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A separable representation of a boson-exchange nucleon-nucleon potential is constructed via the
Ernst-Shakin-Thaler method. The resulting separable interactions provide for a satisfactory approx-
imation of the on-shell as well as off-shell properties of the Bonn potential. Their form factors are
composed of rational functions suitable for today’s computer codes for few-body systems. First re-
sults obtained with these separable potentials for elastic nucleon-deuteron scattering are presented.

I. MOTIVATION

It has been learned over the last few years that investi-
gations of nuclear few-body problems require a refined
description of the underlying nucleon-nucleon (N-N) in-
teraction. This is especially true for the three-nucleon (3-
N) problem. Consequently we have been looking for
means that would allow one to introduce all the charac-
teristics of the N-N force (both the on-shell and off-shell
behavior) into 3-N calculations. At nonrelativistic ener-
gies meson exchange today gives the best account of all
known features of N-N dynamics. It is certainly reliable
for long and intermediate internucleon distances, the
domain which is most important for nuclear few-body
processes.

In recent papers' we presented a separable approxima-
tion of the Paris N-N potentia.l,2 a model which is basical-
ly derived from (7427 +®) exchange.’ It has already
been very useful in studies of various observables of the
3-N system (see, e.g., Refs. 4—9). In fact, it allowed one
for the first time to introduce features of modern meson-
exchange theory in a reliable way into 3-N scattering cal-
culations.

For future investigations on the 3-N system and also
other few-body problems it is essential to compare predic-
tions of different meson-exchange models (e.g., multipion
exchange versus boson exchange) to each other in order to
learn about details of the N-N interaction. For this pur-

pose we construct in the present work a separable approxi-
mation to the Bonn potential in the version as it was pub-
lished in Ref. 10. This is an energy-independent one-
boson exchange (OBE) model derived in the framework of
the Blankenbeckler-Sugar equation, which can also be
used in the conventional nonrelativistic Lippmann-
Schwinger (or Schrodinger) equation due to the minimal-
relativity transformation. This version of the Bonn poten-
tial yields an overall satisfactory description of the up-to-
date N-N phenomenology and it is therefore desirable to
study its specific features in few-body problems.

II. BEST POTENTIALS

In this paper we present a separable EST (Ernst-
Shakin-Thaler!!) approximation of the Bonn potential'® in
the 'S, and 3S,-3D, partial-wave states, the ones that are
most influential on 3-N observables. Furthermore, it is
predominantly in these states that differences to other
models occur in the Bonn potential. Discrepancies in
higher partial waves are generally smaller and in addition
their effect is considerably diminished in 3-N calculations,
in particular for differential cross sections.

The EST method is presented in Ref. 11 and its appli-
cation to the N-N interaction is discussed in Refs. 1 and
12. Here we follow exactly the same procedure as in the
case of the Paris potential in Ref. 1. For example, our se-
parable approximation to the Bonn potential has the form

TABLE I. Interpolation energies selected for the construction of the separable potentials BESTN.

Abbreviation Selected energies E; (MeV)
State and rank or ensembles a;={E,;,I;}
s BESTI E,=0
0 BEST3 E,;=0,E,=100,E;=300
3S1'3D1 BEST!1 a1=[—2225,—}
BEST4 ay={—2.225,— Jas={125,0}

a,={200,2}a,= {450,2}
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FIG. 2. Noyes-Kowalski half-off-shell functions for 'S, (n-p). (a) Ey,=0 MeV, (b) Ejp =20 MeV, (¢) Ej;, =100 MeV. In (a)
BEST1 and BEST3 are identical. Same description as in Fig. 1.
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FIG. 3. (a) S, phase shift, (b) mixing parameter ¢, (c) *D,
phase shift. Due to the uncertain phenomenological evidence on
€, the results of Bystricki et al. (Ref. 18) are added in (b).
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FIG. 4. Momentum-space deuteron wave functions (a) (p)
and (b) ¢,(p) for the S and D states, respectively. The results

for BEST1 and BEST4 are identical. Same description as in
Fig. 3.
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FIG. 5. Half-off-shell functions in S,-*D; for (a) 3S;—3S), (b) 3S,—°Dy, (c) °D,—S), and (d) *D,—>D, transitions at Ej,,= 100

MeV. Same description as in Fig. 3.

TABLE IV. Effective-range parameters in the 'Sj state.

1So (p-p) 'S (p-p)
1So (n-p) Coulomb modified Purely nuclear
a (fm) r (rm) ay. (fm) re (fm) a; (fm) ry (fm)
Bonn —23.75° 2.69*
BEST1 —23.75 2.73 2.89 —17.85 2.76
BEST3 —23.75 2.71 2.89 —17.85 2.77
Expt. (Ref. 13) —23.748+0.010 2.75+0.05 —7.8098+0.0023 2.767+0.010

*Given by the authors (Ref. 10).



33 SEPARABLE REPRESENTATION OF THE BONN NUCLEON- . .. 445

TABLE V. Triplet effective-range parameters and deuteron properties.

a, (fm) r, (fm) Ep (MeV) Qp (fm?) Pa (%) 7 A,
Bonn 5.49* 1.86* 2.225* 0.2856* 4.58 0.0267* 0.9008*
BEST1 5.49 1.86 2.225 0.2855 4.58 0.0267 0.8950
BEST4 5.48 1.85 2.225 0.2855 4.58 0.0267 0.8950
Expt. 5.424+0.004 1.7591+0.005 2.2246+0.00005 0.286+0.0015 0.027140.0004

(Refs. 13 and 15—17)

0.026 28 +0.00047

*Given by the authors (Ref. 10).

behavior from n-p to p-p, while preserving the typical
off-shell behavior. In the Paris case we had to do it in the
other way around (see the corresponding discussion in
Ref. 1).

The quality of the separable BESTN approximations
can be estimated from the comparison of their on-shell
and off-shell properties with the ones of the original Bonn
potential. Table IV gives the low-energy parameters in
the 'S, state. It is clear that a satisfactory reproduction
of the Bonn results is guaranteed in T =0, while the ex-
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FIG. 6. Neutron-deuteron differential cross section at E; =38,
10.25, and 12 MeV. The solid line is the result with BEST3 in
1S, (n-p charge independent), BEST4 in 3S,->D;, and P as well
as D waves substituted from the separable model of Ref. 19.
Open circles are experimental data from the Karlsruhe group
(Ref. 20), while full circles are data from Uppsala (Ref. 21). For
the latter the points at 6= 180" are extrapolated values.

perimental data are well fitted for the T =1 proton-
proton. The same is true for the phase shifts in Fig. 1 at
least for BEST3. The rank-1 approximation, of course,
cannot but deviate with increasing energy. The half-off-
shell properties are shown in Fig. 2 at three different ener-
gies. From that it is evident that also the off-shell
behavior of the Bonn potential is closely approximated; at
low energies by both BEST1 and BEST3 and over a wider
energy range only by BEST3.

For the 3S,-3D, state the triplet effective-range parame-
ters and deuteron properties are summarized in Table V.
Since the bound state was taken as interpolation energy in
both cases BEST1 and BEST4, they yield a correct repro-
duction of the deuteron as described by the Bonn poten-
tial.

The on-shell behavior in 3S,-3D; can be seen from Fig.
3. While the rank-1 approximation is only good for 35, at
rather low energies (not shown in Fig. 3), the BEST4 ap-
proximation is satisfactory in the whole energy range.
The off-shell behavior can be estimated from the deuteron
wave function, whose shape in momentum space is well
reproduced up to p~10 fm~! (Fig. 4), or from the half-
off-shell functions in Fig. 5. Notice that the energy
E,, =100 MeV lies apart from the interpolation energies
chosen for BEST4 (cf. Table I).

III. n-d ELASTIC SCATTERING

We give an example for the application of the BEST
potentials in N-d scattering by the elastic n-d differential
cross section at E, =8, 10.25, and 12 MeV. In order to
make the results comparable to our former study® employ-
ing the PEST approximations of the Paris potential we
use BEST3 in 'Sy, BEST4 in 3S,->D,, and supplement the
higher N-N partial waves again from the phenomenologi-
cal separable potentials developed by Doleschall.' Figure
6 shows the angular dependence of the differential cross
section in comparison to experimental data. Quite a satis-
factory agreement is achieved at each energy considered.
As compared to the corresponding calculation with the
PEST interactions (Ref. 6) the present result lies some-
what higher at very forward and very backward angles.
This, however, does not yet allow one to draw a definite
conclusion on qualities of either the Paris or Bonn poten-
tials. Further extensive investigations of various N-d ob-
servables are required to disentangle the effects from dif-
ferent properties of these interactions, like, e.g., low-
energy parameters, D-state probability, off-shell behavior.
Finally such studies can be expected to yield quantitative
evidence to which extent meson-exchange theory as a
dynamical concept for the N-N interaction can be em-



446 J. HAIDENBAUER, Y. KOIKE, AND W. PLESSAS 33

ployed. The necessary calculations are made feasible by
the now existing separable approximations to the most ad-
vanced meson theoretical models.
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