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It is shown that usual derivations of the inhomogeneous and homogeneous multiparticle

Lippmann-Schvnnger equations are lacking from a rigorous mathematica1 basis. Then, contrary to
a more often than not prodaimed assertion, the validity of these equations is still to be settled.

I. INTRODUCTION

In a recent paper, ' Levin and Sandhas reconsider the
validity of the triad of homogeneous and inhomogeneous
three-particle Lippmann-Schwinger (LS) equations

fbi =4,~, V u+Gi «)V" 4~.i .

Here, we are concerned with the collision of three spinless
particles interacting via short-range pair potentials
Vi ——u23 and their cycle. We use the notations
V =g&, Vi, V = V —Vi. Denoting by Hi,

A, =0, 1,2,3, the four channel Hamiltonians, the full Ham-
iltonian (center of mass energy removed) is H =Hi + V".

%e consider a collision process where, initially, the k
pair is in a bound state f» of energy Ei. Then qrii, obeys

the equation (E —Hi)pic ——0, E=Ei+(k /2M'). In
position space it reads

(X)~f~(p )e /(2m)i~i;

In this two-fragment channel state pi is the relative
separation in the A, pair and ri is the relative position of
the third particle.

The stationary collision state which evolves from qrii, is
denoted by itii, and satisfies (E —H)g+ii, ——0. The resol-
vent operators are usually defined as

G&+(E)= lim Gi„(E+is);
(1.3)

G&(E +i s) =(E +i e Hi )—
There exist different methods to present the LS triad (1.1).

The most usual derivation starts from the complex en-

ergy domain with the hypothesis

Qadi,(E+ie)=is(E+ie H)—
This method of derivation of the LS triad is presented in
Sec. II A of Ref. 1.

Levin and Sandhas' remark that, on going to the real
energy limit, two points are crucial. The first one is the
validity of the Lippmann's identity. The second one is to
prove the relation

lim Gi (E+ie)V" Qadi,(E+is)
a~0+

= lim lim Gi (E+ie2)V" 1(ii,(E+isi), (1.5)
c ~0+ c -+0+

1 2

i.e., that the limits can be performed independently in the
resolvents and the state vectors.

In regard to this relation, Levin and Sandhas admit that
it is unproven. This implies that the derivation of LS
equations along the line of Sec. IIA in Ref. 1 is still
heuristic and not founded on a rigorous mathematical
basis. Nevertheless, the authors of Ref. 1 do not care
about this problem since they claim that the LS equations
have been derived by Sandhas '" in two alternative
methods. One of these methods is the M@ller operator ap-
proach. The other method ' establishes the equivalence
of the LS triad and the Faddeev equation.

One purpose of the present paper is to show that
Sandhas's derivation of the LS triad in the Mghler opera-
tor approach is incomplete, with the most delicate
analysis, which is the transition from vectors in the Hil-
bert space to non-normalizable stationary scattering
states, being omitted. The same remark applies to Ref. 5.
On the other hand, we show in Sec. III that there is no
proof of the equivalence with the Faddeev equations.

In 1958, Gerjuoy derived the LS triad by a different
method based on the existence of Green's functions asso-
ciated with the partition Hamiltonians of the three-body
problem. This method is often referred to as an alterna-
tive way to obtain the LS equations. However Gerjuoy
himself writes, "We are not prepared to prove them
rigorously, " in reference to relations (4.9) of the present
paper which condition the validity of the LS triad.

Then we conclude in Sec. V that, contrary to an often
reiterated affirmation, the multiparticle LS equations are
not yet matheinatically founded. Moreover, we display
the ambiguities of their usual form stemming from the
lack of a definition of some relevant mathematical objects,
in particular, of the resolvent operators acting on non-
normalizable vectors.

Actually, some people might think that the present pa-
per is aimless since they already know that there is no
rigorous proof of the multiparticle LS equations. Howev-
er, since some, among the most involved in the LS formal-
ism, claim that this proof does exist, we think it is
worthwhile to clear up this misunderstanding.
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II. THE MUFLLER OPERATOR APPROACH

The Mgller operator approach proposed by Sandhas is
summarized in Sec. IIC of Ref. 1. However, Sandhas's
derivation is open to criticism since it deals with non-
normalizable vectors when the Mufller operators are de-
fined on the Hilbert space A . Then we shall first repro-
duce Sandhas's results, remaining in the point of view of
the Hilbert space.

Let 4s (X}be a normalizable wave packet in the form

@i(X)=fi(pi,)X(ri), X(ri)EL (&'), (2.1)

where fi(pi) is the A, pair bound state introduced in Eq.
(1.2). Let %(t)=e ' %s be the corresponding scattering
state, where

—iHgt
%~——0~4~——s-lim e' 'e (2.2)

Following Sandhas's method, one obtains

4g ——s-lim e ~e 'Htt'iH t

t~ —ao

0= w-lime e ' 'ski, A,&A.' .

(2.3)

(2.4)

To obtain the LS equations in Hilbert space one must turn
to time independent formalism. It is shown in Ref. 7 that
Eqs. (2.3) and (2A) are equivalent, respectively, to

at 'HA, t —iHtCsi ——s-lim dt e "e e (2.5)
c~o+

.t H~t - Ht0= w-lim dt e"e " e ' %i, A&A,
' .

o+ 00
(2.6)

Equations (2.7) and (2.8) are called the inhomogeneous
and homogeneous LS equations in Hilbert space.

We recalled in Sec. I that LS equations at a fixed ener-

gy are usually deduced from Eq. (1A) and we noticed that
a relevant step of this derivation is the proof of Eq. (1.5).
This step is avoided in the derivation of the LS equations
(2.7) and (2.8) in Hilbert space. Notice that the inhomo-
geneous LS Eq. (2.7) can be proven to hold in the strong
limit sense, when in Ref. 1, it is considered to be valid
only with the weak limit. However, the main drawback
of the Hilbert space version of the LS equations, viewed
as equations for finding %s when @s is given, is that they
require the knowledge of the spectral function P„of the
total Ham&ltonian H. Now, in practice P& is an unknown
quantity. In fact, if P„were known, then one could easi-

ly compute the time evolution operator and thus solve the
dynamics of the problem without even having to resort to
scattering theory techniques.

This failure of the LS equations in Hilbert space to be
of practical use owing to the occurrence of the spectral

Using the spectral decomposition of the full Hamiltonian
H = p P„,one obtains

Ri

%i =4i+s-lim f„Gi(It, +i s)(p Ht„)dP„sI—lt, , (2.7)
c~o+

%~——ur-lim „G~ p+is p —&g
e,~o+

(2.8)

III. FADDEEV EQUATION AND LS TRIAD

The three-body Faddeev equation' for finding f~+q

reads

Xs =5u. q&si, +Gi (E)Vi, g I
A "9kA'

(3.1)
3

In Ref. 4 Sandhas, considering the LS triad (1.1) as valid,
attempts to prove that Eq. (3.1) can be deduced from it.
However, if one follows Sandhas's reasoning one would
remark that it relies on the relations

6g+ (E)=Go+ (E)+G p+ (E}Vt„Gi (E)

=Go+(E)+Gi. (E)Vt„'Go (E} .

%%en these relations are easily verified with pure algebra-
ic manipulations for complex E, their validity on the real
energy axis, when they operate on the non-normalizable
vector V 1(Iii„has never been proven. It is on the same
level of difficulty that one proves Eq. (1.5). We then con-
clude that there is no proof that the Faddeev equation can
be deduced from the LS triad.

In Ref. 3 Sandhas makes a remark which might suggest
that the validity of the Faddeev equation would imply the
validity of the LS triad. Writing the LS triad in the form

pt. =4vf't t +G i. (E) g V~. p»,
A"9&A'

(3.2)

function P& seems to be circumvented in Sandhas's pa-
pers since he assumes that relations (2.7) and (2.8) still
hold if 4s is not a Hilbert vector by the improper vector

ps', of Eq. (1.2}. Actusstly, this assumption need not be
trivially true. In Ref. 7, Prugovecki, after having derived
the LS equation in Hilbert space for the two-body prob-
lem, proceeds (pp. 503—505) to the derivation of the ordi-
nary LS equation at a fixed energy

4'(p)=e'"'+ f„,Go"«'
I p p'I —)o(p'4'i'(p'}dp'.

This is achieved under conditions on the two-body in-
teraction which normalizes +q, and then defines
G(+) (E}+g.

We did not succeed in reproducing, in the three-body
problem, the sets of arguments used by Prugovecki in the
two-body case. One difficulty is that the Green's func-
tions G'i '(E+,X,X'), A&0, are not known in closed
form. But the main ambiguity comes from the fact that
V P+~ is not in the Hilbert space, no matter what the
two-body interactions may be.

Thus we conclude that the derivation of the LS triad
(1.1) in the M@ller operator approach is incomplete, with
the most delicate analysis, which is the transition from LS
equations in Hilbert space to LS equations at a fixed ener-

gy, being lacking. Indeed, Sandhas is aware of this diffi-
culty. But Ref. 1, where this difficulty is not mentioned,
leads people to the erroneous belief that the Measlier opera-
tor approach is successful in deriving the LS triad (1.1).
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Sandhas calls this equation Faddeev-like because its kernel
is connected after one iteration. Then he writes: "It is
we11 known that, appropriately restricting the hvo-body
potentials, a rather sophisticated direct proof of unique-
ness has been given by Faddeev for equations of the struc-
ture (3.2)." This assertion is obviously wrong. When the
Faddeev equation and the LS triad are easily proven to be
equivalent for complex energy, the study of their behavior
in the limit of real energy entails two completely different
problems. The key point of Faddeev's method is the
decomposition of the scattering state fbi, in three pieces
Ii, with specific boundary conditions. After the sound
work of Faddeev, its success may be understood if one re-
marks that Vi gi, A, '+A," is in the Hilbert space. Then
Gi (E)Vi Xi- is defined. The main difference in Eq. (3.2}
is that Vi-Qadi, is never normalizable no matter what the
two-body interactions may be.

lim 1.«i, /equi)=@i. mu«') '
V-+ ay

lim I„(Gi+/Dii, )=0.
(4.9}

I (Gf;/(pu. )= t'ai(X')

+f Gi '(X',X)(XI Vi —Vi I yii, )dx .

(4.7)

Now, Gerjuoy remarks that the inhomogeneous and
homogeneous LS equations in position space

Pft(x') = 5i.i. yii, (X')

+f, Gi'(X', X)( XI V" fbi, )dx (4.8)

are obtained from Eq. (4.5) by letting v go to infinity and
by granting the conditions

IV. LS EQUATIONS
IN THB GREEN'S FUNCTIONS APPROACH

Another method to obtain the three-particle LS equa-
tions at a fixed energy was presented by Gerjuoy in 1958
to explain the origins and the consequences of the simul-
taneous existence of inhomogeneous and homogeneous LS
equations, outlined by Foldy and Tobocman" in 1957 and
derived along the heuristic method mentioned in Sec. I.

This method deals with R position space where the in-
itial state (1.2) obeys the equation J„=f f(X)dX, XE&R", n &2. (4.10)

Thus the proof of the validity of the LS equations (4.8) re-
lies, in the Green s function method, on two conditions:
(a} the proof of Eq. (4.9); (b) the existence of the integral
in Eq. (4.8). However Gerjuoy admits, "The assertions of
this paragraph are crucial and can be made plausible, but
we are not prepared to prove them rigorously. "

Let us now explain why neither condition (a) nor condi-
tion (b) are satisfied. Our criticism relies on one defini-
tion and two theorems of the integration theory. Let

[E—Hi (X)]alii,(x)=0 . (4.1) Definition: The integral J=lim„„J„is said to exist if
and only if

The corresponding stationary scattering state is the solu-
tion of lim

I
J —J„ I

=0,
V~ oo

[E H(x)]4 (i—xi)=0,
defined by the condition that

(4.2) whatever the way v is going to infinity. In other words, it
means that lim„„J„must not depend on the choice of
the integration variables.

Dii(x)=tiii, (X)—qii, (x) (4.3)

be purely outgoing.
One assumes that there exists Green's functions which

are purely outgoing solutions of the equations

[E—Hi (X')]Gi '(E+;X',X)
=G,".'(E+;x,x)[z —H„(x)]

Theorem A (Ref. 12). A Lebesque integral exists if and
only if

I f(X)
I

is integrable.
Theorem B (Ref. 13). A multiple Riemann integral ex-

ists if and only if lim„„ f I
f(X)

I
dX exists.

Following the definition, theorem B implies that if
I f(X)

I
is not integrable, J„does not go to a unique limit

Jwhen v is going to infinity in different ways.
Let us now consider the integral

=5(X—X') . (4.4)

Following Gerjuoy, by combining Eqs. (4.2) and (4.4) and
integrating into a finite volume v&8 which contains X',
one obtains

J„(x')=f Gg '(x', x)(x
I
v tp „)dx

6,".'X', X V, q, , q,

x e d X/(2w) (4.11)

P „(X')= I„[G+/q&„„]+I„[G+/D„]
+f G„"'(x',X)(x I

v'y,+„)dx,

I„[G+,/f]= f G,"'(x",x)
x [Ho(x) —Ho(x)]f (X)dx .

(4.5)

(4.6)

which occurs, when A,&A, ', in Eq. (4.7) and as a part of the
integral (4.5}.

From theorems A and 8,
lim J„(X'}

By making the same operations with Eqs. (4.1) and (4.4),
one obtains

exists if and only if the integral

&(X'}=f I
Gi'(x'»)

I I Vi(ei)f(pi) Idx (4.12)
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Dii, (x')= I„[Gi+:/Dii,]+JGi '(X',X)(X
~

V"pii, &dx

+ „"' ',x v'a» (4.13)

exists.
Now, in the asymptotic region of the I = I XI hyper-

space where the relative distance p~ remains bounded, the
relative distance p& goes to infinity; for short-range two-
body interactions Vi becomes negligible. Then it follows
from Eq. (4.4) that G'i '(E+;X',X) behaves as
Go'(E+;

~

X' —X
~

) for fixed X' in this asymptotic re-
gon. " The G~'s f~ction G,'"(E;~X'—X~) is
known in closed form' and

~

X'—X
~

~

X
I GO (E'

I

x' —X
I ) I remains bounded as

I
x

I
goes to

infinity. Then E(X') is not converging and
lim„„J„(x')[Eq. (4.11)]does not exist.

Therefore, conditions (a) and (b) are not satisfied when
A,+A, ', which invalidates the proof of the two homogene-
ous LS equations. On the same line, the proof of relations
(4.9} published by Adhikari and Glockle' is questionable
since it contradicts theorems A and B.

One notes that the undefined integral lim„„J„{X'}
[Eq. (4.11)]can be eliminated if Eq. (4.5), with the help of
Eqs. (4.3) and (4.7), is written

lim (g ( Gi (z)
~ f & = (g

~
Gi (E)

~ f&,
E-+0—

which defines the meaning of

»m Gi(E+ie) If&=Gx«) lf & f&~.
E~O—

(5.1)

(5.2)

Gi (E)= +in5(E —Hi ),

Now the crucial problem, with regard to the LS triad
(1.1},is that V" tPii, is never normalizable, no matter what
the two-body interactions may be. Then Gi (E)V"Qadi,

need to be first defined.
It is often assumed that a candidate for this definition

is that Gi„(E) is an integral operator, i.e.,

( X
~

G+(&)V it+ & =y, G„"'(E+;X,X')

x(x'~ v'y+ &dx'.

We have seen in Sec. IV that, when A,+A, ', this integral
does not exist as long as some prescription to perform the
integral has not been given.

Another candidate is the integral representation of
Gi, (&),

This equation is considered by Gerjuoy' as "a rigorous
starting point. " However, [if lim„„1„(Gi, /Did, )=0],
the three corresponding integral equations that calculate

D~ are inhomogeneous.
Indeed, theorem 8 need not prevent relations (4.9) from

holding for some particular choice of the integration vari-

ables, which might explain the results of Ref. 16. This
means that the validity of the homogeneous LS equations
in position space might be restored if (and only ifl they
are accompanied by a prescription of the way the integra-
tion must be performed.

V. CONCLUSIONS

We have shown that four different methods used to
derive the three-body LS equations (1.1}are lacking from
a rigorous mathematical basis. The method' mentioned in
Sec. I lacks the proof of Eq. (15); the Ms}lier operator ap-
proach'3 lacks the analysis of the transition from LS
equations (2.7) and (2.8) in the Hilbert space to LS equa-
tions (1.1) at a fixed energy; there is no proof of the
equivalence between the LS triad and the Faddeev equa-
tion (3.1}; and the Green's function method lacks the
proof of the relevant relations (4.9). As far as we know,
every other so-called proof of the LS triad is mathemati-
cally failing.

The main point is that, as a consequence of these in-
complete derivations, the usual form (1.1) of the LS equa-
tions is meaningless. Indeed, let us recall that time in-
dependent collision theory originates in time dependent
theory devised for normalized initial wave packets. Then
the resolvent operators Gi(z) =(z —Hi )

' enter into the
theory as bounded operators on the Hilbert space A when
Imz+0. When E belongs to the continuum spectrum of
Hi, for all f,g CP, (g

~
Gi {z}

~ f & goes to a hmit as e
goes to 0+, which is symbolically written as

which is valid in Eq. (5.1) when f and gEA . However,
in the same way, it has never been proven rigorously that
Gi, V" Pii, exists when this integral representation is
used. Then Eq. (1.3) of the present paper, reproduced
from a large number of papers, is in the present context
meaningless.

Once more, if the LS equations (1.1) could be derived
from the Hilbert space relations (2.7) and (2.8) their mean-
ing would be unambiguous. In the absence of such a
derivation they are, as they stand, undefined.

In a recent paper, '7 Gerjuoy and Adhikari prove the
uniqueness of solutions to the LS equations in a soluble
one-dimensional three-body model. They conclude "that
any claims that the (inhomogeneous) LS equation (1.1) has
unique scattering solutions in three-particle systems first
must explain why our results cannot be extrapolated to ac-
tual three-dimensional three-particle systems, as well as
why proofs that the solutions are unique fail in one di-
mension but not in three dimensions. " However, in their
model the integral corresponding to Eq. (4.11) is a simple
integral, which does not converge absolutely, and does not
exist as a Lebesque integral but which is a converging
Riemann integral. Since the key point of our objections
against the homogeneous LS equations is that the integral
in Eq. (4.8) (A,gA. ') in a three-dimensional three-body
problem is not defined, we conclude that, even after the
elegant one-dimensional proof' of the validity of the LS
equations, the question of their validity in three dimen-
sions is still open.

Vfe have not proven in the present paper that the LS
equations (1.1) are not valid, but we have shown that the
often reiterated affirmation that the triad of homogeneous
and inhomogeneous LS equations is firmly established is
premature.

For more than twenty years, numerous papers' on
multiparticle scattering theory relied on the LS equations.
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Most of these works consisted of formal manipulations of
the LS equations aiming at integral equations with a con-
nected kernel. A small number of papers, having in view
the interpretation of experimental results, were numerical
applications. Purely formal works are open to the same
criticism as that of the LS equations: Even if, at a com-
plex energy and inasmuch as one does not go out of the
Hilbert space, these manipulations are justified, the transi-
tion to the real energy limit is not studied and remains un-
confirmed and undefined. As to the numerical applica-
tions, their reasonable agreement with the experimental
results in some domain, is by no means the proof of the
validity of the starting point equations, in particular, be-
cause numerous numerical approximations are necessary.
We would like to distinguish here between "theory" and
"model" on the basis of the following definitions. A

theory is a set of equations which follows, through
rigorous mathematical steps, from the principles of quan-
tum mechanics with a dynamical input; such are the
three-body Faddeev equations. A model relies on equa-
tions which are not theoretically founded in the above
sense. This does not prevent some models from being
powerful tools in the investigation of the nuclear proper-
ties. Regarding the LS equations and the following for-
mal developments, they are not yet theories. It is high
time that researchers be interested in the study of their
foundation. Otherwise, it only remains the possibility of
numerical tests to verify if these equations supply a satis-
factory model to interpret the experimental results. One
notes that in this way, the building of complicated in-
tegral equations with a connected kernel is not essential, a
sensible ansatz for the resolvents G~+ would do the same.
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