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Optimal approximation to elastic and inelastic scattering on a bound nucleon system
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An approximation to scattering on a bound system which minimizes the correction term is de-

rived. This "optimal" approximation is found to be more precise and more simple for application
than the weak binding impulse approximation. The derivations are presented in the framevvork of a
local many-body nuclear interaction for the elastic and inelastic single scattering amplitude for the
first-order optical potential and for distorted a&ave approximations. A simple formula for the
correction terms to the optimal approximation is obtained. Pauli antisymmetrization effects and

spin-orbit forces are not considered.

I. INTRODUCTION

Any theory describing the scattering of the projectile on
a bound nucleon system in terms of scatterings on constit-
uent nucleons has to deal with the problem that the target
nucleons are not free but are in bound states. Even in the
case of scattering on one bound nucleon it involves all the
complications of a true many-body problem. Therefore,
for a practical treatment of the projectile-nucleus scatter-
ing one is forced to make approximations. An approxi-
mation which is often used is a weak binding (impulse) ap-
proximation, ' where the binding potential is neglected.
In that way the scattering is described in terms of the free
aff-energy shel/ projectile-nucleon amplitudes which are
averaged over the nucleon's Fermi motion. Although this
approximation is valid only for high energy small angle
scattering, it is sometimes used elsewhere such as for
low-energy scattering or for processes with large momen-
tum transfer.

Binding corrections have been discussed many times in
literature, for example see Refs. 1—3. However, general
expressions were not simple and it was quite obvious that
inclusion of the binding potential (even in an approximate
way) leads to considerable complications. Fortunately, a
more precise analysis shows that this may not be the case.
The reason is that the target nucleon is in a stationary
bound state, where the binding potential and the kinetic
energy of the nucleon are mutually cancelled. Therefore,
it could be possible to effectively incorporate the binding
potential by a proper renormalization of the two-body en-
ergy and other kinematical variables in the projectile-
nucleon amplitude (see also Ref. 5).

The first work in this direction has been done by Mail-
let, Dedonder, and Schmit. 6 By analyzing the second
Born term they have explicitly shown that the binding po-
tential effects in the first-order optical potential can be
taken into account by a proper choice of the kinematical
variables in a free projecticle nucleon amplitude.

In Refs. 7 and 8 we further developed this idea by
analyzing the full elastic scattering amplitude on the
bound nucleon, i.e., we went beyond the second Born term
as was done in Ref. 6. Unlike the standard approaches to

the problem of binding effects, we considered ' a dif-
ferent starting point in the expansion of the exact scatter-
ing amplitude in terms of the approximate one. It is usual
to start with the weak binding impulse approximation,
where the higher order terms of the expansion are the
binding potential corrections. However, our expansion is
designed in such a way that the first-order correction term
is exactly zero. Therefore a major part of the binding ef-
fects are already in the first term of the expansion. This
term is our optimal approximation for the scattering am-

plitude.
Using a model for the elastic scattering on a nucleon

bound by an infinitely heavy core ' we demonstrated that
such expansion can indeed by found for the case of local
potentials. In this optimal approximation the first term
coincides with the static approximation in Ref. 6, and in
fact has been used earlier as a phenomenological prescrip-
tion in different calculations (see Refs. 6 and 7 and refer-
ences therein}. The amplitude in the optimal approxima-
tion takes the form of a product of the free projectile-
nucleon amplitude and the nuclear form factor (no Fermi
average is necessary}. Therefore the optimal approxima-
tion is much easier for application than the weak binding
impulse approximation. It is also a more exact one since
it minimizes the first-order correction term.

In this paper we derive the optimal approximation for
the general case of many-body nuclear interactions, and
also consider some higher order correction terms. ' %e
show that these terms can be partially resummed into a
simple formula which is a sort of a Fermi average of the
off-shell projectile-nucleon amplitudes. This correction
term may be important if we apply the optimal approxi-
mation in the region of resonance scattering.

Special attention is paid to the nontrivial generalization
of the optimal approximation for inelastic scattering.
These results are extremely important for the analysis of
inclusive scatterings involving large momentum
transfers. "

%e start our discussion with the usual weak binding
(impulse) approximation (Sec. II), and demonstrate the in-
consistency of this approxiination for defining the effec-
tive two-body kinematics (Sec. III). In Sec. IV we derive
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our optimal approximation for elastic and inelastic
scattering on a bound nucleon and also extend the final re-
sult to the case of relativistic kinematics. In Sec. V we
consider corrections to the optimal approximation. In
Sec. VI we derive the optimal approximation for the
first-order optical potential, and in Sec. VII we derive the
distorted wave optimal approximation. Section VIII is a
sum Glary.
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FIG. 1. Graph for the scattering of projectile I',dashed line) on
the nucleon (solid line) bound by core.

II. WEAK BINDING {IMPULSE) APPROXIMATION
FOR THE SCAl I, ERING ON A BOUND NUCLEON

We start our discussion with a simplified problem,
where we consider the nucleus as a system of a nucleon
(N) and a core, bound together by a nuclear potential V.
The masses of the nucleon and the core are m and
MA —m, respectively. The projectile (X) of mass p
scatters inelastically (or elastically} on this system (Fig. 1)
leading to a final-state nuclear wave function 4„(or 4o},
where the initial nuclear wave function is 4o. Both 4o
and 4'„are the eigenstates of the nuclear Hamiltonian
Hg ——E~+ V, i.e.,

( KN + V)@On)=eo(n)@o{n), (2.1)

where KN is the kinetic energy of relative nucleon core
motion, eo is the ground state energy (eo & 0), and e„ is the
energy of the final nuclear state. The latter may be a
discrete state (e„~0) or a continuum state (e„&0). The
initial and final projectile momenta are k and k'=k —q.
The total projectile-nucleus energy and momentum are
E»A and P»A

Now we formulate the problem: consider the case
where the projectile interacts only with the nucleon
(through the potential V) and does not interact with the
core. The question is how to find the transition amplitude
for such a process. The formal exact solution of this
problem can be written straightforwardly. The transition
amPlitude Fo„(E»A,P»A, k, k') is a matrix element

~o.(E»A PxA k k')=&+. k'l~l +o,k& (2.2)

where the scattering operator ~ satisfies the Lippmann-
Schwinger equation

v'= V+ V
1

Ex~ —Ex —EN —Ec+ V
(2.3)

I
@k) @(r)e xA AeikR

or in the momentum space

Here K», KN, and Kc are the kinetic energies for projec-
tile, nucleon, and core. The initial and final states,

I 4o,k) and
I 4„,k') in Eq. (2.2), correspond to the prod-

uct of the nuclear wave functions and the plane waves for
the projectile (X) and nucleus ( A) asymptotic motion, i.e.,

I@'o k & =@o(Q.+(k—P +(P»A —k —PA»

I
@"k'& =@.(Q' +«' —p'N(PxA —k' —pA»

(2.4)

(2.5)

The main difficulty in the treatment of Eq. (2.3} comes
from the binding potential V, which is an integral opera-
tor (in momentum representation) in the denominator of
the Green's function G. Our goal is not an exact solution
of this problem, such as rewriting Eq. (2.3} through the
system of Faddeev-type equations (which can be practical-
ly solved only for limited cases). Rather we concentrate
on the design of the "best" approximation for this prob-
lem. Before procaxling with our approach we describe an
approximation which presently is in common use. This is
the weak binding approximation, ' which is often im-
plied by the term "i~pulse approximation. "'

The weak binding (impulse} approximation is the
straightforward approximation for Eq. (2.3) in which the
binding potential V is neglected. In this case the exact
Green's function G is replaced by a free Green's function
Go

Go =«»A Kx KN Kc)— — ——1 (2.6)

The operator v is thus approximated by to which satisfies
the equation to V+ VGoto. In th——e form of matrix ele-
ments this equation reads

where Q, (Q,
'

} is the relative nucleon-core momentum in
the initial (final) state. The projectile momenta p, p' (as
well as the nucleus momenta pA, p'A ) are variables [as R
(RA ) in the coordinate space] and should not be mixed up
with the momenta k, k' which are the external parameters
defining the initial and final projectile states.

The scattering operator w depends on the external pa-
rameters E»A and P»A. In fact, the total projectile nu-

cleus momentum P»A defines the reference system. For
example the choice P»A ——0 corresponds to the center of
mass frame, and P»A ——k corresponds to the laboratory
frame. For the physical (on-shell} scattering the total
projectile-nucleus energy is

(PxA —k)'
EXA EXA

2
+ +60

k' (PxA —k'}'
+ ~~ +~n .

& P Q I to I
p' Q'& = v(p —P'+(P+Q —P' —Q'}+

p"' Q"' (PxA —p"—Q"}'
Ex~-

2@ 2m 2(M„—m)

(2.7)
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Here p and Q are momenta of the projectile and nucleon,
and Pxq —p"—Q" is the momentum of the core in the in-
termediate state. In the following we consider the
projectile-nucleus laboratory frame, i.e., we choose
P~z =k. The projectile-nucleon interacti. on V is taken to
be local. To avoid confusion we remind the reader that
the momenta p, p', and p" are variables in the integral
equation (2.7) and should not be mixed up with the exter-
nal parameters k,k' in Eqs. (2.2), (2.4), and (2.5). Such
confusion can produce serious problems in the under-
standing of our derivations.

It follows immediately from Eq. (2.7) that the total

projectile-nucleon momentum is conserved. Therefore,
one can write

& p.Q I to I
p' Q' & = & p»xN I to I

p'»XN &@p+R—p' —Q'),

(2.8)

where P&z is the total projectile-nucleon momentum
given by

P =p+e=p+e,
and to satisfies the equation

&p» Itolp'» &=I'(p —p')+ J I'(p —p") &
p"»XN I to I p'»xN &

(k —PxN) p" (PxN —p" )

2(Mg —m) 2p, 2m

(2.9)

(Px~ -PxN)'
xN xA 2(M

(2.10)

Now we can find the projectile-nucleus transition amph-
tude Fo„ in the impulse approximation by taking the ma-
trix element Eqs. (2.2) and (2 4) from the operator to-~,
given by Eq. (2.8}. Notice that the relative nucleon-core
inomenta are Q„=Q and Q„'=Q'+[(A —I)/A]q, Fig. 1.
(The mass of the nucleus is taken to be M~ ——Am. ) Final-
ly we obtain

~o.«x~»x~ k k')=~o.«x~ k k')

—= fK Q+

Now we can see that Eq. (2.9) is the usual Lippmann-
Schwinger equation for the free two-body amplitude

t(ExN, PxN, p, p') —= &p PXN I to I
p'»xN&

where PxN is the total projectile-nucleon momentum, p, p'
are the momenta of the projectile, and ExN is the
projectile-nucleon energy

the projectile initial and final moments. In fact using
Galilean invariance one finds that the projectile-nucleon
amplitude is a function of center of mass energy and rela-
tive moments only.

t(ExN, P, p, p')

P pP, p, P=t' '
Egw P—

2(m +p, } m +p m +p
(2.12)

where t' is the 'solution of the Lippmann-Schwinger
equation in the projectile-nucleon c.m. frame:

~(p. —p"}t' «xN p" p')I+
Ec.Ql.

2mIJ, /(m +p, )

(2.13)

X t«XN»XN k k')@o(Q}d'Q,

where the two-body energy ExN, Eq. (2.10},

12 Q2
Ex = +&-

2@ 2m (A —1)

and the total projectile-nucleon momentum

PxN=k+Q .

(2.11)

(2.11a)

(2.11b)

Here and elsewhere we denote the projectile-nucleon am-
plitude as t(ExN, P,p, p') where EXN and P are the total
projectile-nucleon energy and momentum, and p, p' are

k Q k' (Q+k —k')
XN + +

2p 2m 2p 2m
(2.14)

ether~~ the energy E~ in the two-body amplitude t in
Eq. (2.11) is less than that quantity. Indeed we find that
the energy shift

Equation (2.11) is the standard impulse approximation
in the weak binding liinit for scattering on a bound nu-
cleon. It corresponds to averaging the free projectile-
nucleon amplitude over the nucleon Fermi motion. How-
ever, the energy ExN in the two-body amplitude t is off
the energy shell. Indeed the on-shell value of ExN would
correspond to the sum of the kinetic energies of the pro-
jectile and nucleon in the initial or final states:
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~&=ExN —&xN = —
I eo I— Qon Shell

2m (A —1)
Q',
2m

{2.15}

and So„(q) is a transition form factor

&o.(q)= J@o(Q)@: Q+ ~ q d'Q.
l

(2.18}

Fo~(~x~ k k ) =t(ExN»xN» k )So (q)

where

&Q&'

2p, 2m{A —1) '

PxN=k+ &Q&

(2.17)

Here we should mention that the impulse approxima-
tion, Eq. {2.11), is often employed with the two-body am-
plitude t evaluated at the projectile energy, ExN k—/2p„
and PxN —k. This prescription contradicts Eqs. (2.11a}
and (2.11b). However, it is often misinterpreted as the
"weak binding limit" which can lead to confusion and ill-
conceived "corrections. "

A relativistic generalization of the weak impulse ap-
proximation, Eq. (2.11), is the triangle Feynman diagram,
Fig. 2. It is interesting to note that in order to obtain Eq.
(2.11a) for the two-body energy ExN as a nonrelativistic
limit one should use a common prescription by taking the
spectator core on the mass shell in the triangle Feynman
diagram. Indeed in this case the energy of the struck nu-

cleon is Mz —(Mz i+Q )'~ . Therefore the total
projectile-nucleon kinetic energy in the nonrelativistic lim-
it is

ExN=M~ —(M~ i+Q'}' —m+(ru'+k')'" —ru

k2 Q2
+My —Mg i —m— (2.16)

2p 2m (A —1} '

which is exactly the same two-body energy ExN as ap-
pears in Eq. (2.11a).

We also can see that the weak binding (impulse} ap-
proximation, Eq. (2.11), coincides with the first term of
the Faddeev three-body equations, which describes the
scattering on the bound nucleon. For this reason the
choice of two-body energy as in Q. (2.11}has been called
the "three-body choice of energy. "'

Since Eq. (2.11) involves an explicit three-dimensional
integration over the Fermi momenta Q one tries to sim-

plify this result by an approximate factorization of Eq.
(2.11) into the projectile-nucleon amplitude and the transi-
tion form factor. The projectile-nucleon amplitude t is
evaluated at the value of the struck nucleon's momentum
Q=&Q) which gives the main contribution to the in-
tegral (2.11}.One thus obtains

An optimal value of & Q)

&Q)=- q
A —1

2A
(2.19)

has'been obtained in Ref. 14 using some symmetry argu-
ments. (Notice that & Q) here is given in the nuclear labo-
ratory frame, and not in the projectile-nucleus c.m. frame
as in Ref. 14.}

In general, the approximate factorization of Eq. (2.11}
can be done only if the amplitude t, Eq. (2.12), has a weak

energy dependence. Otherwise Eq. (2.17) cannot be a
good approximation to Eq. (2.11)."

The validity of the factorized form of the impulse ap-
proximation, Eq. (2.17), and the energy shift &&, Eq.
(2.15), in the two-body amplitude, and their implications
to data analysis have been often discussed (see for example
Refs. 13 and 16). However, one should keep in mind that
Eq. (2.11) is itself only an approximation to the exact re-
sult, Eq. (2.2), so one should not neglect the important
question of the corrections to the impulse approximation,
Eq. (2.11), itself. It could appear, for instance, that the
higher-order terms compensate the effects of the three-

body choice of energy or may influence the factorization
approximation, Eq. (2.17}.

In fact the "three-body" choice of energy is a specific
example of proposals which have beni made on the basis
of connected-kernel scattering approaches. Analogous
N-body extensions of the three-body case, for example,
appear in Ref. 17. Serious problems of these approaches
have been clearly indicated by Picklesimer, Tandy, and
Thaler in Ref. 5. In particular, they demonstrated that
for large N the off-shell "X-body energy shift" in two-

body amplitudes is a completely unrealistic one. It makes
this approach unapplicable. As a possibility to overcome
the problem with the energy shift it was proposed in Ref.
5 to take into consideration higher corrections. In that
sense our paper provides a desirable correction mechanism
which goes beyond the discussion of Ref. 5. In the next
section we consider the first-order correction term to Eq.
(2.11), and in particular examine the connection with the
off-shell energy shift in the weak binding impulse approx-
imation.

IH. CORRECTION TO THE
WEAK BINDING (IMPULSE) APPROXIMATION

In order to find corrections to the impulse approxima-
tion we use a general relation between the exact scattering
operator v and an approximation to it, t„

r=t. +t.(G G. )~, — (3.1)

where r and t, satisfy the I.ippmann-Schwinger equations

~= V+ VG~,

t, = V+VG, t, ,

(32)

(3 3)

FIG. 2. Graph for the standard impulse approximation. The
spectator core is on the xnass sheH.

and ~here 6 and 6, are exact and approximate Green's
functions. Equation (3.1) can be written in the form of an
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expans1on

+t.(G —G. )t.(G —G. )t.+. . . (3.4)

+t.G.h(G. +G.t, G, )hG. t. + (3.5)

Because approximations are usually applied to the nuclear
Hamiltonian (which is in the denominator of the exact
Green's function), the "natural parameter" for expanding
~ in terms of t, would be h—:G, ' —G '. In terms of h
the expansion (3.4) can be rewritten as

r= t. +t,G.hG, t.

The weak binding impulse approximation which has
been described in the previous section corresponds to
Ga—=Go» Eq. (26) h—= V and to=to»Eq (27) Inth's
case we can see that the expansion (3.5) for the transition
amplitude I'o„, Eq. (2.2), corresponds to the sum of the
Feynman diagrams, Fig. 3, where the spectator core is al-
ways on the mass shell.

The first diagram, Fig. 3(a), is the weak binding im-
pulse approximation, Eq. (2.11). The second diagram,
Fig. 3(b), corresponds to the contribution of the first-order
term in h in the expansion (3.5). It is usually considered
as a binding correction to the impulse approximation. %e
thus obtain

(4„,k'
i toGo VGoto i 4o„k ~ = f @o(Q)t(ExN»' k k")V(Q —Q')t(Exw»" k" k'}

(P» k»»)2 k»» i (P»» k»»)i k»» 2

XN
2m 2p 2m 2p

EX'N-

X4„' Q'+ q d'Qd'Q'd k", (3.6)

where P'=k+Q, P"=k'+Q' are the total projectile-
nucleon momenta and ExN, ExN are the total projectile-
nucleon energies in the corresponding amplitudes:

V — ' 4p ——ep-
2m

@o(Q ) (3 g)

k2 Q2

2 2(M — )

k2 Q»2
(3.7)

q=k —k' is the momentum transfer to the nucleus.
On first sight the binding potential corrections are not

connected with the impulse approximation term, Eq.
(2.11) [Fig. 3(a)]. However, the following analysis shows
that this is not true. Consider for instance the case where
the Green's functions and the two-body amplitudes in Eq.
(3.6) have a weak dependence on the arguments Q, Q'
compared to the strong Q, Q' dependence in V and 4o,4„.
Then assuming that V commutes with t and Go, i.e., no
spin or isospin dependence, the Q (or Q') integration in
(3.6) can be carried out using the Schrodinger equation

t (ExN, P,k, k")t(ExN, P,k",k')
-2 d k".

(P 1 »»}2 1»»2
EXN-

2m 2p

(3.9)

Using Eqs. (3.8) and (3.9) to evaluate the binding correc-
tion term of Eq. (3.6), we obtain

where m =m (A —1)/A is the nucleon-core reduced mass.
If the main contribution to the integral is coming from
the region Q'=Q (as is definitely the case for small q ),
then we can replace P"=P' =k+ Q =P, and ExN
=ExN ExN in (3.6——). Afterwards the integration over the
k" variable can be carried out in (3.6} using the following
relation for the energy derivative of the two-body ampli-
tude:"

dt(ExN, P,k, k')

dExN

Q2 dt(ExN, P,k, k')
k 1toGoVGoto I @ok~= — eo — @o(R) 4 Q+ q d Q .

2m EXN A
(3.10)

Now it is clear that the binding potential correction term (3.10) and the impulse approximation term (2.11) are related.
Indeed

Q2 dt(ExN, P,k, k')
t(ExN, P,k, k') —eo-

2m ~Exz
Q2=t EXN+ —~O» & &
2m

(3.11)

and therefore

k2 2

(C„,k'~t, +t,GoVG, t, ~@,,k)= f q„' Q+ q t E „= +,P=k+Q, k, k' q~,(Q)d'Q.
2p 2m

(3.12)
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FIG. 3. Graphs for the impulse approximation (a) and for
the binding correction term (b). The spectator core is on the
mass shell.

FIG. 4. Graph for projectile-bound nucleon scattering in the
case of the many-body nuclear Hamiltonian. The projectile in-
teracts only arith the nucleon "1."

Comparing Eq. (3.12) with the impulse approximation
term, Eq. (2.11), we find that the binding corrections gen-
erate an upward energy shift in the projectile-nucleon am-
plitude, which cancels the off-energy-shell shift 5, Eq.
(2.15), in the weak binding approximation.

Although our evaluation of the correction term is not
precise, it clearly shows the inconsistency of defining the
two-body kinematics in the impulse approximation term
without regard to the higher order correction term.
Therefore the large effects which result from the three-
body choice of energy' (spectator core on the mass shell)
can be completely artificial and are compensated by
higher order terms.

We have thus demonstrated that the determination of
the effective two-body kinematics for the scattering on a
bound nucleon caimot be separated from the simultaneous
considerations of binding effects. In the next section we
deal with this problem in more detail.

IV. OPTIMAL APPROXIMATION FOR
THE SCA I l BRING ON SOUND NUCLEON

Consider again the problem of a projectile-nucleus
scattering where the projectile (X) interacts with only one
of the target nucleus "1"(through the potential V), but it
does not interact with the others. Here we consider all
nucleons as distinguishable particles. Now we do not take
the nucleus as a system of nucleon and core, as has been
done in the previous sections. We rather consider the nu-
cleus as a true many-body system, Fig. 4, where the nu-

clear wave functions 4z and 4„ for the initial and final
states are the eigenstates of the exact nuclear Hamiltonian
Hg.

H„C+„,— gKK'+ g VJ 4+„,——e+„,4+„, . {4.1)

Here K; is the kinetic energy of the relative motion of nu-
cleon i relative to the nucleus center of mass, and VJ is
the two-nucleon potential. All derivations are presented
in the nucleus laboratory frame. We denote the momenta
of target nucleons in the initial state as

Qi, eq, ei, . . . , Qz and in the final state
Q'i +q, Q2, ei, . . . , Q', Fig. 4, so that

,'=o.

q=k —k' is the momentum transfer to the nucleus.
As in Eqs. (2.2) and (2.3), the transition amplitude Fo„

is a matrix element of the operator r

Fo„(E»g,k, k')={4„,k' iii 40,k), (4.2)

which describes the scattering of the projectile on the
bound nucleon "1,"and satisfies the I.ippmann-Schwinger
equation

v=V+ V
1

T
Ex~ —&x—&~ —H~

(4.3)

where K» and Kz are the kinetic energies of projectile
and nucleus center of mass motion.

Now we are ready to formulate the problem we are go-
ing to solve. Consider the expansion (3.5) for the operator

in terins of approximate operators 6„ t„and
h=G, ' —6 '. We look for the approximate Green's
function 6, [which defines the approximate operator t,
by means of Eq. (3.3}], so that the contribution to the
scattering amplitude Fo„ from the first-order correction
term in expansion {3.5} vanishes. This means that 6, sat-
isfies the equation

(4„,k'
i t,G.(G, ' 6')G,—t, i 4,,k) =0, (4A)

where t, is given by Eq. (3.3}. Such an optimal choice for
t, corresponds to the inclusion of some of the binding po-
tential effects in the approximate operator t, .

Equation (4.4) is highly nonlinear and its straightfor-
ward treatment would be very complicated. Therefore, we
first have to guess a general class for the Green's func-
tions G, in which to look for a solution to Eq. (4.4). We
take G, to have the form

6 ={E»g—K» —K„e)—
where e is an operator which acts only on the projectile
variables and may depend on external parameters like
E»~, k, q, eo, and e„,but it does not depend on any target
nucleon variables. The matrix element of 6, ' in momen-
tum space is

2

&p,e,e.,
2p

(k —p)'
pe,(,k, q,ee) 5(p —p') g 5(e;—Q,' ),2mB

(4.5)

where p (p') is the momentum of the projectile, Q; (Q,') are the momenta of the target nucleons, and k —p is the
momentum of the nucleus c.m. motion. (We remind the reader that the total projectile-nucleus momentum is P»~ —=k
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since all derivations are carried out in the nucleus laboratory frame. )

We are now going to demonstrate that a G, of the form of Eq. (4.5) can satisfy Eq. (4.4). We consider the case where
all potentials are local. [For nonlocal potentials our result can be considered only as an approximate solution of Eq. (4.4)
(Ref. 19)]. However, before substituting 6, into Eq. (4.4} we must consider Eq. (3.3) for the operator r, which involves
the same Green's function G„Eq. (4.5). In the form of matrix elements Eq. (3.3) reads

&p Q I r. I
p' Q' . . &= V(p —p'}5(p+Q —p' —Ql}g5(Q —Q,' }

i+]

+ I V(p —p")5(p+Qi —p"—Qi')

x (Q; —Q;")
„&p"Qi'

I r. I

p' Q'i &d's "d'Qi'd'Qz

Exq — — —F(p",k, q, eo, e„}
2p 2m'

We can see immediately from this equation that t, can be written in the form

& p, Q, I . I
p', Q', &

= &p I
t. I p'&5(p+Q —p' —Q' }g 5(Q; —Q,')

(4.6)

(4.7)

where t, satisfies the equation

(4.8)

(4.9)

&pit. I
p'&=v(p —p')+ f

Exw —
~

—
2 ~ &+p—&k&q&&0&en)

2p 2m'
Since F does not depend on the target nucleons momenta Q;, Q,', neither will the operator t, . Therefore all the depen-
dence on the nucleon momenta Q;,Q,' in the operator t„Eq. (4.7), is coming from the 5 functions.

Consider again Eq. (4.4). In the momentum representation it is

Cn ]+qv 2r ~ k P P'& 1+q& 2 . . . taoa Ga 6 Gata P~ ]~

A A A

X(plk)(Q, Q, . . . I4 )5 gQ,' 5 gQ; gd Q d Q;d pd p'=0.

Here

A —1(C. I
Q'+q, Ql, . . . ) =~. Q'+ „q,Q'—

and (Qi, Qp . . .
I Co) =Co(Qi Q2 . . . ) are the nuclear wave functions for the initial and the final states, Fig. 4, depend-

ing on the nucleons's momenta relative to the nucleus center of mass motion; and (p I
k) =5(p —k), (k'

I
p') =5(p' —k')

are the wave functions for the projectile-nucleus asymptotic motion. The inverse Green s function
G '=E~z —K~ —Ez —Hz in momentum space is

& p Qi Q2 "
I
6 '

I
p' Q'i Q~,

(k —p)'
2rnA

?I5(Q, -Q;)

V;, (Q; —Q,' )5(Q;+Q; —Q,' —QJ ) g 5(Q —Q' ) 5(p —p') .
1+j l~i,j

(4.10)

Here the kinetic energy operator for the A-body target includes an overall kinetic energy term (k —p) /2m& and a sum
over the individual kinetic energies of a relative nucleon-nucleus center of mass motion. The interaction term corre-
sponds to the local many-body potential g, Vz(r; —rj ) in the momentum representation. It is important to note that
due to the locality of interactions the potential V is not changed when momentum k —p is transferred to the nucleus.

Inserting Eqs. (4.5), (4.7), and (4.10) into Eq. (4.9), we obtain

«'
I t. I

p" & & p"
I t. I

k»(p")d's "

Exa &~p &k&q&eo&en)
2p 2nd

(4.11)



OPTIMAL APPROXIMATION TO ELASTIC AND INELASTIC. . . 429

where

A —1

I(p-}= J' g d'ad'a'~. ' e'+"„'q,e'-, ,
i=1

'2
A —1

Ql+
A

ql
q1

' +X
E=2

+ g v„(e;-Q;)5{e;+e;-e;-e;)g ~(e -e'} ~.(e,e, (4.12)

Here q=k —k', qi ——p —p", and Qz ———g". ,'QJ. We assumed commutativity t, and V since all the spin-isospin

dependence of interactions has been neglected.
We have to find e as a function of p", which is independent of Q; and satisfies Eq. (4.11}(and does not involve t, ).

This is the case where F satisfies the equation I(p")=0 for any values of p". Consider thus Eq. (4.12) and I(p"). Elim-
inating the nuclear potential VJ by using the Schrodinger equation, g, V~J@o——(eo—g,. K~)4o, we obtain

I{p"}=J@': Qi+
A

q Qz —
A

A —1
Ql+

A
ql

X so —g '+2' 2' +g
l =2

q1Q—
2

A —1

C'o{Q Q~ } g d'Q;.

After simple algebra we get

I(p")= Jc„' e+ A'qe, (A —1)qi Qe+ + —F 4(e„e,. . .)+ding;.2mB Pl

(4.13)

(4.14)

We see that all quadratic terms in Q; are cancelled in the integrand (4.14). However, the term linear in Qi, Qiq/m,
remains. On first sight we cannot find a F which makes I(p")—=0 and is also independent of the nucleus variables

(Qi,ei ). However, this problem can be overcome and the desirable function f can be eventually found. We discuss
separately the cases of elastic and inelastic scattering.

A. Elastic projectile-nucleus scattering

In this case the final nucleus is in the ground state (e„=so), and we can use the symmetry properties of the ground
state nuclear wave function with a given parity

@o(ei Qz )@o(ei Qz }=@o(—Qi —Qz )~'o( —Qi —Qz (4.15)

If we replace Qi ——Qi —(A —1/2A)q and Q; =e;+(1/2A)q (for i+1) in Eq. (4.14) and use (4.15) we can see that the
tenn (1/m)Qiq does not contribute in the integral (4.14). Returning to the variables Q;, we thus obtain

I(p")= J Co Qi+ q, ez—A —1

A
' A'

(A —1)qi (A —1)qqi..+, „—,-- C.(e,,e,, . . .)gd'g, .
2m' 2m'

(4.16)

Therefore the quantity F which corresponds to I(p")=—0 is

A —1 p (A —1)F(p,k,q, h0) =60+ 'ql—
2m' 2nA

(4.17}

The target nucleon variables do not appear in Eq. (4.17) and therefore F has the desirable form. Substituting e from Eq.
(4.17) into Eq. {4.5) for 6, we find after simple algebra

&p Qi Qz -.
I
G. Ip'Qi Qz &= Ex~ — —e'o — + @p—p') g@e.—Ql»«+Q —p}' Q'

p Pl PB
{4.18)
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where

(4.19)

I'(p —p")&
p"

I t. I
p'&d'~"

& pit. Ip'&=I'(p —p')+ f , + Q' p"' «+Q —p")'
2@i 2p 2'

Comparing Eq. (4.20) with the Lippmann-Schwinger equation for free two-body scattering amplitude t (ExN, Pxz, p, p')

~(p —P")t«mr»xN P" P')
t(E~»~ p p') = I'(p —p')+ „, d'S"

(PxN-P")' p" '
Exw-

2m 2p

(4.20)

(4.21)

we realize that

Now we can find the scattering operator t„Eq. (4.7). Inserting Eq. (4.17) into Eq. (4.8) and rearranging the terms in

the same way as in Eq. (4.18) we get

with

Q2 k2 Q2
ExN =Ex~ —&o+ = +

2ff2 2p 2@i

PxN=k+Q

(4.22)

(4.22a)

It corresponds to the kinematics shown in Fig. 5. [In order to avoid confusion we remind the reader that the momenta p
and p" are the running variables in the integral equation (4.20), whereas k and q are the external momenta. ]

Using Eqs. (4.2), (4.7), and (4.22) we can find an expression for the elastic scattering amplitude in the optimal approxi-
mation

Foo(Ex~ k»')= f @o Qi+ q~Q2 —
~

5(k' —p')(A —1)

A —1

&&&p'Q'+qQ'
I lpQ Q» &5(p —k)@'o(Q Q» ) ff d Q'd Q'

=«xN= +»=k+Q k k' Soo(q»
2p 2@i

where Soo(q) is the nuclear elastic form factor [cf. with Eq. (2.18)]

A —1

S (q)= f~. Q+"„'q,Q-„, C.(Q,Q, ) IId'a
i=1

(4.23)

(4.24)

and the two-body scattering amplitude t corresponds to the kinematics shown in Fig. 5, where p=k and p'=k'=k —q.
This amplitude can be identically rewritten in the corresponding projectile-nucleon c.m. frame [cf. Eq. (2.12)]

1
2 2

t ExN —— +,P=k+Q, k, k' =t(ExN, q„q,'),
2p 2' (4.25)

k2 Q2
xN 2 +2

and the relative momenta

(k+Q)'
2(m +p. )

(4.26)

q, =k — (k+Q),
ptf +p

(4.27)
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For the case A ~ ao, Eq. (4.23) coincides with the result of Ref. 7, where we derived the optimal approximation for the
scattering on a nucleon bound by an infinitely heavy core.

S. Inelastic projectile-nucleus scattering

We are going back to Eq. (4.14). Unfortunately we cannot use the symmetry properties of the ground state nuclear
wave function, Eq. (4.15), to help evaluate the (Qiqi)/m term in Eq. (4.14), therefore we use a different way. Consider
an expression for I(p") which is equivalent to Eq. (4.14},but is obtained from Eq. (4.12) by eliminating the nuclear po-
tential V through the trick of applying it to the final state nuclear wave function, g, V&qi„=(e„—g,.E~)4„:

A —1 ~ (~ 1}(qi q } Qi(ql —q}I(p")= f @„' Q+ q, Q —,. . . „+ + — @o(Q,Q, . . . ) ffd'Q;. (4.28)

From Eqs. (4.14) and (4.28) we obtain that

A —1
@" Qi+ ~ qQ2 —

~ @'(QQ» )Qd'Q = J q': Q+ ~ qQ —
~m

X«e. &o— —
2 ~ @o(Qi Q2 ) ffd 0 .(A —1)q2

2m'

(4.29)

In order to evaluate the contribution of the (Qiqi)/m
term in integral (4.14) we rewrite

(Riq)(qiq}
Qiqi=— 2 +Quqii

q
(4.30)

A —1~" Qi+ ~ qQz —
~

has a symmetry axis along the momentum transfer to the
nucleus q. In this case the contribution from the
(Qiqi)/m term in (4.14) can be easily found using Eqs.
(4.29) and (4.30), and the quantity e which corresponds to
I(p")=0 is obtained

where Qii and qii are the projections of the vectors Qi
and qi —k —p" onto the plane perpendicular to the
momentum transfer q.

Substituting (4.30) into Eq. (4.14) [or into Eq. (4.28)] we
can see that the term Qii qii does not contribute to the in-
tegral if the product qi„'bio is symmetric under
Qiq~ —Qiz. This will be so if the wave function of the
final nuclear state

target nucleon variables in the case of inelastic scattering
as well. [For the elastic scattering (e„=eo) Eq. (4.31) goes
over Eq. (4.17).]

Another case where the contribution from the (Qii qii)
tivm vanishes is backward scattering. There the vector q
is paraUel to k and the integral (4.11}is symmetric under

qiz~ —qii. In general, the contribution from the
(Qiiqii ) term does not vanish, but it still remains small.
The reason is that the values of

l Qii l
which contribute

in the integral (4.14) [or (4.28)] are of the order of the Fer-
mi momentum (compare to Qi, which is of the order of
q). Thus the choice of e as in Eq. (4.31) would lead to the
minimization of the first-order correction also in a general
case of the inelastic scattering.

Now we substitute F from Eq. (4.31) into Eq. (4.5) for
the Green's function G„obtaining

&p,Q, ,Q, " IG I
p', Q', Q', "&

I

«+Q —p}' Q'
&X~ — —&0— +

2p 2m 2m

(~ —1)qi (W —1)
2m' 2m'

X5(p —p') g &(Q; —Q'), (4.32)

+(~.—~o) (4.31)
q

where q, =k—p". We see that F does not depend on the

A —1 mq
Q = — q+(e„—eo)

2A "
q~

(4.33)

k+ Q —p'

( pit l
p')= t(E„~, P = k+ Q, p, p') =

p~ gP

FIG. 5. Schematic representation of the projectile nucleon
kinenmtics obtained in the optimal approximation.

We thus obtain for 6, the same expression as in elastic
scattering, Eq. (4.18), where the only difference is that the
vector Q is given by Eq. (4.33) instead of Eq. (4.19).
[Note that Eq. (4.33) goes over Eq. (4.19) for the case of
elastic scattering, e„=so.] Therefore for the scattering
operator t, we also obtain the same expressions as for
elastic scattering, Eqs. (4.20) and (4.22), ,with Q defined
by Eq. (4.33).
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With these results we can find the inelastic transition
amplitude I'0„, Eq. (4.2}, in the optimal approximation,
r=-t, . Similarly to the elastic scattering case, Eq. (4.23},
we obtain

Fo.«x~ k k'}

2
Q

2+,P=k+Q, k, k' So„(q),
2p 2771

(4.34)

where So„(q) is the nuclear transition form factor

A —1
Son(q}= @" Qi+ ~ q Q2 —

~

We can also see that the optimal approximation, Eq.
(4.34}, looks like the approximate factorized form of the
impulse approximation, Eq. (2.17), if we take the average
momentum of Fermi motion (Q) =Q. [In fact for the
elastic scattering Q coincides with the optimal choice of
(Q), Eq. (2.19), proposed in Ref. 14 for the factorized
weak binding impulse approximation. ] However, if we
compare the two-body energies, E&N with the total energy
of the system E2& ——k /2p —

~ eo~, we find that ExN in
Eq. (2.17) is shifted down to value (Q)2/2ni(A —1);
whereas ExN in Eq. (4.34) is shifted up to value

Q2/2ni+
~
eo ~. It is in accordance with estimation of

the binding effects done in the previous section.

C. Relativistic kinematics

A —1

x@ (Q„Q„.. . ) g d'Q;, (4.35)

and Q is given by Eq. (4.33). The projectile-nucleon am-

plitude t can be given also in the corresponding
projectile-nucleon c.m. frame using Eqs. (4.25)—(4.27).

Consider Eq. (4.33) which defines the momentum Q. It
can be rewritten in terms of the energy transfer v to the
nucleus

Although we made all derivations in the framework of
nonrelativistic potential theory, the final result can be
easily extended for the case of relativistic kinematics.
Indeed, the momentum Q, Eq. (4.37), is the minimal
momentum of the struck nucleon N in the on shell-
scattering X+NOIX'+N', where the momenta of the
projectile X in the initial and final states are k and k'. In
the relativistic case we obtain

&=&n+ —&0
Q

2Am
(4.36)

Q= —+ 1—
2

(4.38)

2ni v

q
2

We can see that Q is the niinimal momentum of the
struck nucleon which can provide the on shell pr-ojectile-
nucleon scattering with given momentum and energy
transfer (q and v} to the nucleon. We note that the same
quantity appears in the Fermi gas model for electron-
nucleus scattering.

Let us compare the optimal approximation for the
scattering on a bound nucleon, Eq. (4.34), with the weak
binding approximation, Eq. (2.11). It is quite surprising
that in spite of binding effects, which should complicate
the final answer, our result looks much simpler than the
weak binding impulse approximation formula. Firstly, it
is because we obtain the scattering amplitude in a factor-
ized form, whereas Eq. (2.11) involves three-dimensional
integration over the Fermi motion. Secondly, we find that
the projectile-nucleon amplitude is on the energy shell,
whereas it is the off-shell amplitude in Eq. (2.11). Indeed,
we can see from Eqs. (4.33}and (4.34) that the two-body
energy in the optimal approximation

k2 Q (k—q) (Q+q)
2p 2' 2p 2@i

is the sum of the kinetic energies for incoming and also
for outcoming particles. This is precisely the on-shell
condition for the scattering amplitude.

where q=k —k' and

(k2++2)1/2 (k 2+ 2)1/2

are the momentum and energy transfers to the nucleus.
The two-body kinetic energy EXN, Eq. (4.38), is also re-
placed by its relativistic equivalent expression

Eki& (k2+~2)1/2+(Q 2+~2)1/2 (4.39)

V. CORRECTIONS TO
THE OPTIMAL APPROXIMATION

In this section we consider the nonvanishing correction
terms, which are of order h and higher (h —=6, ' —6 '),
Eq. (3.5). In fact, the h correction term has been
analyzed earher in Refs. 7 and 10 for the case of elastic
scattering on a nucleon bound by an infinitely heavy core.
These results can be generalized for the case of the many-
body nuclear interaction but this extension is not signifi-

and the relativistic kinematics of the projectile-nucleon
amplitude in Eq. (4.34) is uniquely defined.

We should only point out that this relativistic extension
of the optimal approximation is in some extent ad hoc. In
fact, the projectile can be treated relativistically in the
derivation above. However, the relativistic treatment of
the target nucleon has to involve the relativistic nuclear
wave functions, which considerably complicates the prob-
lem.
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cant at this point. We rather consider the same madel as
in Refs. 7 and 10. However, we obtain a new expression
for the correction to the optimal approximation, which is
much more useful than that derived earlier in Refs. 7 and
10.

Consider the expansion (3.5} for the scattering operator
~ in terms of the approximate operators t, and G„Eqs.
(4.18) and (4.22), for the case of scattering on a nucleon
bound by an infinitely heavy core. For the elastic scatter-
ing amplitude we abtain" [cf. Eq. (4.23) for A ~ oo ]

Zoo Ex~ = +so k,k' =&eo,k'
I
~

~
0'o, k&

2p

t«xN»» pi}t«xN» pi»'} Q(k —pi)
t(ExN, P,k,k')+ 2 d'pi

pl (P—pi)'
Exw-

2p, 2m

„ t(Exw, P,k,pi)t(ExN, P,pi, k') Q(k —pi)Q(
' —pi)

pi (P—pi)
EXN

2p 2'

t(ExN, P,k, pl)t (ExN, P,pi, p2)t (ExN, P,P2, k')

pi (P—pl) p2 (P—p2)
Exw-

2p 2' 2p 2m
Exw-

[Q —pi 1[Q
Pl P2 0 +

2 0 2
+ '''

(5.1}

where the projectile-nucleon energy ExN and the total
projectile-nucleon momentum P are given by Eq. (4.22).
In our case where A ~ 00 they are

12 q2
ELN 2

+
8

(5.2}

P k ~ k+k'
2 2

The first term in the expansion (5.1} is the optimal ap-
praximation for the elastic amplitude, Eqs. (4.23) and
(4.24}, where we keep exphcitly the elastic form factor as
an integral over the overlap of the nuclear wave functions.

The second term in (5.1) is the first-order correction to the
optimal approximation. After diQ integratian this term
is zero. However, it would be useful to retain it in the ex-
pansion (5.1). The third and the fourth terms in (5.1)
represent the contributian from the Ii term [Eq. (3.5}]to
the elastic amplitude. '

We now try to resum the expansion (5.1) into an in-
tegral over projectile-nucleon amplitude t(ExN, P', k, k'),
where ExN and P' are different from those given by Eq.
(5.2}. We again use a general relation (3.4), where r is re-
placed by the two-body operator describing the projectile-
nucleon scattering with total energy Ex~ and total
momentum P. We obtain
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t «xN» k Pi)t «xN» pi k')
t(ExN, P', k, k') = t(ExN, P,k,k'}+

EXN-
2p 2m

d(P —pi —6/2)
d Pl

t «xx» k pi)«ExN» pi.k'}f+
2 2 3

EXN
2p 2pal

2
h(P —pl —d, /2)

d p]

2 2
(P—pl)

2m

t (ExN, P,k, Pl)t (EXN, P,Pi, P2)t (EXN, P,P2, k )

Pl (P Pl) P2EXN- — ~XN-
2p, 2tn 2p,

h(P —pl —6/2)
X 5E

h(P —p2 —h, /2)
did P2+ ''' (5.3)

where

&E=Err& —ExN
(5.4)

h=P —P' .
First consider the forward scattering k=k' in Eq. (5.1).

[In this calle ExN ——k /2' and P=k, Eq. (5.2).] Compar-
ing expansions (5.1) and (5.3) we find that the first four
terms of expansion (5.1) coincide with the corresponding
terms of expansion (5.3) if

k2 QExw= +
2p 2m

mation, Eq. (2.11), for the elastic forward scattering.
However, the projectile-nucltxin amplitude in Eq. (5.6) is
the on-shell amplitude. The optimal approximation corre-
sponds to the factorization of the integral (5.6) when the
two-body amplitude t is taken at Q=O. It is clearly the
region which mainly contributes in the integral (5.6).

If the scattering is not in the forward direction (k&k')
we cannot resum (5.1} into an integral over the one on-
shell projectile-nucleon amplitude. However, we can
rewrite (5.1) as an integral over the combination of dif-
ferent on- and off-shell projectile-nucleon amplitudes.
Indeed, consider again Eq. (5.1). First, we use relations

P'=k+Q, [Q(k —pl)][Q(k' —pl)] = [Q(P—pl)]'— q
2

and therefore

k2 Q2+~«x~, k,k)= f«~ —— +,P'=k+Q, k, k
2p 2m

X i
4 (Q) i

d'Q . (5.6)

[Q(k —pi }][Q(k'—p2}]

= [Q(P—Pl)][Q(P—P2)]

2 T

+ Q 2 [Q(pi —P2}]

Unfortunately the contribution from lt and the higher-
order terms in Eq. (5.1) are not fully taken into account
by the corresponding terms in expansion (5.3). It is due to
the commutators of nuclear potential with the kinetic en-
ergy tnm, which apped' in h and higher-order terms in
Eq. (5.1), but not in Eq. (5.3). '

We thus found that the elastic amplitude Eoc for for-
ward scattering can be approximated as a Fermi-averaged
elementary projectile-nucleon amplitude, Eq. (5.6}. It is
similar to the result of the weak binding impulse approxi-

in the third and fourth terms of expansion (5.1). Notice
that the term

Q 2 [Q(pi —P2)]

does not contribute in (5.1), since the corresponding part
of the integrand changes the sign under the interchange
pl~p2. Then using Eq. (5.3) and choosing in an ap-
propriate way the values of EXN and P' we can resum Eq.
(5.1) thus obtaining
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F (E „,k, k')=t(E „,P,k, k') JC Q+ 4 Q — d3Q

+ I «xN+2»+Qkk' —«xN — »kk' ~'o Q+2 ~'o Q —
2

d'Q
27tl 2' (5.8)

where ExN and P are given in Eq. (5.2).
The first term in Eq. (5.8) is the optimal appraxima-

tion. The second term in Eq. (5.8) is the correction to the
optimal approximation. Expanding two-body amplitudes
t in this term through t(ExN, P,k, k') we exactly repro-
duce h correction terms in the expansion (5.1). [h and
higher-order terms in (5.1) are not fully reproduced by the
second term in Eq. (5.8) for the same reason as explained
above. '] However, Eq. (5.8) is much more simple for the
analysis of correction to the optimal approximation than
the direct evaluation af the third and fourth terms in Eq.
(5.1), as has been done in Refs. 7 and 10. We can also see
that Eq. (5.8) goes over Eq. (5.6) for q =0.

VI. ELASTIC SCAI LERING IN THE
FIRST-ORDER OPTICAL POTENTIAL THEORY

In the previous sections we derived the optimal approx-
imation for elastic and inelastic scattering of projectile on
a single bound nucleon. Now we deal with the full
scattering amplitude, which includes the rescattering of
the projectile on different nucleons. In this section we

I

T=QVt+QVGT. (6.2)

Here the potential V; describes the interaction of the pro-
jectile with nucleon i, and the Green's function G is the
same as in Eq. (4.3). The Projectile-nucleus energy Ex& is
given by Eq. (2.5). The elastic scattering amplitude Too
can be written in a form of the two-body Lippmann-
Schwinger equation3

~oo = Uopt+ Uopt~og&oo (6.3)

where U,'p, is the optical potential and the operator Po
projects the Green's function G into a ground nuclear
state. The optical patential U,'p, is given by a multiple
scattering expansion

consider the case of elastic projectile-nucleus scattering.
The elastic Projectile-nucleus amPlitude Too(Exq, k, k')
(the kinematics is in the nuclear laboratory frame) is the
matrix element of the scattering operator T

(6.1)

which satisfies the Lippmann-Schwinger equation

Uo'pt=&@op'I g&l+ grlQGrj+ g&lQG~iQG&'k+ ' I@op&
i i+1 i+I

j+k

(6.4)

where the projection operator Q excludes the ground state,
Q =1 Po, and the —scattering operators r' satisfy the
equation

this operatar can be eliminated easily if we express r'
through r, defined by Eq. (4.3}, which does not contain
the projection operator Q. Using Eq. (3.1) we obtain

ri = Vt+ V;QGr,' . (6.5}
v'=r —vI'oG~' . (6.7)

It differs from a similar equation for r, Eq. (4.3), only by
the projection operator Q in the Green's function.

The first term in expansion (6.4)

Substituting Eq. (6.7) into Eq. (6.6), and Eq. (6.6) into Eq.
(6.3) for the first-order optical potential, we find

Too ——A woo+ A rooPo GToo

U'pI'= &~'o p'
I g &'

I
'4 p&

=A & 4o,p'
I

r'
I 4o,p & =—A roo (6.6)

=A woo rooPoGA zoo+ A —w ooPGoToo

&ooPoGArooPoG2—'oo

=A ~oo+ (A —1)rooPo6 Too, (6.8)

is the first-order optical potential. The higher order terms
in (6.4) are proportional to nucleon correlation functions
ar include reflections (local field corrections). In this pa-
per we concentrate only on the first-order optical poten-
tial, Eq. (6.6).

The optimal approximation for the first-order optical
potential can be found in the same way as in the previous
section. The complications arise only from the projection
operatar Q in the Green's function of Eq. (6.5). However,

where

rm= &@op'
I
~

I @o,p&, (6.9}

A —1 A —1
Opt~oo= Uopt l+~oG ~oo (6.10)

and the operator r is defined by Eq. (4.3) where the
Green's function G does not involue the projection opera-
tor Q. Equation (6.8) can be rewritten in a form
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U,'p', ——(A —1)(4o,p'
i
r

i 4o,p) . (6.11)

These are the Kerman, McManus, and Thaler (KMT}
equations for the first-order optical potential, whereas
Eqs. (6.3) and (6.6} are Watson's equations for the first-
order optical potential, which both are fully equivalent.

Now we can apply the optimal approximation to the
KMT first-order optical potential, Eq. (6.11), using the re-
sults of Sec. IV. For the sake of convenience we con-
sidered there the nucleus in the laboratory frame, in which
the kinematics of the optimal approximation has a simple
form both for elastic and inelastic single scattering amph-
tudes. However, the nucleus laboratory frame is not con-
venient for a treatment of Eq. (6.10) for the full elastic
amplitude Too. A more appropriate frame would be the
projectile-nucleus c.m. frame. The transformation from
c.m. to the laboratory frame can be done easily by using
the Galilean invariance of the scattering amplitude:

Fo„(Ex„,K,k, k') =Fo„(Ex„,K' =k', k', k' ')
—=Fo.{Ex~ k' k"), (6.13)

k —K
Ex~ =Ex~+

2M
+ ~ (K—k)'

2MA
(6.14)

k'=k — {K—k},
MA

(6.15)

where E and K are the total energy and momentum of
the system; M and p, are the masses of target and projec-
tile; k and k' are the initial and final momenta of the pro-
jectile; and v is the velocity of the frame. The transfor-
mation to the laboratory frame corresponds to
v=K —k/M. Therefore the projectile nucleus transition
amplitude Fo„(ExN,K,k, k') can be rewritten in the nu-
cleus laboratory frame as

t«K, k,k')=—«+"+ v' —Kv, Kp, +M
2

—(M +p, )v, k —pv, k' —pv (6.12)

k"=k' — (K—k) .
MA

Afte~mds the optimal approximation can b. appli~
straightforwardly.

Consider again Eq. (6.10) for the full elastic scattering
amphtude. In the projectile-nucleus center of mass frame
1t 1S

lt 2
K;c.m. pEX'A —&0—

2MA

U iI(Ex~™»p") Too«x~ p"p')

A
T~«x~ p, p')=U.",I(Ex~ p, p')+ f 3p tl (6.16}

where Mz ——pM~/(p, +M„), and

(kc.m. )2
EXA — ++0

2MA

( k& c.m.
)
2

+E'0 .
2MA

(6.17)

He«k' (k™) is the projectile-nucleus center-of-mass
(on-shell) momentum. We remind the reader that p (p')
are the variables in the integral equation (6.16) and there-
fore can be on or off the energy shell.

Using Eqs. (4.22} and (6.13)—(6.15) for K=O we find
that the optimal approximation for the first-order optical
potential U,"~', is

(1) c.m.U;«Ex~ p*p }
T

—= (~ —1)«xN, P p+M p p'+M p

2

A

A —1—~o+

'2
~ 2(p —p')

2m
(6.19)

=—~' . E~™,p+ "
p — " P,pXN s M ~p

MA+IP= p — (p —p') .
MA 2A

The amplitude t can also be rewritten in the correspond-
ing projectile-nucleon c.m. frame, Eqs. (4.25)—(4.27),

E~~p~p+ p~p + p
A A

where

XSoo(p —p'), {6.18)

+ p — P, (6.20)
MA m+P
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E~-=E~- (6.21)
2(m +p}

We have thus obtained the optimal approximation for
the full scattering amphtude in the framework of the
first-order optical potential, Eqs. (6.16)—(6.18). As in the
case of the single scattering amplitude, Eq. (4.23), the
first-order optical potential is found in a factorized form
and therefore does not involve the Fermi averaging. The
Fermi averaging appears only in the second-order correc-
tion to the optimal approximation, Eq. (5.8) (the first-
order correction is zero). This correction can be taken
into account (if it is necessary) by using Eq. (5.8) in the
calculation of the first-order optical potential. But, in
general, the correction term is small. '
VII. DISTORTED WAVE OPTIMA. L APPROXIll)(AVIATION

To calculate the full inelastic amplitude T0„, we use the
distorted wave approach. A consistent microscopic
KMT-type theory for distorted wave treatment of inelas-
tic scattering has been recently proposed by Picklesimer,
Tandy, and Thaler (PTT).x~' Finally, they obtained for
the first-order transition aiiiplitude for inelastic scattering
[Eq. (5.30) in Ref. 24] the following expression (we use
here our notations):

~0n«» k.k')=~&+'n 'Pi, 'lrlq'i+ @0&

where O'I,
+ ', 'Il I,

' are KMT-type projectile distorted wave
functions for the initial and final projectile-nuclear states.
Notice that according to the results of PTT the initial and
final distorted wave functions VI,

+' and 4I, ' satisfy dif-
ferent equations:

l
O'I,+'& =

l k&+(a —1)G0~00
l eI,+'& (7.2)

and

nucleon. Therefore the optimal approximation can be ap-
PHed for calculation of these amplitudes straightforwardly
using Eqs. (4.23) and (4.24) for elastic and Eqs. (4.34) and
(4.35) for inelastic cases. The amplitude ~ is given by
the same equations as the amplitude v.oo, where only the
form factor S00(q) is replaced by

S..(q}= JK Qi+ „qQi—
Z

A —1

xe„(Q,,Q,, . . . ) g d'g, . (7.6)

Equation (7.1) can be rewritten in more explicit form as

To.«x~ kk')=~ fit' "(P')&P'~" l&lp@'0&

)(y(+)(p)dip d3 (7.7)

As in the previous section we present our result in the
projectile-nucleus c.m. frame. Therefore,

EXA — ++0 — ++n ~

c.m. (7.8)
2MA 2MA

=i EXN»p+ Pp+~ P Son(P —P)
A A

(7.9)

and k, k are the initial and final projectile c.m. momen-
tum. The optimal approximation for the matrix element

& p', 4n
l
r

l p, @0& can be found in the same way as we did
in Sec. IV for the calculation of the single scattering in-
elastic amplitude, Eq. (4.34). We have only to perform
the Galilean transformation to the corresponding labora-
tory frame in which the optimal approximation, Eq.
(4.34), has been derived. Therefore, using Eqs.
(6.13)—(6.15) for K=O, and Eqs. (4.33)—(4.35) we find

&e'„-. 'l =&k l+&e„'-, 'lG„-. (~-1}, (7.3)

where F0 is given by Eq. (6.9), but 7. is given by a sys-
tem of coupled equations

where

2

E~ ExA +2M ]+M
A A

—&0

rnn rnn rnOGOrOn ~

(7.4)

(p —p') A —1 m

2 2Am (p p')

&On &On &0060~On .

Here G0 = (Exp —I(» —j:~—&0) and
—1

MA +PP= P-
MA

(7.10}
A —1 Nl—(&„—e'0), , (p —p') .

2A (p —p')2

~0. = &@.,P'
I
~ I@'0 p&,

(7.5}

(Notice that in the case of the off diagonal transitions
~0„are weak relative to the diagonal transition, v.00 and
~„„; one can approximate 7 =r„„datnherefore 4I, '

=O'I, ' which is the standard first-order KMT distortion
for scattering from the excited state.

%e can see that all the ingredients in the distorted wave
approach of PTT are the "elastic, " F0, ~~, and "inelas-
tic," v0n, amplitudes for the scattering on the single bound

Equations (7.7)—(7.10) define optimal approximation
for the inelastic transition amplitude in the first-order
PTT distorted wave theory. %'e should mention that the
projectBe-nucleon amplitude t can be on- or off-energy
shell. Therefore, there appears a singular point p=p' in
Eqs. (7.9) and (7.10), which cannot be reached for the on-
shell scattering. Fortunately, this point does not contri-
bute, since the inelastic form factor S0„(p—p') in Eq.
(7.10) is zero if p=p'. lt is due to the orthogonality of
nuclear wave functions of the ground and excited states,
Eq. (4.35).
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VIII. SUMMARY

In this paper we have concentrated on the binding po-
tential effects in projectile-nucleus scattering. These ef-
fects are neglected in the weak binding impulse approxi-
mation; however, we have showed that it is impossible to
determine consistently the effective two-body kinematics
in the projectile-target nucleon scattering if we do not in-
volve the binding potential. One usually assumes that the
inclusion of the binding potential re ults in large compli-
cations. Here we have demonstrated that this is not the
case. The compensation between the binding potential
and the Fermi motion kinetic energy leads to a factoriza-
tion of the single scattering amplitude into the projectile-
nucleon amplitude and nuclear transition form factor.
Therefore, our optimal approximation which is based on
this compensation is much simpler for applications than
the weak binding impulse approximation. In the latter,
the Fermi average of the projectile-nucleon amplitude is
required. In our case the Fermi average appears only in
the second-order correction term to the optimal approxi-
mation (the first-order correction is zero) which is much
smaller than the correction term to the weak binding im-
pulse approximation. We also found a way of recasting
the corrections to the optimal approximation into a sim-
ple, practical formula.

Since the binding potential is included, the optimal ap-
proximation has no inconsistencies in the effective

projectile-nucleon kinematics. We found that for the on-
shell projectile nu-cleus (elastic or inelastic) single scatter-
ing the corresponding projectile n-ucleon amplitude in the
optimal approximation is also on the mass shell. This re-
sult is very important for the interpretation of proton-
nucleus large angle data. "*

Finally we obtained the optimal approximation for the
first-order optical potential theory for elastic scattering,
and in the framework of the distorted wave approxima-
tion for inelastic scattering. The result is very siinilar to
the optimal approximation for the off shell -single scatter-
ing amplitude, only the nuclear recoil effects make some
difference.

%'e believe that the optimal approximation can be very
useful for the treatment of different nuclear reactions. It
is especially important for the analysis of inclusive nu-
clear reactions with large momentum transfer. In this
case it naturally leads to the two-body scaling observed in
these reactions. "
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