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When the energy resolution of a reaction is considerably large compared to the width and spacing
of compound nuclear states, but small compared to optical model shape resonances, one observes the
well-known intermediate structure resonances. In the case of compound nuclear processes, a
dynamical account of intermediate structure resonances exists, where one assumes the existence of a
doorway state through which the incident (or the final) state couples to the compound nuclear states.
In the case of compound nuclear reactions the incident and the final states are, in general, different
and so are the doorway states which lead the incident and the final states to compound nuclear
states, the former doorway states being the usual entrance doorway states and the latter the exit
doorway states. A new dynamical formalism is developed using a recently proposed nested doorway
model, which explains how intermediate structure resonances arise because of these two types of
doorway states. In this model the system develops through a series of doorway hallway states before
entering the true compound nuclear state. The first stage of the doorway hallway states is the usual
entrance doorway and the last stage is the exit doorway. Finally, we present experimental evidence
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of the o rrence of intermediate structure resonances due to isolated exit doorway states.

I. INTRODUCTION

Intermediate structure resonances in compound elastic
and/or inelastic processes are often explained by the door-
way state hypothesis which assumes that the system has
simple modes of excitation called the doorway states
which are the only states having strong coupling with the
entrance (or the exit) channel.'~? The doorway state
representing the “first collision”* of the projectile and the
target has played a fundamental role in the analysis of
compound elastic and inelastic processes.

In the case of nuclear reactions involving particle
transfer one can generalize the above picture by introduc-
ing two types of doorway states—the entrance and the
exit doorway states representing the “first” and the “last
collisions,” respectively. We shall see that the exit door-
way states may play a very important role in the analysis
of nuclear reactions. The importance of exit doorway
states becomes more explicit if we consider the time re-
versed reaction. As the transition amplitude is time rever-
sal invariant one can also study the time reversed process.
In the time reversed picture the exit doorway state be-
comes the entrance doorway state and hence should be
equally important as the entrance doorway state in the
analysis of nuclear reactions.

In the doorway state hypothesis one assumes that the
incident state passes through the doorway state to the
complicated compound nuclear states. The compound
nuclear resonances arising from compound nuclear states
having a strong coupling with the doorway states will be
more strongly excited than those having a weak coupling
with the doorway states. If the compound nuclear states
which couple strongly with a doorway state are located in
a relatively narrow region one observes a smooth peak
whose width T'; will be intermediate. Such a resonance
will be called an intermediate structure resonance. If the
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energy resolution AE of the experiment is large compared
to the spacing of doorway states one will have the poor
resolution of the optical model.

Now let us consider the compound inelastic process
where the incident and the final states are different. Then
one can generalize the concept of usual doorway states
and introduce two types of doorway states—the entrance
and the exit doorway states. The entrance doorway states
are the only states which are strongly coupled to the en-
trance channel. Analogously the exit doorway states are
the only states which are strongly coupled to the exit
channel. In the case of the compound elastic process
these doorway states are the same. Both doorway states
also couple to the complicated compound nuclear states.
The entrance and the exit channel states, on the other
hand, do not couple with the compound nuclear states. So
in the time development of the nuclear process the system
will pass through the entrance doorway states before
forming the complicated compound nuclear states. Subse-
quently such compound nuclear states have to pass
through the exit doorway state before decaying to the exit
channel state.

The importance of exit doorway states has been conjuc-
tured in recent theoretical analyses>® which, however,
lacked convincing examples. The purpose of the present
paper is twofold. First, we present a dynamical formal-
ism including the effect of entrance and exit doorway
states. The present formalism is different from that of
Ref. 5. In Ref. 5 we employed rearrangement scattering
theory to show the plausibility of appearance of inter-
mediate structure due to exit doorway states. In the
present paper we use the nested doorway model of Ref. 7
in order to develop a dynamical formalism which clearly
exhibits the time development of the system through vari-
ous doorway hallway states and which explains the ap-
pearance of intermediate structure due to these states.
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The formalism of the present paper has some similarity
with the formalism of Ahmed and Beres,® though the de-
tails are different. The present formalism is more general
than the formalism of Ref. 6 in that the present approach
is easily generalized to the case of arbitrary number of
nested doorways. The second purpose of the present pa-
per is to provide some examples of exit doorways and
stress their importance in the analyses of various types of
nuclear reactions.

When there are many doorway states of both types one
may observe intermediate structure resonances corre-
sponding to both types of doorway states. Of course, both
of these types of intermediate structure resonances may
not be simultaneously observed in a reaction. Depending
on the nature of couplings of these doorway states with
the compound nuclear states on one hand and with the en-
trance and exit channel states on the other hand, one type
of intermediate structure resonance may dominate over
the other type. For the intermediate structure resonances
to appear, the coupling of the entrance (exit) doorway
states with the entrance (exit) channel should be strong
and the coupling of the doorway states to the compound
nuclear resonances should not be spread out.

Now we would like to see why and under what condi-
tions the exit doorway states are expected to lead to inter-
mediate structure. For our purpose we consider the shell-
model approach® for simplicity, but our conclusions are
independent of this model. In the case of nucleon-nucleus
scattering the system evolves through two-particle—one-
hole (2p-1h), 3p-2h, 4p-3h, .. ., etc. states before forming
the complicated compound nucleus. The 2p-1h state is
the entrance doorway state d, and 3p-2h, 4p-3h, . . . states
are the hallway states’ d,, n=2,3,..., respectively,
where increasing n denotes increasing complexity in rela-
tion to the incident channel state i. So, schematically, the
time evolution of the system is given by i—d;—d,
—dj - -+, where the residual interaction is responsible for
these transitions. In the case of compound elastic and in-
elastic processes the doorway state d, is connected by
residual interaction to the exit channel and i —d;—f is
one natural route for transition from the initial channel
state i to the final channel state f. But in the case of nu-
clear reactions involving particle transfer, the residual in-
teraction will, in general, fail to connect the doorway state
d, to the exit channel f. But some of the hallway states
in d, may have a simple mode of excitation with respect
to the exit channel f and be connected by residual interac-
tion to f, whereas such states usually have a more compli-
cated mode of excitation in relation to the initial channel
state i. It is these small number of states in d,, having
strong coupling with the exit channel state f, which are
called the exit doorway states. The exit (entrance) door-
way state is expected to produce intermediate structure
resonance when the coupling of d, (d;) to f(i) is strong
and the coupling of d, (d,) to the complicated compound
nuclear states is not too spread out.

It is true that the density of states in d, increases rapid-
ly as increasing n. Hence it might be thought that isolat-
ed exit doorway states may not be observed when the exit
doorway states belong to d, where n is not too small.
This reasoning is, however, not correct, because the exit

doorway states are not all the states in d, but are only a
few states in d, connected by residual interaction to the
exit channel. Hence the density of the exit doorway states
could be small even when 7 is not too small and one can
observe the effect of isolated exit doorway states.

The plan of the paper is as follows. In Sec. II we
present our formulation in the nested doorway model
where only two types of doorway hallway states are
present—the first one being the entrance doorway state
and the second one being the exit doorway state. In Sec.
III we present a generalization of the present formulation
to the case of a hierarchy of doorway hallway states. In
Sec. IV we present various examples where exit doorway
states lead to intermediate structure resonances. Finally,
Sec. V presents a brief discussion and concluding remarks.

II. FORMULATION IN A SIMPLE MODEL

The nested doorway model which we use for the study
of entrance and exit doorway states assumes that the sys-
tem passes through a chain of stages of increasing com-
plexity denoted by d,, n =1,2,3, ..., where increasing n
denotes increasing complexity in relation to the incident
state. d, is the usual doorway state having strong overlap
with the incident channel state. Let us assume that dy is
the Nth doorway state which has strong overlap with the
exit channel and is the exit doorway state. In this section
we take N =2. This is the simplest model where the exit
and the entrance doorway states are different. This model
is physically as rich as the general model with N > 2,
though the mathematics is more complicated for a general
N. So in this section we treat the N =2 case in order to
explain our ideas and leave the general treatment for the
next section.

We introduce the usual orthogonal projection operators
P, d,, d,, and g such that

with
d] +d;+q =Q (2.2)

and the condition
Pd1=d1d2 =d2q =d1q =Pq =Pd2=0 .

The transition amplitude from the incident channel state
é; to the final channel state ¢, is given by

T=(¢7|(V+VGW|¢:),

where G =(E —H +i0)~! is the full resolvent operator
and H =(Hy+ V) is the full Hamiltonian, V is the chan-
nel interaction, and H|, is the kinetic energy operator of
relative motion. In the following we shall not explicitly
show the /0 part of the resolvent operators and we shall
also suppress the channel levels i and f on the transition
operator 7.

Next let us introduce the operators ¥, and G, through
the recursion relations’

Va=Vi-0)+Viu-0Gun-1Vin-1)

(2.3)

(2.4)

and
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G,=d,(E —d,H,d,)"'d, , (2.5

with n =0,1,2,3. Here we take dy=P and d;=gq in order
to have a unified notation, also Vo=V and H,=H,+V,.
|

Then T of Eq. (2.3) can be rewritten as’

In explicit notation Eq. (2.6) reads

T=(¢; |V I+ | VGV |9+ (4 | (V4 VG 7)G(V +7°G, V) | ¢ +))
HT |V +VG Y +(V + VG 1 2)Gy(F + ¥ GGV + 7 GV +(F + 276G ¥ )G, (V+ 276G N]|47),

where
7=V+VGyV,

i) =(1+GoW) | 4:) 2.8)

and
(P =(¢s | (14+VGy) .

Equation (2.7) contains four terms. The first term essen-
tially represents the direct transition between the initial
and final states, this term varies smoothly with energy
and contributes to a nonresonant background. The second
term corresponds to a transition from the initial to final
state via the doorway space d; and contributes to resonant
contributions corresponding to this space. The third term
denotes a transition involving both the doorway spaces d,
and d, and contributes to resonant contributions from
these spaces. The last term represents the formation of
compound nucleus and contributes to true compound nu-

2.7

clear fluctuations.

Now we introduce the doorway state hypothesis that
the system passes through stages of increasing complexity
which is mathematically expressed as

P,'Hd1=d|HP,'9&0, led2=d2Hd1.-,£0,
with all other similar matrix elements being zero;

d]Hq =P‘-Hd2 =P,Hq =d1HPf =0.

Here P; denotes the incident channel part of P space and
Py denotes the final channel part. Next we assume that
d;7dj=d;Vd;=d;Hd;, i,j,=1,2,3, i.e., transition be-
tween two types of doorway states via the P space will
lead to a process of higher order and is neglected in prac-
tice. This will lead to a mathematical simplification.
Then Eq. (2.7) becomes

T= (¢f IV ¢$+)> +<¢.(f-) IIIP'IZGZIId2le‘Iidlp | ¢£.+)> + ('p.(f—) | Hszszzd3G3Hd3deZHdzd|GlHd,P l ¢§'+)> .

Here Hpy,=PHd,, Hdz,,3=d2Hd3, etc. With the intro-

duction of the doorway state hypothesis the resolvent
operators G,, G,, and G; of Eq. (2.9) are essentially given
by

Go=P(E —Hpp)~'P,
Gi=d\(E —Hya,—~Way,)"'d: ,

Gy=dy(E —Hy g —Wey —Way)"'dy,  (2.10)
and

Gy=q(E —Hy—Wi) g,
where

wW=HGH .
Here W)y =d\W'%d,, Wily, =d,W'Vd,, etc. Now us-
ing the following easily verified identity

92=G2+62H42dJG3H434262 , (2.1

(2.9)

[

with

Go=dy(E —Hyq — Wiy, —Wily, —Wy4)7'd, (2.12)

and

Wa,a,=Hyg(E —Hy)'Hyy ,

Eq. (2.9) can be rewritten as

T =7 |V |*) + ¥y | Hpa,9 1Hq,a, G\Ha,p | %) .
(2.13)

It should be noted that in the present model Eq. (2.9) is an
identity, where the first term is the direct transition am-
plitude, the second term gives the resonant contributions
from the doorway states, and the last term is the resonant
contribution from the compound nuclear processes. The
second term of Eq. (2.9) has two resolvent operators G,
and G, defined by Eq. (2.10). The operator G, has rapid
variations in energy associated with the doorway space d;
or the entrance doorway state, whereas the operator G,
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has the rapid variations of the exit doorway space d,. In
Eq. (2.10) the operator W'” is a complex interaction for
the doorway states. It is obvious that W'? is nonlocal,
complex, and energy dependent. The imaginary parts of
W’s will provide the doorway states with various types of
widths.

The intermediate structure will correspond to an energy
averaged transition amplitude. The ¢ space fluctuations
contained in the resolvent operator G; of Egs. (2.9) and
(2.10) are assumed to be very rapid. In order to observe
the intermediate structure corresponding to doorway
states d; and d, one has to perform an energy average of
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(2.9) with respect to an interval I which is very large com-
pared to the width of ¢ space fluctuations and is at the
same time very small compared to the widths of fluctua-
tions of doorway spaces d; and d,. We also assume that
the resonances in the d, and d, spaces are isolated such
that, for example, a particular resonance in d,; space has
no overlap with a resonance in d, space or d, space.

We shall perform the g space averaging of the transi-
tion amplitude (2.9) with respect to a Lorentz weight fac-
tor of width I. The result is to introduce' an imaginary
term il /2 in the energy denominator of G;. Consequent-
ly the energy averaged transition operator T is given by

(T)={s | V) + {8y | Hpg)G1Hyya G1Hy p | 1)

+ (Y | HpayG2Hyya,(E —Hog— W@ +i1/2)"'Hy 4. GoHy 4 G Ha p | ) .

Using the identity (2.11), Eq. (2.14) can be rewritten as
(T)r=(¢s | V") +(4y" | Hps)\E —Hy,a — W5y,
where

Wa,4,=Hg,q(E —Hg +il/2)" Hyq, .

(1)
- Wdz“z

(2.14)

—Wa,a,) " 'Hapa (E —Hg g —Waly )" 'Hy p | 01)

(2.15)

The last term on the right-hand side of Eq. (2.15) contains two energy denominators, corresponding to propagation in the
doorway spaces d; and d,. This expression is very useful in studying intermediate resonances when the exit doorway
state dominates a reaction and the entrance doorway space resolvent operator can be treated as a background. When the
entrance doorway space resolvent operator dominates a reaction the following form is very useful for the study of inter-

mediate structures

(T)r=Cos |V IUi*)+ ¥ | Hpa)(E —Haypa,— Wi, — Wara)) "' Haya (E —Hyg g — Wy —Wa a )" 'Hy p | 9F))

where

0 — _ w0 1 -1
Waa,=Haa,(E —Hy,g,—Wa,a,—Wy,a)”" Hapa, -

Equation (2.16) is an identical rewriting of Eq. (2.15) and
can be easily verified by considering the Neumann series
expansions of the resolvent operators of these two equa-
tions. In these two extreme cases when one type of door-
way state dominates a reaction Egs. (2.15) and (2.16) can
be used to define the width and position of isolated reso-
nances. But if in a nuclear reaction both types of door-
way states are important and have similar widths because
of interference effects a unique definition of resonance pa-
rameters becomes difficult.

First, let us consider the case where the exit doorway

(T =87 | V| 9*Y+ ¥y | Hpay | b2, \E —Eg,— (g, |

X{Ya, | Haya(E —Hg g —Wiky )" 'Hy p |9,

(2.16)

[

states lead to isolated resonances and the entrance door-
way states lead to a nonresonant background. Then Eq.
(2.15) is appropriate for our purpose. The exit doorway
state resonances are given by the poles of the complex
propagator

(0
dyd,

(E —Hyyq,— Wiy, — —Waa)™ "

For the sake of simplicity we consider as in Ref. 1 the

case of an isolated exit doorway state Ya, satisfying
(Eq,—Hg,q,¥a,=0, (2.17)

where Eg4, is a real energy eigenvalue. Then, as in Ref. 1,

Eq. (2.15) can be written as

Wasa, | ¥a,) — b, | Wik, | ¥a,) — (a, | Wara, | 0a, )

(2.18)
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for E~E,;, Let

(Ya, | Wi, | ¥a,) =00, — 3iTl,

(Ya, | Wilh |04 =AY a —5iTh g,  (219)
and

(Ya, | Wa,a, | ¥a,) =44 —3iTy, .

From Eqgs. (2.18) and (2.19) it is clear that this particular
exit doorway state is located at the energy

E=E;+AL +A) 4 +AL (2.20)
and has the width
F=r},+Tg,_4,+Ta, - (2.21)

Tg, is the spreading width acquired by the doorway state
because of its coupling to the compound nuclear states,
T, is the escape width because of its coupling to the exit
channel, and T'j 4, is the contribution to the width be-

cause of the coupling between d, and d, spaces. Of
course, it is assumed that the last matrix element in Eq.
(2.18) involving the propagator in the d, space is a
smooth function of energy.

J
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When we use Eq. (2.15) to describe the entrance door-
way state effect we face a problem. The entrance door-
way space propagator of Eq. (2.15) has only one W and
hence only one contribution to width, e.g., the entrance
doorway state has only escape width to the entrance chan-
nel and no spreading width due to its coupling to d,
space. The effect of coupling between d; and d, spaces is
contained in the exit doorway state propagator of Eq.
(2.15). But in Eq. (2.16) the coupling between d; and d,
spaces contributes to the width of the entrance doorway
state. This is why for isolated resonances in the entrance
doorway space d; Eq. (2.16) is appropriate for the study
of intermediate structure resonances. Now we assume
that the exit doorway states lead to a nonresonant back-
ground. The entrance doorway state resonances are given
by the poles of the complex propagator

(E—-H W(O) W(O) )—l
—4dd,—"ddy— "dd, .

For the sake of simplicity we consider an isolated entrance
doorway state ¥, satisfying
(Eq,—Hg4,4 %2, =0, (2.22)

where E; is a real energy eigenvalue. Then for E ~E,
Eq. (2.16) can be written as

(TYr=A¢s | V|9 Y+ {4y | Hpa,(E —Hypg,— Wiy, — Wa,a)) ' Haya, | ¥a,)

X(E —Eq, —ta, | W, |9a.)—(ba, | Wara, |92, g, | Hap | 95+ .

Let

(Ya, | W, | ¥a,) =B8] —5iTy, (2.24)

and
~ (0) L e
(Ya, | Waya, |¥a,)=08a,—7iTq, .
From Egs. (2.23) and (2.24) it is clear that this particular
entrance doorway state is located at an energy

E =Ed] +A,},l -+-A,‘,l (2.25)
and has the width
'= l",',l +T} L (2.26)

(T =g | V| %)+ | Hpa, | 02, NE —Eyg,— (g, |

Equation (2.27) has two energy denominators correspond-
ing to two types of doorway states but the physical inter-
pretation of widths and energies becomes difficult. As in
Eq. (2.18) the exit doorway state energy and width also
gets modified in Eq. (2.27) because of coupling to d,, P,
and g spaces. But the entrance doorway state of Eq.

(2.23)

[

Here 'y is the spreading width acquired by the doorway
state because of its coupling to the d, space, and I‘,}l is
the escape width because of its coupling to the entrance
channel. When there is an isolated doorway state Eqgs.
(2.20) and (2.21) [Egs. (2.25) and (2.26)] give its energy
and width if it is an exit (entrance) doorway state. Such a
unique definition of width becomes difficult if we have an
entrance and exit doorway state close to a particular ener-
gy-

Suppose now that we have two doorway states 1, , and
¥4, given by Egs. (2.17) and (2.22) such that E ~Eq ~Ey,.
In this case one can either work with Eq. (2.15) or (2.16).
Suppose we choose Eq. (2.15) which can now be written as

W, | ¥a,) — Y, | Wik, | ¥a,) — () | Waya, | $4,))"
X{ta, | Hapa, | $a, \E —Eq,—ba, | Wela, | $a, )" (a, | Hap | 9 .

(2.27)

(2.27) gets modified only because of its coupling to the P
space; it does not feel the effect of coupling to the d,
space. The coupling between d, and d, spaces only ap-
pears in one of the denominators and not both. The same
problem will remain if we choose Eq. (2.16) to define the
doorway state widths and spacings. This problem is relat-
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ed to the difficulty one faces in uniquely defining widths
and spacings of overlapping resonances. A similar prob-
lem also appears in the formulation of Ahmed and Beres
[see, Eq. (32f) of Ref. 6]. Apart from this difficulty of in-
terpretation of resonance parameters Eq. (2.27) gives a
useful parametrization of the average transition amplitude
in terms of entrance and exit doorways. Writing

(Ya, | (Wi, + Wara, + Wa,a) | $a,) =84, —iTq, /2
and
(Ya, | Waa, | $a,) =04, —iT4 /2,

it is easy to realize that Eq. (2.27) takes the following
form

(T)r={8s |V 1) +<87 | Hpa, | ¥a,)
X(E —&4,+iTq,/2)"Ya, | Hapa, | Ya,)
X(E —&4 +iTq /2)" ¥y |Hap |0,
(2.28)

where &, =E; +A4, and &, =E; +A44. Equation
(2.28) presents a useful parametrization when there is one

isolated entrance and an exit doorway state near the ener-
gy E. The first term on the right-hand side of Eq. (2.28)
is the direct amplitude which is supposed to be approxi-
mated usually by a distorted wave amplitude in a calcula-
tion. The last term of Eq. (2.28) exhibits the intermediate
resonances arising out of entrance and exit doorway
states. This term is supposed to be parametrized in a cal-
culation. It is not difficult to generalize the above expres-
sion to the case where many doorway states of each type
are present near the energy E. Introducing the doorway
states by ¢ffl) and 1/1&’;’ satisfying

(E—E{wd =0
and

(E —E =0,

where j and k level the doorway states, the eigenfunction
expansion of the propagators can be performed again and
one can write the final result for the average transition
amplitude. Modifications necessary in this case are easily
achieved by putting the levels j and k over the entrance
and exit doorway states and finally summing over these
levels. For example, Eq. (2.28) becomes

(T =(s | V") + % ? (O | Hpay | O NE —EE +iT /2)7!

(f) ) ) _ (j)
XY | Haya, | 94 NE =8 3 +iTg /2~y | Hap | 017)) .

The doorway state term of Eq. (2.29) can still be
parametrized when the summation does not involve too
many terms near energy E. But the calculation of average
cross section becomes very complicated when there are
many overlapping resonances which may lead to statisti-
cal fluctuations in the cross section.” Overlapping or not,
Eq. (2.29) gives the parametrization of the average transi-
tion amplitude in terms of doorway state resonance pa-
rameters.

III. GENERALIZATION IN A MULTISTEP MODEL

In this section we generalize the formulation of the last
section where the exit doorway state has a complex mode
of excitation in relation to the entrance doorway state.
That means it is not the first hallway state in the time
evolution of the system. In general it is the Nth hallway
state where N is not too large. The g space or the space
of compound nuclear states appears after the exit doorway
state.

T=(¢7|V| ¢§'+)>+<¢(f_)'HPdNGNHdeW_”G(N—I) :

+ (1//.()‘_) | HPdNGNHde(N+1)G(N+I)Hd(N+”dNGNHde(N_” .o GszzlelHle l ¢$+)) ,

(2.29)

We introduce the usual orthogonal projection operators
P,d,, d,, d;, . ..,dy, qsuch that’

N

n=1

and the usual orthogonality relations between different
projection operators exist. Equations (2.3)—(2.5) are now
valid with n=0,1,2,...,(N+1). In terms of these
operators T of Eq. (2.3) can be written as

T=(s | (Vins)+Viw+1)Gw+)Vive) [6i) . (32

Now we introduce the doorway state hypothesis of Sec. II
that d;Vd;=d;Hd;#0 only when |(i —j)| =1. Also we
introduce the condition that d;?"d;=d;Vd;. Using Eqgs.
(2.4) and (2.5) recursively in Eq. (3.2) and using the door-

way state hypothesis it is easy to realize that T of Eq.
(3.2) takes the following form

GyHyya G \Hyp | 4i"))

(3.3)
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where the notation is the same as Eq. (2.9). With the
doorway state hypothesis the resolvent operators G;, G,,
and G of Eq. (3.3) are essentially given by

GQ=P(E —pr)—lP )

WY=HGH .

Here d(y,1)=¢ and the notation is the same as in Eq.
(2.10). Now we have the identity analogous to (2.11), e.g.,

In=Gn+GnHayay, G +vHay, \a,Gn > (.3

Gi=d{(E —Hyq—Wig")7'd;, i=12,...,(N-1),
with
G4 (0) N—1) _ @ 1
Y y=dy(E —H - —Wgia '—W, —d
Gy=dy(E —Hy 4 —W{s) — W, )Yy, N=dy( dydy — Wayd, —Wayay dydy)” AN
and
and N 1
W, =Hy (E—H,) 'H, .
Gn+y=q(E —HW—W;:”)_Iq , dydy qu( o) 79N
where Using the identity (3.5), Eq. (3.3) can be written as
|
T={$s | V") + ¥ | Hpay I NHayay,_,Giv—1) " ** GaHapa,G1Hayp | 91) . (3.6)

The system now develops in the following sequence starting from the entrance channel state i: i—d,—d,
— -+ —dy—f. The dy state is the only state which couples to the compound nuclear states ¢ =dy 4, in the follow-
ing way: dy—q—dy. In the usual shell model terminology d, corresponds to (n + 1) particle n hole states. Entrance
(exit) doorway states are those states in d; (dy) space which are strongly coupled to the initial (final) channel state.
Density of such states is supposed to be low. Starting from the d, space the successive doorway states will first have an
increasing density of states, and then this density reduces until we reach the space dy which is expected to have a low
density. Equation (3.6) has propagators for different spaces. The concept of isolated doorway state is useful for n =1,2
or for n =(N —1), N. For all other n the density of states is expected to be high and isolated resonances are unlikely to
appear. The g or the d(y ) space propagator Gy ) which explicitly appears in Eq. (3.3) and which is hidden in ¥ y
of Eq. (3.6) contains among others the compound nuclear resonances. If we would like to study intermediate structure
due to entrance and exit doorway states we would have to perform the usual Lorentz average over the g space rapid fluc-
tuations with respect to a function of width I. The result can be easily derived from Egs. (2.15) and (3.6), and one has

for the energy averaged transition amplitude

(T =g | V") +8f | HpayF nHapay_,Giv—1)"** GoHaa, GrHap | 9iF) 3.7
:
with where
Gy=dy(E—Hy 4, ~Woly, —Wirg ' —Wsa) "dy Hya,=Haa, Gin-1 " GiHaaGHaa (39)

Wayay=Hayg\E —Heg+il1/2)"'Hy, .

Making an eigenfunction expansion of the propagators in
Eq. (3.7) as in Sec. I1 it is easy to realize that one propaga-
tor will correspond to resonance for a particular space.
Isolated resonances are most likely to appear in space d,
or dy. For N >n > 1 the density of resonances is expect-
ed to be large. Intermediate structure corresponding to
isolated exit doorways is most likely to be visible when the
width of such resonances are small and the strength is not
weak. Another obvious condition for easy identification
of entrance and exit doorway states happens when the in-
termediate stages (N >n > 1) lead to resonances of large
width and low strength. In such cases the remaining
propagators of Eq. (3.7) can be grouped into a matrix ele-
ment which can be treated as a smooth function and one
has from Eq. (3.7),

(T)r={¢s |V |%*)
+ {05 | HpgyFnHypa,GiHap |91F)),  (3.8)

essentially acts as a nonresonant smooth object. Equation
(3.8) now has two propagators—G, corresponding to the
entrance doorway state and Gy corresponding to the exit
doorway state. Equation (3.8) is similar to Eq. (2.15) and
the treatment following Eq. (2.15) of Sec. II also applies
to Eq. (3.8).

In a certain reaction apart from the entrance and exit
doorway states some of the other propagators of Eq. (3.9)
may lead to a resonant contribution. Then the last term
of Eq. (3.8) can conveniently be written as a function con-
taining several resonant energy denominators. It is
worthwhile to remember that for N =2 Eq. (3.8) reduces
to Eq. (2.15) where one has only two energy denominators.

We conclude the present section with a brief compar-
ison of our formulation with those of Refs. 5 and 6. In
Ref. 5 using rearrangement scattering theory we showed
the pausibility of the appearance of exit doorway states
within a dynamical formulation. There no attempt was
made to relate the exit and entrance doorway states in the
time evolution of the system. The work of Ahmed and
Beres® is the first one which shows a relation between exit
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and entrance doorway states. The present work exploits
some of the ideas of Ref. 6 but the details are different.
Ahmed and Beres® use the formulation of Beres and colla-
borators in their study of doorway states. We use the
nested doorway model of Ref. 7 in the present study,
which can be considered as a generalization of the ideas of
Beres and collaborators to the case of a hierarchy of door-
way hallway states. The first doorway in this space of
doorway hallway states is called the entrance doorway and
the last one is called the exit doorway.

IV. EXAMPLES OF EXIT DOORWAY STATES

In this section we would like to provide evidence for in-
termediate structure resonances arising from exit doorway
states. There are only a few examples of intermediate
structure resonances which can convincingly be attributed
to the usual (entrance) doorway states. They are (a) the
delta resonances bound in a nuclei as encountered in the
intermediate energy pion-nucleus systems, (b) the giant
resonances, (c) the isobaric analog resonances, (d) the iso-
lated resonances as encountered in low-energy neutron-
nucleus scattering, and (e) the resonances of a subsystem
as encountered in heavy ion reactions. Now we shall
present evidence where the above resonances appear as
exit doorway states and lead to identifiable intermediate
structure resonances.

For our purpose we chose elastic and inelastic scatter-
ings of two nuclear fragments, which exhibit pronounced
intermediate structure resonance due to the entrance door-
way state. Then we studied nuclear reactions leading to
the above two nuclear fragments in the final state, where
the above entrance doorway state may appear as the exit
doorway state whose effect is established by identifying
the same intermediate structure resonance as above.

A. Delta resonances

A striking example of the exit doorway state is to be
found in the pion production process described by
AB—mC, where each of A4 or B is a nucleon or a nucleus
and C is a nucleus; specific examples are NN—#?H,
N2H—H, etc., where N stands for a nucleon. There is
a pronounced peak®~!° in such pion production cross sec-
tions and simple kinematics relate this peak to the forma-
tion of a A resonance bound in the nucleus immediately
before the pion production. This A, which subsequently
decays as A—mN, is the exit doorway state for pion pro-
duction. Notice that this doorway state is not present in
the elastic channel. For the sake of completeness we per-
form the simple kinematic calculation for the resonance
energy.

Let us consider the process AB—mC with B at rest ini-
tially and let m,, m,, mj, and m, be the rest masses of
A, B, C, and , respectively. Let us relate the center of
mass energy of this process to that of #C—X where C is
at rest initially. Then we have

m%+m%+2E1m2=m§+mf,+2E,,m3 ,

where E, and E, are full energies of 4 and 7 in these
two processes. Then the kinetic energy T, of A is given
by

Ti=(mi4+m2+4+2E,my—m?—m3)/2m,y)—m, . (4.1)

We know that the process 7C— X resonates'! at E, =290
MeV because of the formation of A as an entrance door-
way state. This energy is fairly independent of the mass
of Cso long as Cis a light nucleus.!! Equation (4.1) gives
the incident energy of A in the process AB—mC neces-
sary for the formation of the exit doorway state A. For
NN—7H and N?H—7°H the incident proton energy
necessary for the formation of the exit doorway state can
be easily calculated from Eq. (4.1) to be T'; =590 and 440
MeV, respectively, for'! E, =290 MeV which are to be
compared with the experimental results:*!© T, =600
MeV and T; =450 MeV, respectively. This confirms the
production of exit doorway states in the pion production
process. Using this idea of exit doorway states one can
formulate an isobar exit doorway model for pion produc-
tion in the same way as Kisslinger and Wang!! formulat-
ed the isobar doorway model for the pion-nucleus system.

B. Giant dipole resonances

Giant dipole resonances!? are usually observed in
gamma-nucleus systems as a 1p-lh doorway state when
the incident photon excites one nucleon to a different
shell. Such resonances are observed, for example, in
y-1%0, y-13C, and y-?®Pb systems among many others.
To identify such giant resonances as an exit doorway state
we should consider reactions leading to final states y-'%0,
y-13C, and y-*°®Pb, etc.—states which have strong cou-
pling with the giant resonances which will act as exit
doorway states.

It is known that the giant dipole resonance of '°0 is ob-
served in many photoproduction reactions involving '°0,
such as,’® 2C(*He,y)'%0, *C(*He,y)'®0, “N(*H,y)"0,
5N('H,y)'%0 among others. The giant dipole resonance
has a simple mode (1p-1h) of excitation with respect to
160 and acts as the exit doorway state responsible for the
giant peak in the cross section. If all the doorway-hallway
spaces other than the giant resonance exit doorway space
were nonresonant then the intermediate structure reso-
nance in all four above reactions would have appeared at
the same excitation energy. A small variation in the ob-
served position of the resonances in the above reactions
suggests the phenomenologically verified fact that the
contributions of the above doorway-hallway spaces are not
completely nonresonant.!> Some of these spaces could
give rise to a resonance which may interfere with the gi-
ant resonance giving it a small displacement. This then
explains the position of the main giant resonance in these
four reactions.

The parametrization of the transition matrix in terms
of two resonances as done, for example, in the discussion
of secondary doorway state'* could have anticipated the
existence of the effect of exit doorway states But to the
best of our knowledge such an anticipation was never
made, though the two-resonance parametrization has
sometimes been used.

The existence of the giant dipole resonance in %0 as an
exit doorway state is not an exception. In fact all giant
resonances can be observed as exit doorway states; exam-
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ples being the giant dipole resonance of '*C observed'* as
exit doorway in >C(n,7)"*C and 'B(*H,y)"*C and that of
209py, observed!” as exit doorway in 2%*Pb(n,y )**Pb.

C. Isobaric analog resonances

Isobaric analog resonances are usually observed in
proton-nucleus systems as 2p-l1h doorway states (in the
continuum), which are isobaric analog of isolated low ly-
ing states of a neighboring (parent) nucleus. Isospin selec-
tion rule is responsible for the observed intermediate
structure resonance corresponding to the analog states.’
In order to identify such an analogy resonance as an exit
doorway state we should consider reactions leading to
proton-nucleus final states, which have strong coupling
with analog states which will act as exit doorway states.

In fact isobaric analog resonances have been observed as
exit doorway states in (*H,'H) and (°H,'H) reactions on
lead isotopes. For example, Hamburger!® studied the re-
action 2°7Pb(*H,'H)**®Pb and identified the analog states
of the parent nucleus 2®Pb in the yield curve of this reac-
tion. In this case the isobaric analog states act as exit
doorway states. More interesting is the study of
Armstrong and Bernstein'” who analyzed the reaction
208pb(3H, 'H)?'°Pb and identified the analog states of the
parent nucleus 2!'Pb which is far from the stability line.
This reaction involves two-nucleon transfer and because
of interference effect with other doorway-hallway reso-
nances is less likely to show the resonances corresponding
to the isobaric analog exit doorway states than the one-
nucleon transfer reaction. The elastic 2*Pb(’*H,*H)***Pb
process did not, as expected, show!” the analog resonances
and this confirms our conclusion of isobaric analog exit
doorway states in 2°°Pb(*H, 'H)?!°Pb.

D. Isolated low energy resonances

Isolated doorway states have been observed in low ener-
gy neutron-nucleus scattering, for example, in n-**Fe
scattering>!® where 2p-1h excitations serve as isolated en-
trance doorways responsible for intermediate structure.
These same low lying resonances have been identified'® in
5"Fe(v,n)*"Fe by Jackson and Strait, where the low lying
2p-1h excitations serve as exit doorways. Similarly, the
well-known doorway state discovered by Farrel et al. in
studies of the reaction 2%Pb(n,n’) has been observed as an
exit doorway state by Baglan et al. in studies of the reac-
tion 2’Pb(y,n) near threshold.'®

E. Subsystem resonances in heavy-ion reactions

It has been argued that many of the resonances ob-
served in heavy ion systems are due to the existence of a

resonating subsystem.>%?° Such subsystem resonances
may act as exit doorway states. For example, in
12¢(1%0,%Be)*Ne it has been suggested’ that just before
forming the (®Be-’Ne) final state the system passes
through the exit doorway state consisting of *Be and 0
in resonance while !0 is bound to “He. (In the pion pro-
duction process this phenomenon is similar to the pion
forming a A resonance with a nucleon bound in the nu-
cleus.) In this way it was possible to identify the
(®Be-'°0) resonances as exit doorway states in the
12¢(1%0,8Be)*Ne reaction.” Another conjecture of such
an exit doorway state is provided by Ahmed and Beres®
for the reaction '2C(!2C,*He)*Ne*. Further experiments
are needed in order to confirm the presence of exit door-
way states in heavy ion reactions. Sugimitsu et al.?! have
promised to do such experiments recently.

V. DISCUSSION

It is obvious that though the exit doorway states always
existed their importance was never realized in the analysis
of nuclear reactions. This is because the usual doorway
state formulation' was really intended for the elastic and
inelastic processes, though attempt! has been made to use
it for reactions. In such a formulation the exit doorway
states belong to a hallway space containing many overlap-
ping resonances. It was never realized that the exit chan-
nel could select some isolated states of these many over-
lapping hallway states as isolated exit doorway states
which could lead to intermediate structure resonance.

In this paper we developed a formalism for the com-
pound inelastic process including the effect of entrance
and exit doorway states. The present approach does not
depend on the use of a special model for a nuclear reac-
tion, for example, a shell model or an alpha particle
model, etc. The doorway states are states of definite an-
gular momentum, parity, etc. Hence the observed inter-
mediate structure corresponding to an exit or entrance
doorway state will have well-defined quantum numbers.
In conclusion we would like to stress that exit doorway
states deserve more attention in the analysis of nuclear re-
actions.
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