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Determination of an effective radius from the gamma-ray multiplicities in fusion reactions

A. B. Balantekin and P. E. Reimer
Physics Division, Oak Ridge Nationa/ Laboratory, Oak Ridge, Tennessee 37832

(Received 30 September 1985)

The gamma-ray multiplicity and the fusion cross-section data, together, are used to determine the effec-
tive radius employed in a previously developed inversion procedure. Implications on the relationship

between the gamma-ray multiplicity and the average angular momentum are pointed out.

Recently, considerable attention has been directed to the
experimental study of the heavy-ion reactions near and
below the Coulomb barrier. In particular, fusion cross sec-
tions' ' and the spin distributions for the compound nu-
cleus4' have been studied. The enhancement and strong
isotopic dependences observed in the subbarrier fusion of
heavy nuclei' require a full coupled-channels treatment of
the fusion problem. Numerical implementation of such a
program is very difficult since many channels need to be in-
cluded. On the other hand, the fusion of light nuclei can be
studied to a large extent~'o within the one-dimensional bar-
rier penetration picture. In this simple description, one as-
sumes that the system first penetrates the real, one-
dimensional, local energy-independent barrier formed by
nuclear and Coulomb interactions and then is completely
absorbed into the fusion channel.

Since the heavy-ion physics is expected to be amenable to
a semiclassical description, the one-dimensional barrier
penetration is usually analyzed in terms of the %entzel-
Kramers-Brillouin (WKB) approximation. In this approxi-
mation, the cross section at the center-of-mass energy E is
given by

cross section, using
t

So(E) = ~ ln
dE ~g2

In writing the above equations, we have not specified the
energy dependence of R. It is usually taken to be a con-
stant" equal to the value of the position rq of the potential
maximum 8= V(rb). In a more elaborate treatment, 9 R
has been taken to be a linear combination of r& and the
Coulomb turning point:

R (E) = hara+ (1 —71)
ZlZ2e

E

where q was empirically adjusted to be 0.5. The purpose of
this Brief Report is to study the energy dependence of
R(E) in general, and furthermore, to point out that the
spin distribution data of the compound nucleus formed at
near-barrier energies can be used to determine unambigu-
ously this effective moment of inertia.

We assume that the average angular momentum (L),

(L) = X LcrL
L=O

(6)

with

where

(2L+ I) T, (E),

where a and o.L are given by Eq. (1), can be determined
reasonably accurately from the gamma-ray multiplicities data
as was done in Refs. 4 and 5. Using Eqs. (1), (2), and (3),
Eq. (6) can be rewritten as

m R'(E) "
„E,E'~(E')

Eo'(E) "- R (E')
TL(E) = tl+exp[2$L(E)]} (2a) ' —i/2

mR2(E) (E E.) 1

4
i/2

S (E)= '

l I (.) E1}+ -dr. (2b)
4 ri f2

In Eq. (2b) the turning points rt and r2 are complex above
the barrier and real below the barrier. Also, I (r) is the nu-
clear plus Coulomb potential.

As a further approximation, the angular momentum
quantum number dependence in Eq. (2) can be reproduced
by a shift in the energy:~

T (E) T E L(L+ I)A'2
(3)

2mR2(E)

where the effective moment of inertia mR2(E) is a function
of energy. Using Eq. (3), one can directly obtain the s-
wave penetrability from the experimentally measured fusion

Equation (7) holds at energies both below and above the
barrier. Consequently, if the average angular momentum
and the cross section are known over a certain energy range,
then R (E) can also be determined solving Eq. (7) iterative-
ly. Furthermore, if this range includes the barrier energy 8,
since So(8) = 0, one can find 8 unambiguously by solving

j

d Ea(E) 1
(g)

dE ~R'(E), , 2

In order to study the behavior of R (E), we have generat-
ed the average angular momenta and cross sections from a
universal Woods-Saxon potential for '2C-"C (Ref. 12) and
the phenomenological potential of Ref. 13 for Ni-~Ni (the
same potentials used to test the inversion procedure of Ref.
9). The effective radii R(E) obtained by solving Eq. (7)
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for these systems are sho~n in Fig. 1. As we expect for
4Ni- 4Ni, where many partial ~aves are involved, the effec-

tive radius R (E) is consistent with Eq. (5) or with the actu-
al position of the maximum of the barrier (r&=10.64 fm,
the dashed line), whereas for "C-' C, where there are fewer
partial waves, R (E) is smaller than that given by either Eq.
(5) or the actual barrier position (rii=7.81 fm, the dashed
line).

One must emphasize that solving Eqs. (7) and (8) togeth-
er yields a unique value for the barrier maximum 8, rather
than a fit; especially since the cross section decreases very
rapidly below the barrier, one does not need to know o (E)
more than a couple of MeV belo~ the barrier to get a
reasonably accurate solution to Eq. (8). Also, as can be
seen from this equation, a knowledge of (L) well below the
barrier is not necessary to determine 8. %e have found B
to be 6.30 and 97.83 MeV for ' C 12C and +Ni-~Ni, respec-
tively, compared to the actual values of 6.30 and 9'7.74 MeV
(cf. Fig. 1).

%hen one or both of the heavy ions are strongly de-
formed, the fusion cross sections have to averaged'~ over all

orientation angles and the position and height of the barrier
change considerably as the orientation angle changes. Con-
sequently, in such cases it is more important to consider the
energy dependence of A(E). The effects of the deforma-
tion on fusion cross sections have been studied in Ref. 2 for

O+ i~s, iso, F52, &s4Sm Recently, fusion cross sections and
the spin distributions of the compound nuclei have been
studied, and the average angular momenta have been de-
duced in Refs. 4 and 5 for three different projectiles
(a, "C, tsO) on ts4Sm. Using the data from Refs. 2, 4, and
5, we have solved Eq. (7) for ' C-' Sm and 0-' Sm sys-

terna. The resulting effective radii are shown in Figs. 2(a)
and 2(b). Equation (8) gives the barrier height for these
systems to be 44.3 Me~ for "C-""Sm and 59.2 MeV for
'60-' Srn, respectively, to be compared with 44.6 and 59.0
MeV obtained in Ref. 5 by fitting the data. It is also in-

teresting to note that when we repeated the fits in Ref. 5 us-

ing the formalism of Ref. 11 [except for changing rs to
R (E) ], we obtained a slightly larger deformation parameter

(p =0.28) for ts4Sm than was deduced in Ref. 5.
%e have shown that, given the fusion cross section and

the average angular momentum, one can calculate the effec-
tive radius in Eq. (3). Once R (E) is known, it can be used
to determine the value of the maximum, and also if the
data at subbarrier energies are available, the thickness of
the potential. The average angular momentum is usually
obtained from4' the gamma-ray multiplicity M~ assuming a
linear relationship

(L) =aM„—8 (9)
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Instead of using Eqs. (7) and (8) to determine 8, one can
argue that the value of 8 is accurately determined from oth-
er experiments and the consistency between two values of 8
is indirect evidence that the form of Eq. (9) and the values
of the parameters n and 5 used to determine (L) are
correct. In light of the above results, we conclude that
the parametrization of (L) given in Refs. 4 and 5 is quite
accurate.

100
E

10
10

9,4

E

UJ

8,8
12c + 1545

2,8
h
V 2.2

8,2
I i i i I

44 48
E (Mev)

I i i i I

52

E

LLJ

IX

I

5.5

13.0
11.5

10.0
I f i I I I t l

6.5 96 98 100 102

E (MeV)

13

'6O+ '54Sm

(b)

FIG. 1. Results obtained using model potentials. The nuclear in-

teraction for the C- C system is the %'oods-Saxon potential
of Ref. 11, V= —V (1+aexp[(r —rs)/a]i t, with Vs=50 MeV,
a =0.4 fm, and ro=5.82 fm. The nuclear interaction for the ~Ni-
~wi system is the potential given in Ref. 12, Eqs. {17)-(20). Upper
and middle portions are the cross section and average angular mo-
menta determined using the %'KB formalism. The lower portion
shows the effective radius R(E) (solid line) obtained by solving Eq.
(7) using o(F) and (L) (E) given above. T. he dashed line is the
actual position of the barrier maximum, and the arrow identifies 8
found by solving Eq. (8).
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FIG. 2. (a) The effective radius for the ' C-' 4Sm system ob-
tained by solving Eq. (7). The data are taken from Ref. 5. The ar-
row identifies the maximum value of the potential found by solving
Eq. (8). (b) Same as (a) except for the ' 0-' "Sm system.
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