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The Bethe-Salpeter equation is solved with a separable kernel for the most important nucleon-

nucleon partial wave states. %'e employ the Ernst-Shakin-Thaler method in the framework of
minimal relativity (Blankenbecler-Sugar equation) to generate a separable representation of the
meson-theoretical Paris potential. These separable interactions, which closely approximate the on-

shell and half-off-shell behavior of the Paris potential„are then cast into a covariant form for appli-
cation in the Bethe-Salpeter equation. The role of relativistic effects is discussed with respect to on-

shell and off-shell properties of the NN system.

I. INTRODUCTION

During the last decade interest has focused on covariant
two-body equations with regard to relativistic three-body
calculations. Because of the complexity of three-body cal-
culations, up till now nobody has used the four-
dimensional analog of the Lippmann-Schwinger (LS)
equation, namely the Bethe-Salpeter (BS) equation, for the
description of the two-particle subsystems. All "relativis-
tic" calculations in three-body problems have been per-
formed within the framework of three-dimensional reduc-
tions of the four-dimensional Bethe-Salpeter (BS) equa-
tion. Two-particle equations of that type, which are wide-

ly used, are the so-called Blankenbecler-Sugar (BBS)equa-
tion, ' Gross equation, Erkelenz-Ho1inde equation, and
Kadyshevsky equation.

We have already shown in our previous works that a
reasonable description of NN and trN scattering can be
performed in the framework of the BS equation. We have
been able to reproduce NN and srN scattering data
without introducing some reduction techniques to go from
four to three dimensions.

In all of these calculations the free parameters of the
four-dimensional Yamaguchi-type form factors were fit-
ted in order to reproduce corresponding two-body phase
shifts as well as possible. However, no attention at all was
paid to the off-shell behavior of the two-body T matrices.

Since it is well known that important features of three-
body systems (in the binding as well as in the scattering
domain) are very sensitive to the underlying two-body
off-shell behavior, it is our goal in this paper to present a
separable four-dimensional approach to the BS equation,
which yields reasonable descriptions of the on-shell as
well as off-shell properties of the two-nucleon system.
Due to the fact that direct information on the off-shell
behavior is scarce and insufficient for our purpose, we

have chosen to regard the off-shell behavior of a meson
theoretical potential as the basis for our calculations. Ac-
tually we took the Paris potential as a reference model
and followed a method which was given by Ernst, Shakin,
and Thaler (EST).s

The EST method is established in three dimensions
only; we have therefore divided our investigations into
two steps. Firstly, we construct a three-dimensional
separable potential (in the framework of the BBS equa-
tion), which reproduces the on- and half-off- shell proper-
ties of the Paris potential (see Sec. III) satisfactorily.
Secondly, we construct a four-dimensional version of the
obtained potential, by fixing the parameter P and varying
the coupling strengths within the BS framework to refit
the phase shift. We have seen that this second step has al-
most no influence on the off-shell behavior.

In Sec. II we briefly introduce the BS equation in its
separable form. Section III shows the results obtained
with the EST method in the NN system; in Sec. IV some
concluding remarks will be given.

II. THE BS EQUATION
WITH SEPARABLE INTERACTIONS

The BS equation,

T(q, q';s) = V(q, q')

+ i f d k V(q, k)G(k, s)T(k, q';s), (2.1)
4n.

describes the relativistic two-particle scattering in terms
of the T matrix, of an interaction V, the kernel of the in-
tegral equation, and the free two-particle Green's function
G. Since the total angular momentum is conserved, we
may decompose T and V into partial wave components
obtaining the partial wave decomposed BS equation in
momentum space
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Tl(qp q qp q s) Vl(qp q qQ q )+ 3 dkp k dk Vl(qp, q, kp, k)G(kp, k;s)TI(kp, k,qp, q', s)—co 0
(2.2)

with

G(kp, k;s)=[(kp+avs ) —Ei+ie]
X[(kp —bvs )2—E2+ie] (2.3)

k05 +——k +p is—lower kp plane,

k06 +——k +p +is upper kp plane.

Using the abbreviations a =m i l(m I +m q) and b
=mq/(m)+mz), the relative momenta are given by

q =(qo,q) =uq2-bqi

m i and m2 are the masses of the particles with momenta

1 and i)2.
q, k, and q' are the initial, intermediate, and final rela-

tive momenta, s is the total energy squared in the center
af mass system, and El ——(k +m i )'~; i =1,2.

The phase shift is connected to the fully on-shell T ma-
trix by

Sirv s isi(p) .
TI(PO P PO P») = ~ sin~i(P) ~

These potential poles are of second order for S waves and
of fourth order for P and D waves.

Closing the contour in the lawer plane, we are able to
perform the kp integration as the sum of four residues;
the second integral in Eq. (2.7} is evaluated numerically.
By fitting the free parameters A, and P to the phase shifts,
one has ta be careful, since the values of the variable P are
constrained to avoid integration singularities. On the one
hand P has to be less than two times the nucleon mass. In
addition there exists a lower limit for P which depends on
the scattering energy. For example, for an energy range
up to 350 MeV the lower bound P=—,', m for NN
scattering.

For the interaction Vl we have chosen the following
four-dimensional separable ansatz (to simplify the discus-
sion we show the formulae just for a rank-1 separable po-
tential)

Vl(qp, q, kQ, k ) =ul(qQ, q)AIUI(kp, k), (2.4)

where Al is the coupling parameter and ul(qp, q) is a rela-
tivistic generalization of the Yamaguchi form factor (ver-
tex function)

ql
u«0 q —

( 2+ 2+p2)I+) . (2.5)

We have used "magic vectors" for a covariant treat-
ment of the threshold behavior. 9 As a consequence the BS
equation can then be solved in closed form to give

TI(qo q qo q )=ul(qo q)ul(qo q')~1 I(s» (2.6)

DI(s) =XI
' f dk0 —I k dk ul (kp, k)

XG(kp, k;s) . (2.7)

For the kp integration in the complex energy plane in Eq.
(2.7), we investigate the four singularities of the Green s
function at momenta kp, in the lower kp plane,

k„= av s +E, ie, — —

k03 =bv s +E2 IE, — ,

and in the upper ko plane,

k02 = —0v s Ei +Ie, —

k04 bv s —E2+I0, ——
with Ei ——Qk +m) and E2 ——Qk +m2, and in addi-
tion the singularities of the potential

III. NN SCA I j.'BRING PHASE SHIP l 8
AND HALF-OFF-SHELL FUNCTIONS

The EST mechanism leads to the construction of a
separable potential that reproduces the on- as well as off-
shell behavior of some arbitrary potential —in our case the
Paris potential. One selects some energy points (interpo-
lation points} in a particular channel (the number of ener-

gy points determines the rank of the constructed separable
potentials) and the EST method guarantees that the T
matrix of the Paris potential and the T matrix of the
separable potential approximation are identical at the
chosen energy point. '

It is well known that within a covariant three-
dimensional equation the parameters of the potential are
clase to the ones obtained from a fully relativistic four-
dimensional calculation. Therefore it is obvious to use
such a semirelativistic equation to handle the EST
method, suggesting that the resulting parameters of the
separable potential lead to smaller corrections in the
Bethe-Salpeter equation as would happen in the frame-
work of the I.S equation.

As mentioned in See. I, we use the BBS equation as a
starting point of our investigations, since in comparison to
other three-dimensional relativistic equations, the BBS
equation is a symmetric reduction of the BS ixluation.

As a consequence, the creation of a four-dimensional
interaction is much easier to perform by using an unsym-
metric reduction of the BS equation. To show the accura-
cy of this method we have calculated the NN 'Sp, S,-

D, , 'P„PQ, and P, phase shifts and the corresponding
half-off-shell functions.

For the 'Sp p-p wave we have usual a rank-3 potential;
in terms of the EST method this corresponds to thre'e in-
terpolation energies EI ——0, E2 ——100, and E3——500 MeV.

The appropriate separable interaction, where each ver-
tex function consists of the sum of five terms, is given by
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5

u;(qo, q)= g 2 2 2
1=i ( qo—+q'+Pi)

(3.2)

T(qo q,po p'»)
f(qo qs)=

T(polyp&potpie~)
(3.3)

at the energy E~,b ——100 MeV. As shown in Fig. 2, good
agreement of the BS description of the 'So partial wave
with the corresponding property of the Paris potential is
obtained. The results of half-off-shell functions at the
two additional interpolation energies (E=O MeV, E=500
MeV} are of the same accuracy as compared in Fig. 2;
they are still reasonable at the whole energy domain.

For the 'Pj, Po, P~ channel we have constructed a
rank-2 separable potential (each vertex function consists
again of five terms)

2

Vi(qo~q~ko k) = g u (qo q)A, ;v;(kook) ~ (3.4)

5 C"qV
v;(qo, q)= g 2 2 z

.
J =i ( qo+q'+P, —)' (3.5)

Table II gives the potential parameters, the corresponding
phase shifts are shown in Figs. 3—5. For the 'Pi and P&

state the interpolation energies were chosen at E~ ——50 and

E2 ——150 MeV.
To obtain a good fit to the phase shifts in the frame-

work of' the BS equation, both coupling strengths A. ~ and
A,z had to be lowered by a small amount (for both cases,
see Table II). The half-off-shell behavior, however, is in
good approximation to the corresponding Paris potential
properties (Figs. 6 and 8); the reproduction is especially
accurate at the interpolation energies.

A similar behavior is found for the Po wave (interpola-
tion energies: E, = 50 MeV, E2 ——350 MeV}; agreement
with the NN-Paris potential is satisfactory. The absolute

The parameters of the potential are given in Table I; in
Fig. 1 we show the p-p So scattering phase shift obtained
within the BS equation, whereby we show the phase
shifts, obtained without and with a change of the coupling
strengths. In addition, the 'So phase within the BBS
equation is presented. To show the quality of our calcula-
tion we compare in Fig. 1 our results also with the 'So
phase shift of the Paris potential and with the
phenomenological data of Amdt et al."

In order to use the BS equation instead of the BBS
equation, we had to refit the coupling strengths, A, i, A,2,
and A,s. All other parameters we could keep fixed since
the phase shifts are not as sensitive on them as on the cou-
pling strengths. We had to raise A, i and A,z to get more at-
traction and to lower A,i, which is responsible for the
repulsion, to get less repulsion (see Table I); this is also
evident if one looks at the dashed-point line in Fig. 1.

Figure 2 shows the half-off-shell function
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FIG. 1. Scattering phase shifts of the NN system. The solid line represents the calculation within the BS equation with refitted

coupling strengths Ai, the dashed dotted line shows the result of the BS investigation without refitting Ai . The dashed line de-

scribes the NN-Paris potential calculation and the dotted line shows the results of the EST method applied in the BBS framework.

The circles indicate the experimental values of Ref. 11.

value of the coupling strength A, i (A, i is responsible for the
attraction) had to be raied by a very small amount. In
contradiction to A, i, the coupling parameter A,2, which is
responsible for the repulsion in this partial wave, had to

be lowered to obtain satisfactory results in comparison to
the experimental data (see Table II). The changes of the
coupling partuneters are obvious by looking at Fig. 4,
where the dashed-dotted line shows less attraction and too

TABLE II. Parameters of the separable interactions in the Pl Pp and P~ partial waves. The pa-
rameters A, ~ and A,& are defined in thecaption of Table I.

C (fmo)

1P

~ (fm 4)

Pi ——0.7
2
——1.4

3 ——2. 1

Pg ——2.8

Pg ——3.5

C) ) ———0.696 12928

CIP ——27.246 204

C)3
——538.285 92

C)4 ———1848.8997

C)5 ——1980.6184

C2i ——3.875 983 8

C2g ———387.301 46

C2,3 ——2945.2732

Cg4 ———6658.5553

C25 ———4992.4279

PBBS

A, ) ——0.950000
SBs—=0.9068131

Pi ——0.8

2 ——1.6
p3=2.4

P4 ——3.2

Pg =4.0

Cii ——2.471 662 7

C)g ———211.31836

Ci3 ———313.923 85

Ci4 =3228.2158

CI5 ———2695.7289

3P

C2) ———8.912079 7

C22 ——666.771 57

C23 ———7266.8332

Cp4 ——20055.583

C25 ———13461.244

A, , =—1.05200
=0.850415

Pi =1.0
Pi ——1.866066

p3 ——2.687 875 4

Pg =3.482 202 2

Pg=4. 2566996

CII ———0.361 85904
CI2 ——1088.8383

CI3 ———9490.2618

CI4 ——21 167.417

CI5 ———13 723. 185

3p

Cgi ———5.646 626 3

Cp2 ——511.773 53

C23 ———3661.759

C24 ——10752.023

C25 ———8810.46

PBBS

A, ) ——0.900 625
~as=0 960
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much repulsion, The relatively small changes of the cou-
p1ing strengths in comparison to the S waves are caused
by the fact that in the S-channel short-range effects are
more effective.

Figure 7 shows the half-off-shell function of the I'o
n-p partial wave where discrepancies occur for off-shell
momenta q~2 fm ' within the BBS equation. This is
mainly due to the fact that we have chosen the second in-
terpolation energy at E2 ——350 MeV; as a consequence,
agreement of the half-off-shell function with the NN-
Paris potential property itnproves at higher energies. The
corresponding half-off-shell function, obtained within the
Bs equation is, in the whole off-shell-moments domain, in
good agreement with the results of the NN-Paris poten-
tial.

To investigate the coupled S~- D~ channel we have
constructed a rank-4 approximation to the Paris potential.
For the interpolation we have chosen the following ener-
gies:

&.2

0.8

O,4

0
U

04-

0.8-

So

S wave: E1——Ed, Eq ——100 MeV,

D wave: E3 ——125 MeV, E&——425 MeV,

where Ed is the binding energy of the deuteron. The
separable interaction is given by

I I l l

0 I 3 5
q(f m'

FIG. 2. Half-off-shell functions of the NN system at
Eh,b

——100 MeV. The solid line shows the result of the BS inves-
tigation with refitted coupling strengths A,;. , the dotted line
represents the results of the EST method applied in the BBS
framework, and the dashed line corresponds to the calculation
of the NN-Paris potential.

upi(ko, k)
orat(ko, k)

~o~(eo, e,ko, k)=(nod(eo, e) o02('po 'g) o03('Vo e) o~(eo,e»~A~t
V23 0

ops(ko k)

(3.6)

0

I

E( b{MeV)
300

FIG. 3. Same caption as in Fig. 1.
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3p

0

-4-

400
I

200
E ~,b{Mev)

FIG. 4. Same caption as in Fig. 1.

I

300

1 0 0 0
0 1 0 0

o= 0 0 0 0
0 0 0 0

(3 7)

~12 ~13 ~14

~22 ~23 ~?4

~32 ~33 ~34

A 42 A 43 A 44

(3.9)

0 0 0 0
0 0 0 0
0 0 1 0
0001

(3.8) 6 C].1 (3.10)

Each vertex function consists in this two-channel problem
of six terms

-20

200
E) b(MeV)

FIG. 5. Same caption as in Fig. 1.
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120

80

100
I

E( b(MeV)
200

FIG. 9. Same caption as in Fig. 1.

mation to the properties of the NN-Paris potential has
been achieved.

IV. CONCLUSION

We have presented a separable representation of the
NN-Paris potential within the fully relativistic BS equa-
tion, which incorporates the most important features of
the scattering domain in the N-N case.

Concerning the scattering phase shifts we have obtained
satisfactory agreement with the experimental data of the
phase shift analysis of Ref. 11. While these on-shell data
are similar to results obtained in an earlier investigation
(Ref. 5) of a separable approximation of the Bethe-
Salpeter equation, we have presented in this paper a separ-
able interaction which also reproduces the half-off-shell
characteristics of one of the most popular meson-
theoretical NN potentials, the NN-Paris potential. This

I

100
I

E) b(MeV)
200 300

FIG. 10. Same caption as in Fig. 1.
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30

I

200
I

300
I

0 E (MeV)iab
FIG. 11. Mixing parameter e, ) of the 8)- D) coupled state. The solid line represents the calculation within the BS equation with

refitted coupling strengths k~, the dashed dotted line shows the result of the BS investigation without refitting k; . The dashed line
describes the NN-Paris potential calculation and the dotted line shows the results of the EST method applied in the BBS framework.
The experimental values ($) are taken from Ref. 11 and (+ ) from Ref. 13.

TABLE III. Parameters of the separable interaction in the coupled 'S)-3D) partial wave state. The parameters A, ; and A, ; are
defined in the caption of Table I.

P (fm ') C (fm) ~ (MeVfm ') P (fm ') C (fm')

P»=10
pi2 ——1.866 066

Pis ——2.687 875 4

Pi4 ——3.482 202 2

P, s
—4.2566996

Pi6=4 7

p2i=0 8

F2= 1.492 852 8

Pcs=2. 1503003

P~——2.785 761 8

p2s
——3.405 359 7

p26
——4.012602 2

Psi=l o

ps2 ——1.866 066

Pss 2 6878754——.
Ps4= 3.482 202 2

Pss ——4.256 699 6
Ps6=4 7

P4i=0 8

Pe ——l.6

P4s=24.
3m 2

p4s=4 o
P~=4 7

C) ) ——15.659 827

C)2 ———1673.2143

C)3 =19597.873

C)4 ———98 548.033

C) q
——229 712.92

C)6 ———151 345.61

C2) ——49.801 112

C22 ———2072. 196

Cg3 ——6637.7315

C24 ——1773.5598

C2g ———20 763.725

C26 ——14768.319

C3) ———25.801 849

C32 ——2461.253

C33 ———24 133.622

C34 ——48 591.603

C3g ———25 019.227

C36 ———1532.4468

C4) ———26.818673

Cg2 ——2433.8912

C43 ———31 119.533

C~ ——114977.15

Cgg ———171 593.24

C46 ——86 586.506

0.227 567 47

A, )2 ———0. 144 155 10

A, )3
——0.062 892 03

A, )g
——0.003 740 14

A,p) ———0. 144 155 1

——0.113981 21

kg3 ——0.085 399964

A, 24
———0.078 046 366

A, 3) ——0.062 892 029

X32——0.085 399963
———0.028 782 675

k34 ———0.033 827 124

A,4)
——0.003 740 1414

A,g2 ———0.078 046 364
A,43———0.033 827 }24

——0. 178 714 37

A. )) ———0.244 1536
=0.133642 3

A.33
———0.0268
=0.175

P»=1 o

pi2= 1.866066

Pis ——2.6878754

P)g ——3.482 202 2

Pis ——4.256 699 6

Pe=4 7

Psi=0 7

pg2
——l.306 246 2

Pss= l. S81 5127

Pq&
——2.437 541 5

p2s ——2.979 6897

p26
——3.511026 9

Psst=0 6

ps2=1 2

Pss= 1 8

Ps4 ——2.4

Pss=3 o

Ps6=3 6

P4i=0 6

P4p ——1.1196396

P4s
——l.612725 2

P~——2.089 321 3

P4s
——2.554019 8

P~——2.009451 7

C) ) ———3.025 362

C„=—390.33049

C)3
——2615.2074

C)4 ———11 652.333

C)g
——17488.783

C)6
———7066.9205

C2) ——2.813 554 3

C2p ———311.483 49

C23 ——4450. 8549

Cp4 ———16680.498

C2s =25 938.388

C26 ———14081.186

C3) ——2.349 516 7

C32 ———304.5283

C33 ——4578.6541

C34 ———12 876.067

C3g ——5247. 3456

C36 ——4576.4304

C„=—1.593 5462

Cgp ——120.3399

C43 ———1295.0393

C~ ——3342.7168

C~5 = —1195.6997

C4g ———1184.5975
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FIG. 12. Same caption as in Fig. 2. FIG. 14. Same caption as in Fig. 2.
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FIG. 13. Same caption as in Fig. 2. FIG. 15. Same caption as in Fig. 2.
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separable potential is in favor over most of the other wide-

ly used separable potentials, which show a rather un-

reasonable half-off-shell behavior.
The difference of phase shifts, obtained in the frame-

work of the BS equation with and without refitted cou-
pling strengths (solid lines and dashed-dotted lines in our
figures), is particularly large. It shows that the effects
from the coupling between the positive and negative ener-

gy states cannot be neglected in describing the NN in-
teraction as is done in the BBS equation. By changing the
coupling strengths of the separable interaction, obtained
from the use of the EST method with the BBSequation, a
reasonable description of both, on-shell as well as half-

off-shell properties of the NN-Paris potential had been
obtained.

Because of this paper, fully relativistic three-body cal-
culations should be possible.
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