixed into the breakup amplitudes, due to the
nonorthogonality between wave functions in the entrance and breakup channels. Related theories by
Ichimura et al., and by Hussein and McVoy, are also discussed and it is shown that they retain

such unphysical contributions.

I. INTRODUCTION

As is well known, the multistep direct reaction (MSDR)
theory has been successful in analyzing a variety of data
for reactions induced by both light and heavy ions. Ear-
lier, the theory was applied exclusively to reactions that
lead to discrete final states.! More recently, the theory
has been extended to analyze continuum reaction data.>—*

As is expected, however, the MSDR alone cannot ex-
plain all the observed data. In fact, there have been ob-
served reactions in which the direct and compound mech-
anisms do seem to play interwoven roles. These are reac-
tions that have been called by several different names: in-
comglete fusion,” massive transfer, or breakup-fusion
(BF)' reactions.

Take as an example the (a,p) reaction.®® The forward
peaked angular distribution of the continuum protons in-
dicates that they were produced via a direct reaction.
However, the coincidence measurement of these protons
with y rays demonstrates that the rest of the system, i.e.,
the triton plus the target, form a compound system. Simi-
lar features have been seen in many other reactions.>% 1°

In our recent publications,'! !> we have described these
reactions as BF reactions. Such reactions proceed in two
stages, the first stage being a direct breakup reaction, and
the second stage a (partial) fusion. The reaction may thus
be viewed as an incomplete fusion. (Reference 11 by
Udagawa and Tamura, in which the initial formalism of
our BF calculation was presented, will henceforth be re-
ferred to as UT.)

The formulation to calculate the BF reaction cross sec-
tions was given in Ref. 11, restricted, however, to the sim-
plest type of BF, i.e., EBF, in which the first stage break-
up is a pure one-step elastic breakup (EB). The EB means
that all the particles produced in the reaction (i.e., the tar-
get and the broken up pairs) remain in their ground states.
Because of this simplification, we were able to derive a
very simple cross section formula,!! which turned out to
be identical to that derived earlier by Kerman and McVoy
in a quite different way.'¢

Using the formula, we have carried out extensive nu-
merical calculations for light ion induced reactions, i.e.,
the (a,p), (a,d), (a,t), (h,p), and (h,d) reactions.!*!* In
spite of the fact that only the EBF contributions were in-
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cluded, the calculations were able to explain rather well
the experimental spectra, at least at higher energies. It is
remarkable that these calculations well reproduce the ab-
solute magnitude of the experimental cross sections.!! ~!4

We nevertheless found that the simple EBF calculation
underestimated systematically the lower energy part of the
(singles) spectra. The discrepancies are particularly large
for massive transfer-type reactions such as (a,p) and
(h,p). We have ascribed these discrepancies to higher or-
der processes neglected in the EB and EBF calculations.

The major purpose of the present paper is to extend our
previous BF theory!! so as to include higher order effects,
particularly inelastic scattering effects. More specifically,
we consider the target excitations taking place simultane-
ously with or in advance of the breakup. We may call
these reactions the inelastic BF (IBF) reactions. We shall
derive cross section formulas, similar to those derived!!
for the EBF reaction.

In deriving the IBF (as well as EBF) cross section for-
mulas, it is important to keep in mind that great caution
has to be exercised so as not to include unphysical contri-
butions. The amplitude for the inelastic breakup (IB) re-
action often includes the amplitude for the pure inelastic
scattering, which is unphysical and thus has to be elim-
inated. It seems to us that this problem is not so well
known, and we intend to discuss it in detail in this paper.

After presenting our IB and IBF formulas in Sec. II, we
discuss in Sec. III the BF theory of Ichimura, Austern,
and Vincent (IAV).!7 They claim that their BF formula
includes inelastic, as well as elastic, breakup effects. As
seen in Sec. III, we agree with IAV in this regard. How-
ever, we show at the same time that their IBF cross sec-
tion includes unphysical (inelastic scattering) contribu-
tions, which should have been eliminated. A cross section
formula very similar to that of IAV was also obtained by
Hussein and McVoy (HM),'® and we shall also discuss it
in Sec. IIL

II. FORMULATION OF THE CALCULATIONS

A. Introductory remarks

The EBF reaction considered in our previous stud-
1115 : .
ies may symbolically be written as

494 ©1986 The American Physical Society



33 FORMULATION OF ELASTIC AND INELASTIC BREAKUP- . . . 495

a+A—-sb+x+A—b+B*. (2.1)

In (2.1) in which each step is indicated by an arrow, the
first step is an EB of the projectile @ into b +x, while the
second step is the fusion of x into the target A to form a
compound nucleus B*; b is simply emitted. Throughout
the present paper, we are interested in calculating singles
cross section for observing b. Henceforth, we shall call
the systems, consisting of x and 4, and b and B*, respec-
tively, the x and b channels. The incident channel con-
sisting of @ and A will be called the a channel.

It is clear that the above EBF is the simplest among
many conceivable BF reactions. As emphasized in the In-
troduction, we consider, in the present paper, also IBF re-
actions, in which the fusion step is preceded by inelastic
breakup (IB) steps. More concretely, we consider the fol-
lowing two processes;

a+A—b+x+A*—>b+B*, (2.2a)

a+A—a'+A*—>b+x+A4*—>b+B*. (2.2b)
As seen, they involve the excitation of A4 into 4*.

In the process in (2.2a), the first step is still a one-step
breakup reaction, but contrary to that in (2.1) it involves a
simultaneous excitation of the target and the projectile.
We may call this a simultaneous-IB (Sim-IB) process.
The whole process of (2.2a), which we may call Sim-IBF,
has an appearance of being a two-step process.

In the process in (2.2b), inelastic scattering takes place
first and breakup follows. We may call this two-step pro-
cess a successive-IB (Suc-IB). The whole process of (2.2b)
may then be called Suc-IBF; it has the form of a three-
step process.

In the hierarchy of the Born expansion, the Sim-IB is in
fact a second Born, rather than a first Born process. One
will see this clearly, if one notes that EB can be regarded
as an inelastic excitation of a into its continuum (states).
In the discrete state transition problems,!® it is customary
to treat both the simultaneous and successive excitations
of the projectile and the target as second Born processes.
We follow this practice here, and consider the two pro-
cesses in (2.2a) and (2.2b) to be of the same order.

It is important to keep in mind that the states reached
in (2.2a) and (2.2b), before the final fusion takes place,
may be the same. If this occurs, the amplitudes of the
two processes must be added coherently.

An important aspect we employ in our formulation of
the present study is that we treat b as a spectator, i.e., we
make a spectator approximation.!! More explicitly, we
describe the motion of b relative to B* in terms of an op-
tical model wave function, Xy~ '. Thus b does not partici-
pate explicitly in what happens in B*, except that it is
elastically scattered and also absorbed by B* in the usual
sense of the optical model.

B. Notations and basic relations

As seen from (2.1) and (2.2), we encounter nuclei a, A4,
b, x, and B, which we collectively denote by i. The inter-

nal (intrinsic) Hamiltonian, internal wave function, and
the eigenenergy of the nucleus i will be denoted by #;, ¢;,
and e;, respectively. We thus have a relation that

hi¢i=e,-¢,- (i =a, A, b, X, and B) (2.3)

The eigenfunction and eigenenergy of excited states of i
will be denoted by ¢+ and e ..

As we have explained, in relation to (2.1) and (2.2), we
encounter a few two-body channels, i.e., the a, x, and b
channels, which we shall denote collectively by j. The ki-
netic energy operator, the optical model potential, and the
energy for the channel j will be denoted by T}, Uj, and
E;, respectively. By defining further K;=T;+U;, we
thus have a relation that

(E;—K;X{*'=0 (j=a, b, and x) . (2.4)
The distorted wave X}“ is used for j =aq, while X}_) is
used for j = b and x.

The total energy of the whole system will be denoted by
E. We then have the relations that

E,=E —(e, +e,), (2.5)

E,=E,—E,+(e,+es—ep—e,—e ). (2.6)

A *
Clearly, E, is the incident energy, while E, is the kinetic
energy of x, the quantity in the parentheses in (2.6) being
the Q value for the breakup process. If EB takes place,
we of course have e  «=e,.

After defining various quantities in this way, we now
present a few basic relations, obtained within the projec-
tion operator formalism of Feshbach.2®?! We assume
that the P space includes all the elastic and open inelastic
channels. The projection operator P may then be given as

P=p,Py (Q=1-P), (2.7)
with

Pa=10a)¢{da| » (2.8a)

Pi=3"1¢,42{d 4] . (2.8b)

A*

The symbol 3’ indicates that the sum of A* should be
taken only over the open excited channels. The total reac-
tion cross section ox may then be given as a sum of the
total inelastic scattering cross section oy, and the rest,
which we shall denote by o’z. Note that the breakup and
BF cross sections are of course contained in o,. In what
follows, we shall thus concentrate our interest only on o%.
What will actually be done is to extract the breakup and
BF cross sections from o.
Explicitly, oz can be given as?%2!
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1

or=02m/fv,) [—Im(‘lfp HPQE——I—I—QFG—HQP

where v, is the velocity of a relative to A, while the
meaning of Hpp=QHQ, HQP = Vop)=QHP, etc,, is
well known.?*2"" Also, W is the P-channel part of the to-
tal wave function of the system, W\, ie., Wp=PW¥.t.
Y, satisfies

(E—Hp)¥p=0, (2.10)
where
Hp=hs+h+T,+Up
=hp+hy+hy+ T+ Ve +T,+Up, (2.11)
with
L (2.12)

Up=Vpp+ VPQE——:;I—Q—Q‘—;EVQP .

V in (2.12) is the interaction potential in the channel g;
i.e., the prior form of the interaction.

As is well known, it is customary to interpret the ener-
gy average of Wp as a direct reaction model wave func-
tion. We thus take it here as a coupled-channel (CC)
model wave function. Likewise, we take the energy aver-
age of Up as the CC potential. With these interpretations,
Wp can now be given as a sum of the elastic and inelastic
channel wave functions as

Yp=3 ®'F), with O " u=X"\0 (6.0 ,.) . (2.13)

A*

If (2.13) is inserted into (2. 10) the latter becomes a CC
equation for determining X't + A., and there is no intrinsic

difficulty in solving this equatlon For the purpose of the
present paper to calculate b-singles cross section, however,
it makes more sense to avoid solving this CC equation as
it stands, and to resort to a perturbative approach in
evaluating X ‘+),. Then, the elastic component X'}’ is ap-
proximated by the distorted wave function X/, cf. Eq.
(2.4), while the excited channel wave function is obtained
as the first-order DWBA wave function as

q’(+)

a'a*

=G,($ad ;o | Uy | DGH) (DL =X"0.64)
(2.14)

In (2.14), the integration symbol (| | ) was used to indi-
cate that the integration is performed by keeping the
a-channel coordinate r, fixed. Also, G, is the Green’s
function in the a channel and is defined as

(W™ | Vp | Wp)=(W5| V—U,,|wp)=<Pw};>

wp>/1r

1
VretVre E Hogvie @ Ur

> 2.9
I
G, S (2.15a)
¢ E,—H,+ie’ ‘
with
Hy=h,+hy+T,+U, . (2.15b)

The U, and U, involved in (2.14) and (2.15) are the diag-
onal and nondiagonal parts of Up;

Up=U,+U, , (2.15¢)

and U, in particular is identified as the optical model po-
tential that appeared in (2.4).

We shall now take an important step by noting that the
operator part of (2.9) can be rewritten, as proved in Ap-
pendix A, as

S Vop=PVIGVpP , (2.16)
where
1
= , (2.17)
G E—H +ie
and
VP=V—-UP . (218)
Using (2.16), (2.9) can now be rewritten as
=2m /) (—Im(¥p | VIGVp |Wp) /m) . (2.19)

As already remarked, oz does not contain any part of
the elastic and inelastic cross sections. This is evident
from our original definition of o} [cf. (2.9)], in which the
Q operator took care of eliminating these cross sections.
It is then important to note that the role which Q played
in (2.9) is now played by Up, which has been subtracted
from V to form Vp [cf. (2.18)]. To see this, let us
represent the (exact) Green’s function i 1n (2 19) by a com-
plete set of the exact wave functions, ¥~

1

-+ \I’(—) .
)E—Eﬂ-{—ie( 5|

G=3|vy"’ (2.20)
B

The possible contributions to the elastic and inelastic

scattering come from the terms, in which B=(a'4*).

However, these possible contributions are in fact nil. In

fact, for BEP, we have [with the help of Q\P(“)
=(E —Hgg—i€)"WopW¥5]

(2.21)

¥p)=0
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Later, towards the end of Sec. IIE, we shall discuss the
importance of relation (2.21).

C. Approximations

Equation (2.19) is exact, and is much handier than is
(2.9), but cannot yet be used as it stands for actual calcula-
tions. In order to make use of (2.19) for practical pur-
pose, we shall now introduce a few approximations. The
first step of the approximations to make is to replace the
exact Green’s function G in (2.19) by Gy; we set

GG, .

This G, is the Green’s function in the breakup channel d,
and is given by

(2.22)

1

= . (2.23)
Ga=% —(hp+hy+hs+Ky+K,)+ie€
By using (2.22), o is now reduced to
o' =27 /Fvg ) —Im(Wp | VG Vp | Wp) /7). (2.24)

This relation is essentially the same as that used in Ref.
11; see Eq. (3) of Ref. 11. The only difference is that the
CC wave function ¥p and the CC potential Up are in-
volved in (2.24), while the elastic channel wave function
and the optical model potential are as they appear in Eq.
(3) of Ref. 11. The rest of the formulation can thus be
done in very much the same way as in Ref. 11.
We now note that it is easy to prove the identity that

Ga=Q4[E —(Ty+hy+he+hy+Ky)
+ie]-'y —GlulG, (2.252)
where the wave operator Q},~ is given as
Q) =1+GlU; . (2.25b)

By using (2.25a), it is clear that o can now be divided
]

where we have inserted the complete set of wave functions
&5,x> Which are defined by

|¢bx —776xpliky 1p) | ¢bt¢ t¢At) (2.30b)

(2 )3/2

The factor exp(ik,-r,) in (2.30b) is a plane wave in the b
channel. Since

wy” expliky -1p) =X}, (2.31a)
and
(E =Ty —hy—hye—hg—Ky+i€) " [ 85
=(Ey—K,+i€)"'|¢p,), (231b)

we see that (2.30a) is now rewritten as

mb_) l ¢b,x )<¢b,x |(E—Tp—hy—hy—h—K, +ie)~! | bp,x )<¢b,x | w(b_ *

into two terms as
4 g2)

OR=0R +0g (2.26)
with
o =Q2m /A, (—Im(Wp | ViG,,Vp |Wp) /M),  (2.272)
o =27 /fw, )((GaVp¥p | W, | Gy VeW¥p) /m), (2.27b)
where
Grp =4 [E —(Ty —hy —hy +h 4 +K,)+ie] 105"
(2.28)

As seen, g%’ in (2.27b) is in the form of an expectation
value of W, (with respect to the wave function
| GgVp¥p)), and hence is a cross section for absorbing b.
In other words, o2’ does not contribute to the cross sec-
tion for observing b.

The cross section for observing b is contained in o'y’
and, in order to bring it into a tractable form, we now
make the second of the approximations; i.e., the spectator
approximation. As was explained at the end of Sec. IT A,
this approximation is to assume that the state of b can be
well described by the distorted wave function X}~. To
make this spectator approximation is equivalent to ap-
proximating Q) in Eq. (2.28) by the optical model wave
operator wﬁ, ) which is given as

0y =14 (Ey— T, — U —ie)~'U;] .

(2.29)
Note that Q= of (2.26) contains G4, which is a three-
body channel propagator [as seen from its definition given
in (2.23)]. On the other hand, w§~’ of (2.30) contains a
two-body channel propagator (E, —T), — UJ —ie)~!. Be-
cause of this replacement, the calculation has now become
tractable, and the nature of the approximation we have
made will thus be very clear.
The G, of (2.28) is now rewritten as

’ (2.30a)

Gx,b = 2

X))
k, x*b*4* (2 )3 ‘¢ ‘¢b‘¢".

XGe(Xs b, uby 0 4o | (2.32a)

where the symbols |) and (| were used to indicate that
the state vectors are not for the complete a + 4 system,
but exclude the radial component of the x-channel wave
function. Also,

1

Gi=—""7.
¥ E.—K,+ie

(2.32b)

In (2.32), E, is the kinetic energy of x as was defined in
(2.6). Note that G, of (2.32a) is again a two-body propa-
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gator, and thus is tractable. Note also that the sum over
b*, x*, and A" in (2.32a) are extended over all the excit-
ed states of b, x, and A, including their ground states.

D. BF cross section formulas

Since, in the present paper, we discuss the breakup reac-
tions induced by light ions, we shall suppress the sum over
b* and x* in the exprmsion of (2.32a); both b and x can
be considered to remain in their respective ground states.

Let us now rewrite ak of (2.27a) further. To do thlS,
we use (2.32a) (after suppressing the sum over b* and x*),
and also an identity given by

- 1 -
—ImG, = -’ Imm o ! +G,IW,,GX .
(2.33)
Here »! ™’ is the wave operator for the x channel. [The

derivation of (2.33) is the same as that of (2.25a).]
We now have

(1 d3o® d20BF
= | dE
ok'= [ dEd0, | [ a0, dE,d0,d0, | dE,d0,
(2.34)
where
d’o®
dE;dQ,dQ,
1
=(27T/ﬁva)P(Eb)P(Ex)'2s__T_'T
XX TN bbb 40 | Ve | ¥R |2,
A'mbmxmn
(2.35a)
d*q®F 1
L - v E,)——
dE,dq, (2 /fw, )p( b)(2sa+1)
X 3 (Y[ Welgh)/m . (2.350)
A¥mym m,
The x-channel wave function ¢" +), is defined as
Yo =Ge (X 04028 4o | Vi | ¥p) 2.36)

The factor p(E,) that appears in the above equations is
the phase space volume of the emitted particle b, and
p(E,) is the same quantity for x.

The cross section given by (2.35a) is that for breakup,
i.e., the processes in which both x and b are emitted. On
the other hand, that in (2.35b) is for BF, in which only b
is emitted, and x is absorbed.

The EBF cross section can now be obtained by picking
the ground state 4 for A* in (2.35b). It is thus written as

d20EBF
dE,dQ,

=(27/fw, )p(E,) 25,41

(G |\ W | /my, (237

X X

mymym,

where
W =Y =G (X 05004 | Ve | Wp)
=G, (Xy 'bpdxa | Vo | ®LL) , (2.38a)
with
V,=V-U,. (2.38b)

In obtalmn the last (near) equality in (2.38a), we replaced
W, by ®LY, ie., we neglected the inelastic component in
Wp. (It gives a higher order contribution.) Once this is
done, we can replace Vp by V,, because the coupling term
U, in Vp does not contribute to the matrix element in the
last line of (2.38a). The EBF cross section obtained as
(2.37) is exactly the same as what was given earlier in Ref.
11. It was used in the studies in Refs. 12—15.

The terms in (2.35b) in which 4*s£A4 give the IBF
cross sections. Explicitly, it is given as

dZUIBF
m =(2m/tw,) p(E,,)2 +1
X 2 +’aIWx|t//ij’.>/1r),
A*M  mym_m,
A
(2.39)
with
Vi r=Gx (X5 '$s8:6 (s | Vi | OH)
+Gx(xb_)¢b¢x¢A* | Va|$ad ,+)
X Gyt (Bad o | Uy | OLY) . (2.40)

The two terms on the rhs of Eq. (2.40) have originated
from the elastic and inelastic components in (2.13), and
describe, respectively, the Sim-IBF and Suc-IBF cross sec-
tions. Since the breakup reaction taking place in an in-
elastic channel is an EB in that channel, we can replace
the interaction Vp by V,, as we have done in obtaining
the second term on the rhs of (2.40). This replacement
should not be done, however, in the first term on the rhs
of (2.40), i.e.,, in evaluating the Sim-IB and Sim-IBF am-
plitudes. The coupling term U, contained in Vp plays a
crucial role here, as will be discussed in the next subsec-
tion.

E. Significance of using Vp

We shall begin this subsection by pointing out the cru-
cial importance of having Vp (or sometimes its approxi-
mate ¥V, which is nothing but the interaction used in
DWBA) rather than V, in the various cross section for-
mulas we have derived above. Since Vp=V — Up, to dis-
cuss the significance of the difference of having V or Vp
is the same as to discuss the significance of subtracting
Up (or U,) from V¥, in order to construct Vp (or V,).

Let us first consider the case in which we set Vp=V,
i.e., the case in which we have not subtracted Up from V.
Since this ¥ operates upon the incident channel wave
function, it can be replaced by VP and can be decomposed
into PVP +QVP =Vpp+Vpp. By construction, P pro-
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jects out only the scattering channels and thus Vpp is sup-
posed to cause only the elastic and inelastic scattering, but
no other types of reactions, including breakup. (The role
which Vpp plays is completely opposite to this.) A very
tricky aspect of the theory is the fact that, in spite of this
property of Vpp, matrix elements such as

Xy~ )X;_)¢b¢x¢,4* | Ver | 054"

do not vanish identically. Note that the ket state in (2.41a)
is for the incident channel, while the bra state is for the
breakup channel.

The reason why (2.41a) does not vanish identically is
the so-called nonorthogonality of the wave functions of
different channels. To see this more clearly, let us rewrite
(2.41a) as

STXT G002 40 | X bab y0)

(2.41a)

(X700 o | Vop | DLE') . (2.410)

The nonorthogonality of the channel wave functions re-
flects in the fact that the overlap integral, i.e., the first
matrix element that appeared in (2.41b), has the property
that

XX 05850 0 | X004 )50 .

This means that the state (X}~'X\ 9,44, |, which is
apparently for the breakup channel, de facto contains in it
a component in which b and x have been recombined
back into a. This component eventually results in the
a-singles cross section, and is thus spurious (or unphysi-
cal) here, since it should not contribute to the b-singles
cross section, which we are trying to calculate.

It is thus clear that our formalism must have a built-in
recipe so as to eliminate these spurious components. The
subtraction of Up from V, so as to construct Vp as
V — Up, is precisely this recipe, as we shall show now.

Let us first retain only the leading term, i.e., only Vpp
of (2.12) for Up, postponing for the moment the con-
sideration of the second term of (2.12). Since, as we ex-
plained above, we can replace V by Vpp+Vpp, we can
evaluate Vp=V — Up as

(2.41¢)

Vp=V —UpV —Vep=Vpp+Vop—Vep=Vop . (2.42)

The significance of (2.42) is obvious. The Vp is now
void of the troublesome part Vpp. Since a term like
(2.41b), in which Vpp is replaced by ¥Vgp, identically van-

ishes, there is no danger that that we retain in our calcula-
tion the nonorthogonality contributions, even if the in-
equality of (2.41c) remains valid.

Suppose now we approximate Vp by the DWBA in-
teraction V,=V —U,. Equation (2.42) is then replaced
by

Vo=Vep—U)+Vop=U, +Vgp . (2.43)

Let us consider again a term like (2.41b), in which Vpp
there is replaced by ¥, of (2.43). Among the two terms
U, and Vgp, the latter is the term that is responsible for
producing the EB and Sim-IB amplitude. On the other
hand, U, gives rise, when it appears in (2.41b), to an un-

physical contribution; it does so via the nonorthogonality
of the breakup and inelastic-scattering channels, as seen
again in (2.41c). This is why Vp, rather than V,, must be
used in the first term in (2.40) for Sim-IB.

Note that, because (¢, | U; |4 ,) =0, U, does not give
rise to any contribution to the EB amplitude. This is why
the DWBA interaction V, can be used in the last version
of (2.38a), as well as in the second term in (2.40) for Suc-
IB.

The above completes the explanation why the use of Vp
(or V,), rather than ¥, must be made in order to avoid un-
physical contributions. In doing this, however, we have
ignored the second term of (2.12), which we may call
AVpp for short. An important aspect of AVpp is that it is
complex. Thus, once AVpp is retained, the exact cancella-
tion between Vpp and Up cannot be achieved. The imagi-
nary part of Up remains uncancelled.

Recall, however, the relation given above as (2.21).
This relation states that Vp=V — Up eliminates exactly
the unphysical (elastic and inelastic scattering) amplitudes
from our starting formula (2.19). Note that (2.19) con-
tained an exact Green’s function G in it. The exact elim-
ination embodied by (2.21) has, however, been lost, since
we have made approximations, such as that seen in (2.22).

Once an approximation is done for G, however, it is
more natural to modify V accordingly, so as to replace it
by an “effective” interaction Ve, A usual practice done
in the direct reaction theory is to use a complex coupling
potential for V. When the IB and IBF reactions are cal-
culated, we may use as V7, e.g., a sum of the optical po-
tential between x and b and the individual nucleons in the
target. When the EB and EBF reactions are calculated, a
much simpler Ve that is given as a sum of U, and U,
may be used. (The justification of the use of
vef=U,+ U, for the EB and EBF calculation has been
given by IAV.!) When such an effective interaction is
used, the cancellation between Vpp and Up is expected to
become sufficiently good, so that no significant amount of
unphysical contributions remains in the calculations.

III. COMPARISON WITH OTHER THEORIES

Two recent papers, IAV (Ref. 17) and HM (Ref. 18),
discussed the subject which is closely related to what we
have discussed so far in the present paper. Since HM may
be regarded as an approximate version of 1AV, we shall
discuss IAYV in detail, and then comment briefly on HM.

We begin by remarking that, independent of the work
of KM (Ref. 16) and UT (Ref. 11) which used the prior-
form formalism, Austern and Vincent (AV) (Ref. 22) had
formulated the BF calculation by using the post-form for-
malism. Based on the AV formalism, Kasano and
Ichimura (KI) (Ref. 23) then derived an explicit formula
for the BF reaction, which may be written, as shown by
Li, Udagawa, and Tamura (LUT),* as

d%oBF
m =27 /T, )p(Ey)

XICHT | Wi [ 957 +2Reo™ | W, [ n)

+{n|Wy|n))/7], (3.1)
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where
|n)=(X,""bpdxd4 | DL5)

Note that (3.1) consists of three terms, and that ¥’ in
(3.1 is the same as that given in (2.38a) (with
V =U,+U,). This means that if it were not for the last
two terms, (3.1) would agree with our EBF formula given
in (2.37).

As seen, however, the extra two terms in (3.1) both de-
pend on n of (3.2), and this n is nothing but the nonortho-
gonality overlap function (i.e., the projection of the elastic
scattering wave function onto the b channel). As is well
known, the appearance of this nonorthogonality term is
due to the fact"? that the first-order post-form DWBA
wave function inevitably includes in it the lowest order
(elastic channel) wave function. As is also well known,
the thus mixed up elastic component gives rise to an un-
physical contribution when the first-order wave function
is used in calculating two-step amplitudes. It is because
of this that LUT argued that the terms in (3.1) involving
n are unphysical and should not have been there.

IAV then responded to LUT in the following way.
They first showed that (3.1) can be derived in the prior-
form formalism, as well in the post-form formalism of
AV-KI. They then claimed that this became possible, be-
cause their formalism included the IB and IBF contribu-
tions; i.e., was not limited to the EB and EBF as it was
the case in UT and hence in LUT. In other words, IVA
claimed that the extra terms in (3.1) did represent the IB
and IBF contributions, and thus were not unphysical.

It is true that the last two terms of (3.1) include, e.g.,
the IBF contributions, as we shall show below. However,
we shall also show that they contain unphysical contribu-
tions as well.

The starting formula of IAV was the b-singles cross
section given as,

dZ IAV

dE,dQ,

(3.2)

(Zﬂ/ﬁv,,)p(Eb)2|(<D(_’iV KSR IER

(3.3)

The interaction V, in (3.3) is the same as what we gave in
(2.38a) [or (2.43)]. Also, CD,,';) is the d-channel wave func-
tion defined as an eigenfunction of H;. We thus have

Hy®y '=Epdp, (3.4)
where, with our notation,

H;=H,+K,, (3.5a)

Hy=hg+he+Tea+Vea - (3.5b)

It is important to note that H; differs from the d-channel
optical model Hamiltonian that we used to define G4 in
(2.23). Hj has in it the interaction V,,, while the Hamil-
tonian in our G4 had the optical potential U,.

Since H; does not contain any interaction between b
and x, the solution of (3.4) can be given as a product of
eigenstates of H, and K, as

Dy =Xy 65 Peu (3.6)

®% , satisfying

(E°—H,)®5,4=0. (3.7

We note here that, as is clear from (3.6), that the spectator
approximation was also employed in IAV.

Equation (3 3) is a sum of prior-form DWBA breakup
cross sections,!” each cross section being given as an abso-
lute square of a breakup amplitude. To be emphasized
here is the fact that these breakup amplitudes use the in-
teraction V,, rather than Vp. [Otherwise, (3.1) does not
result from (3.3).] This fact and the discussion given in
Sec. IIE immediately lead us to the conclusion that (3.3)
contains unphysical components. Since (3.1) is equivalent
to (3.3), as proved by IAYV, it can be concluded that (3.1)
also contains unphysical components, and thus that our
previous criticism?* stands intact. The IAV work does
not seem to have provided a valid justification of the
AV-KI work.

Although the matter concerning Egs. (3.1) and (3.3)
thus appears rather clear, we may go here one step further
and show explicitly that part of (3.3) is indeed a sum of
inelastic cross sections.

This task can be done much easier (and it will suffice
for our purpose) if we consider the integrated cross sec-
tion, rather than the differential cross section. The task is
made still eas1er, if we further assume that U, in Hj is
real; then X}~ form a complete set. (This assumption
also does not affect the conclusion on whether unphysxca]
contributions vanish or not.) The completen&ss of Xy~
being used, the integrated cross section in question is
given as

m_f dE,,dQ,, dE"dQ”

=27 /Fiv, ) —Im( DL | VIG,V, | &%) /m), (3.8)
where

G,§=E—_b;é—_|_i-€—. (3.9

We now use (2.43) for V,. The VIG‘} V, factor in (3.8)
can then be decomposed into four terms as

viGyv,=vQG,ov + U, G U, + VoG, U, + U, G0V .
(3.10)

From now on, we concentrate on the second term of
(3.10), and note that the PG4P part of G; can be ex-
pressed as

1
PGP (=G =
¢ ® T E+{(ba | Vi |$a) —ha—To— U tie
(3.11)
with
Us¥= (¢, | Up+ Uy | ¢4 )
1
+(Hy)pg —————— (3.12)
4P E _(Hy)pg+i€ (Halop -
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Equation (3.11), along with (3.12), is proved in Appendix
B. What Eq. (3.11) shows is that P;G4P; is an operator
that describes propagation in the inelastic scattering chan-

nels.
|

Once PG,P is given as in (3.11), the contribution from
the second term of (3.10) to o}*" can be obtained by re-
peating the procedure we followed in Sec. IID. The result
is given as

S [ dE;dQ,Qm/fw plE,) | (DL )(Ey) | Uy | 95 |2+ (2m /Aivg) ({ 5% | Us '™ —m(UMH1G6f U, | 00 /)

A*

with

E;=E,—(e x—es)+{(ds| Vo |ba) - (3.14)

As is clear, the first term of (3.13) is a sum of pure in-
elastic scattering cross sections. On the other hand, the
second term is a cross section for the fusion that takes
place in the inelastic channels, thus including in it the
Suc-IB and the Suc-IBF cross sections. In other words,
(3.13) does include both physical and unphysical cross sec-
tions. [The physical part of the cross section in (3.13) has
originated form the exact x-channel wave function @5 4 in
(3.3). Thus, it includes reactions taking place in the in-
elastic breakup channels.]

It is easy to see that the first term of (3.10) gives rise to
the EB, EBF, Sim-IB, and Sim-IBF cross sections. Along
with the Suc-IB and Suc-IBF cross sections, that can be
extracted out of the second term in (3.13), these contribu-
tions taken together essentially reproduce what we ob-
tained in Sec. II D.

The third and forth terms in (3.10) are interference
terms and they have appeared, because IAV used the
DWBA approximation so as to have Gy in (3.7). Had this
approximation been avoided, i.e., had the exact G ap-
peared in (3.7), the resultant (3.10) should have been free
from these interference terms. Because of this reason, we
may regard the contributions from these interference
terms to be unimportant, and can neglect them. (In any
event, the integrands of various matrix elements appearing
in these interference terms are expected to be highly oscil-
latory, and therefore these matrix elements will become
small. Also, these matrix elements will have random
phase, and thus cancel out among themselves.)

At this stage, we shall remark on the work of HM. It
differs from IAV, in that it introduced one additional ap-
proximation beyond what IAV did, namely to neglect U,
in V,. (HM emphasized that this approximation can be
regarded as an extension of the spectator approximation
normally made for the motion of b.) Because of this ad-
ditional simplification, the HM cross section formula was
much simpler than that of IAV. In fact the HM cross
section is recognized as nothing but the third term of
(3.1). Thus, the HM cross section is given as

d Zall;m

AE,dq, = 2T/ MapEs)((n | Wy |n)/m)

(3.15)

We have already shown above that (3.15) contains unphys-
ical inelastic scattering cross sections in it.
Both the IAV cross section of (3.1) and the HM cross

(3.13)

section (3.15) thus include inelastic cross sections. Since
the inelastic cross sections are generally large, it is expect-
ed that the IAV cross section o'AY will be rather large.
Note that we have already carried out?* numerical evalua-
tions of o' for a few example reactions, and compared
the results with those for the UT-type cross section oV7.
[In these calculations, we of course retained the imaginary
part of U,; see the remark made just above Eq. (3.8).] It
was found that, e.g., in the case of the *Ni(a,p) reaction
with E,=80 and 160 MeV, the calculated o'V was
10—100 times larger than was oVT. Since oUT agrees with
experiment (at least for large Ep), it is clear that o'AY
indeed seriously overpredicts the experimental cross sec-
tions.

The calculations made used the zero-range approxima-
tion. However, it has been found!!=!42* that the finite-
range effects are often very important, particularly for the
BF cross sections. Therefore, it is desirable to carry out
finite-range calculations before making final conclusions
concerning the magnitude of o'AY. Nevertheless, the re-
sults obtained in LUT seem to be consistent with our
claim that o'V includes large unphysical components.

Finally, we comment briefly on an additional contro-
versy between IAV and ourselves. In the Appendix of
LUT, we discussed the possibility that the AV formalism
did not give a unique answer. We argued that an ambi-
guity is brought into the formalism when the on-the-
energy-shell expression of the starting (post-form) formula
of AV is transformed into the off-the-energy-shell expres-
sion [which is nothing but Eq. (3.1) of the present paper].
IAYV then claimed (in its Appendix) that the argument of
LUT was based on an approximation and that, if this ap-
proximation is suppressed, the ambiguity disappears. In
terms of the notation of the present paper, the approxima-
tion made in LUT was to replace GG ' by 1.

Without making this approximation, IAV repeated the
calculation of the matrix element

(p(b)l —Im(E:—Hx)"l ip(b))

in (A6) of LUT, and obtained (A6’) of IAV. As IAV
stressed, (A6’') does not contain in it the ambiguous term
of LUT anymore, and we agree that LUT argument was
indeed based on the above approximation. However, we
now want to point out that (A6’) still contains a term
which turns out to be another source of ambiguity. The
term in question is the expectation value of the kinetic en-
ergy operator with respect to #; i.e.,
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|a|*Im{n |T |n)

dn _, dn®
dr, dr,

1
= [a]z(ﬁz/Zp.x)E f ln‘ ds,

(3.16)

where a is an arbitrary number. If the integral in (3.16)
vanishes, as IAV claimed, there is no ambiguity in their
formalism. Their argument uses,26 however, a conver-
gence factor [exp( —er,)], discussed in Sec. III of IAV. It
is true that (3.16) vanishes, if it is first evaluated at
r, >>1/€, and then the limit of €e—0 is taken. However,
if one sets €=0 from the beginning [or evaluates (3.16) at
rx < 1/€ and then takes the limit of €é—0], one finds that
(3.6) is nonvanishing. In other words, the integral of
(3.16) is not uniformly convergent. Since, the integral in
(3.16) is what one always encounters in evaluating the
flux, we believe that it should consistently be evaluated by
taking €=0. The term (3.16) is then nonvanishing so long
as |a|2540. This means that the ambiguity of the AV
formalism which we discussed in LUT still remains.

IV. CONCLUDING REMARKS

The formulation of the BF calculations, presented ear-
lier'! for the elastic breakup-fusion (EBF) reaction, has
been extended in Sec. II of the present paper, so as to in-
clude effects of target inelastic excitations, i.e., to calcu-
late also the inelastic breakup-fusion (IBF) cross sections.
Two types of inelastic excitations, i.e., the simultaneous
and successive types, are considered. In the former, the
target excitation takes place simultaneously with the
breakup, while in the latter, the inelastic excitation takes
place prior to the breakup. In formulating the IBF calcu-
lations, we took every care so as to prevent unphysical
contributions from sneaking in, and explained in detail in
Sec. II how we achieved this.

The formalism in the present paper (as well as that in
Ref. 11) treats the breakup reaction as a transfer of a part
of the projectile into the continuum of the target. As is
well known, and as we explained in detail in Sec. I1E, any
transfer-type amplitude includes in it unphysical (elastic
and inelastic scattering) components, if it is calculated in
terms of DWBA, and by using the original interaction V.
We then showed also in Sec. IIE that if this DWBA am-
plitude is calculated by using V, =V — U, rather than V
(U, is the optical potential in the incident channel), the
unphysical contributions resulting from the elastic scatter-
ing are eliminated. The use of V¥, thus makes it possible
to calculate the EB and EBF amplitude correctly.'!"!®
Similarly, the use of Vp (where Up is the extended optical
model potential in that it includes the channel coupling
terms) makes the IB and IBF amplitudes free from un-
physical contributions.

We also discussed in Sec. III two recent papers; IAV
(Ref. 17) and HM.!®. We found that, although the IBF
formula they derived did include correct IBF parts, they
included unphysical contributions as well. (We traced the
origin of this trouble to their use of V,, rather than Vjp.)
Their formulas thus have a tendency to overestimate the
cross sections significantly.
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APPENDIX A: PROOF OF EQ. (2.16)
Using (2.12) and (2.18), we can rewrite PV; as

t 1
PVp=P |Vpp+Vpg—Vpp—Vpp —————V,
P ppt+Vpo—Vpp PQE_HQQ_iE fo)g

1

1w —————V,
E—Hgy—ie <

=PVpp (A1)

Inserting this and its conjugate into the rhs of (2.16), the
latter can be rewritten as

+ 1 1
PVIGVpP=Vpy |1— v,
PRTPE TR T E _Hpp—ie | E—H +ie
1
1—Veg :
X PQE—HQQ+i€ VQP (A2)

We next note that the following relation holds,

1
1= Vog ———
[ P E _Hgy+ie

1
=(E —H, je—V, _
QQ+I€ PQ)QE—HQQ+IE

1

=(E —H +1i —_—,
( +'G)QE—HQQJH‘e

(A3)

In going from the second to the third line in (A3), use was
made of the fact that (Hpp +Hgpp)Q =0. Now inserting
(A3) into (A2), it is easy to see that the latter is reduced to
the rhs of Eq. (2.16).

APPENDIX B: PROOF OF EQ. (3.11)

The proof of (3.11) along with (3.12) may be done as
follows.!”? We introduce first a state vector Z defined
by

Z=G,Pp, (B1)

where p is an arbitrary source function. The P- and
Q-channel parts of Z, i.e., Zp and Z,, respectively, then
satisfy

[E —(H"i )pp]Zp =PP+(H"1 )pQZQ , (B2a)

We can solve (B2b) for Zg, and then insert it into (B2a).
We then obtain,

. , 1 .
E—(Hj)pp—(Hy )pQ—E“_‘——‘_—(H, Yoo i€ (Hy )Qp Zp=Pp.
—\d/QQ

(B3)
The expression inside the bracket on the lhs of (B3) may
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be rewritten as

E+<¢a|be|¢a>_hA"Ta-U:fr’ (B4)

by using USY which was defined in (3.12) of the text. If
(B4) is used in (B3), Zp is given as
_ 1

E+ (¢a [ Vo | a ) —hy4—T, "U:ff+i5

Zp Pp. (BS)

Since p is arbitrary, the equivalence of (B5) to the
P-channel part of (B1) results in the equality in (3.11). It
is interesting to note that the energy E’
(=E+{¢, | Vxs | #5)) that appears in (3.11) differs from
the original energy E by an expectation value of the po-
tential energy of a. This has resulted simply because V.,
is neglected in G;. If V,, is retained, E’ is of course re-
duced back to the original energy E.
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