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Peaks in cross sections for the NN NNn reaction at low relative momentum for the final nucleon-
nucleon pair are successfully explained using 'SD and S

&
final-state interactions. Both singlet and triplet

final-state interactions are important and can interfere dramatically in certain spin observables.

It has become abundantly clear in the last few years that a
prominent experimental feature in the reaction NN- NNm

at intermediate energies is the final-state interaction (FSI)
of the two outgoing nucleons. ' This can be seen as peaks
in the spin-averaged differential cross sections for those
kinematic conditions which allow small relative momenta in

the final-state NN pair. ' To a lesser extent these effects can
also be seen in the spin observables, such as polarization
asymmetries.

Most theoretical calculations for the NN NNm reaction
have not attempted to include the FSI effect. One notable
exception is the peripheral model work by Ver%est. ' For
spin-averaged cross sections Ver W'est's predictions are
reasonably successful. Ho~ever, such an approach, which is
essentially a Born approximation calculation, cannot be ex-
pected to give detailed information on relative phases, such
as are measured in a polarization experiment.

In this paper we extend our unitary, unified model of NN
and NNm interactions to include FSI corrections. The ap-
proach follows the spirit of the %'atson-Migdal final-state in-
teraction prescription, in which our model T matrix for a
particular NN NNm reaction is multiplied by a factor
which incorporates the FSI between the final nucleons in
relative s waves. (Our three-body model has, at this stage,
two-body pion-nucleon input interactions, but no "direct"
two-body NN interactions. ) In detail, as discussed below,
we follow closely the discussion given in the scattering
theory text by Taylor. '

It is useful to remember that the nucleon-nucleon FSI ef-
fects involve only a very restricted range of the available
three-body final-state phase space. Here we consider FSI
for both 'So and 'S~ NN states. Generally, the 'So FSI is
dominant in nuclear reactions. Ho~ever, the 'So final NN
state is suppressed in the NN NNm reaction because of
selection rules, and we find it is necessary to include the S~
FSI as well. In fact, the triplet FSI is often the most impor-
tant effect. %e note in passing that, for essentially the
same reasons, the absorption of pions on 'So NN pairs in
nuclei is also suppressed, relative to 'S& absorption. '

After a discussion of how we include the FSI factor, a
sampling of our computational results is given for spin-
averaged differential cross sections for pion production.

Our relatively crude approach does surprisingly well in

reproducing the general features of the FSI effects seen in

the data. (Were one to include direct NN two-body interac-
tions as input in the three-body calculations, the computa-
tional complexities would be increased considerably. ) We
then also present calculations of spin observables for the
NN NNm reaction. One surprising result is that while the
spin-averaged differential cross section often shows dramatic
effects due to the FSI, the effects on spin observables are
generally small. Often they are even negligible. This seems
to agree with the general experimental situation. For exam-
ple, the extensive measurements by Hollas et al. 4 show the
FSI peak in some cross sections very clearly, but quantities
such as the spin transfer DNN vary smoothly as one scans
across the region where the FSI effects occur. Nonetheless,
our FSI approximation procedure predicts observable effects
in some of the spin-spin correlation parameters, and, as a
test of the model, it would be of interest to see if they are
really there experimentally.

%e begin by reviewing the standard procedure' for in-

cluding FSI, which consists of multiplying the scattering am-
plitude by a factor J '(p). Here J '(p) is the inverse Jost
function for the appropriate partial wave, while p is the rela-
tive momentum of the pair of particles under consideration.
The Jost function depends on the potential for the interact-
ing pair.

Since the relevant two-nucleon interaction is at low rela-
tive energy, we include FSI only if the final pair is in a SD

or 3S~ state. The potential is assumed to be given by a
separable Yarnaguchi form

1 1
(p I vip'& = ——

Mp+ p'+
which describes low-energy NN scattering very well. For
'So the parameters adopted by Yarnaguchi are A., = 2.22 X 10
MeV' and P, = 285 MeV, corresponding to a scattering
length a, = —23.69 fm and an effective range, r, = 2.158 fm.
For 3S~ the corresponding values are X, = 3.16 x 10 MeV,
P, =285 MeV, a, =5.378 fm, and f, =1.72 fm, respectively.
(Since the effective range for the singlet NN system is now
better known than when Yamaguchi originally obtained his
values, we have also considered parameters ~, = 1.07& 10
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MeV' and P, = 225 MeV which correspond to a, = —23.69
fm and r, = 2.76 fm. )

The advantage of the Yamaguchi form is that the L = 0
Jost function can be written down explicitly as

[I +2p~~fo(p) ( ] ~

Jo(p) = I+ (P+ Ip)fo(p)

Here fo(p) is the s-wave scattering amplitude, given by

(2)

( 2 y 2)2 2+p2
(p) /3 p + P p

2ir X 2P
(3)

The above Jost function has the required property that for
large p, Jo(p) = l.

Since the Jost function is only required at low relative en-
ergy, it is tempting to use, as many authors do, a "scatter-
ing length approximation" in Eq. (2). We know of at least
two such approximations, one which takes fo= —a and the
second which takes fo(p) = ( —1/a —ip) '. We find, how-

ever, that both approximations for the Jost function are
inadequate for our purposes. The first, which does not
satisfy the requirement7 that the phase of the Jost function
be minus that of the scattering amplitude, is poor, both for
the absolute value and for the phase, even for small mo-
menta, The second is accurate at extremely small p but be-
gins to deviate noticeably from the exact form by p —20
MeV/c. Therefore, in what follows we shall use only the
complete form of Jii(p) given by Eqs. (2) and (3).

Finally, we point out why it is necessary to take into ac-
count both the 'So and 3Si FSI's described by J, '(p) and
J, '(p), respectively. At low energy the inverse Jost func-
tion for the spin singlet is much larger than for the triplet.
Also, J, '(p) is much more sharply peaked than J, '(p).
Therefore, the 'So FSI tends to be the dominant feature in
most reactions. Ho~ever, in pion production there are
some special selection rules due to the odd parity of the
pion. The 'So state for the final nucleon pair only occurs in
the NN NNm amplitudes with J = L + 1 initial NN partial

waves. Since most of the pion production occurs in J=L
partial waves (14 mb out of 17 mb at S00 MeV), 'o a major
part of the FSI effect is due to the S~ interaction, and the
peaks are relatively wide. %e will return, in the discussion
below, to the question of an interesting competition
between the 'So and St contributions in a typical spin ob-
servable near the FSI peak.

Results using the above FSI prescription to modify our
three-body model calculations are shown for fully exclusive
spin-averaged pp npn+ differential cross sections at 800
MeV in Figs. 1-3. These are for three sets of angle pairs
(in coplanar geometry with proton and pion on opposite
sides of the beam) —(8,= 19', 8 = 53'), (8~ = 14.5',
8 42'), and (8,= 15', 8 = 21')—where FSI peaks show

up strongly. A reasonable fit to the data for the first angle
pair is obtained with the FSI prescription exactly as present-
ed above. The results sho~n in Figs. 2 and 3, however,
have both the singlet and triplet inverse Jost functions re-
normalized by factors of 0.50 and 0.57, respectively, In past
discussions of FSI effects, the normalization factor has been
treated as a free parameter, presumably dependent on
final-state configuration. This introduction of a parameter"
is based on the belief that the approximation procedure is
capable of predicting the shape of the peak correctly, but
not necessarily the height. From Figs. 2 and 3 it is clear
that this normalization parameter is indeed required and is
different in different parts of phase space. Figure 3 also
compares our (one-parameter) predictions with those of
VerWest's peripheral model calculation. '
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FIG. 1. Proton spectrum for pp pn+n at 8QQ MeV with proton
emerging at 19' and pion at 53'. The dashed-dotted curve is the
prediction of the three-body model of Ref. 6, awhile the solid curve
shows the effect of the FSI correction (normalization factor = 1).
Data are from Ref. 2.

FIG. 2. Proton spectrum for pp pm
+ n at 8QO MeV with

8~=14.5' and 8 =42 . Solid curve is the uncorrected model pre-
diction, and dashed curve sho~s the FSI correction (with both
singlet and triplet Jost function FSI factors renormalized by 0.50).
The effect of the. 'So FSI alone is shown as the dashed-dotted
curve. Data are from Ref. 2.
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FIG. 3. Proton spectrum for pp pn+n at 800 MeV with

8~ 15' and 8 21'. Solid curve is full calculation with normaliza-
tion factor 0.57, and the dashed-dotted curve shoes model predic-
tions before FSI corrections. The dashed curve comes from
Ver%est's model, Ref. 5. Data are from Ref. 1.

l.0

The FSI corrections here have been calculated for relative
NN moments up to p,„=200 MeV/c, corresponding to a
nucleon kinetic energy of 21.3 MeV in the NN rest frame.
The width of the FSI peak in Fig. 1 is about 90 MeV/c in
momentum, while in Fig. 2 it is about 20 MeV/c. It is hard
to estimate the experimental width of very narro~ peaks be-

cause of the sparseness of the data points and the low reso-
lution. Furthermore, the smearing of the detector accep-
tances ought to be considered to make a fair comparison
between theory and experiment. At all three angle pairs the
FSI peak is mainly due to the 3S~ interaction. The 'So con-
tribution alone is sho~n by the small peak in Fig. 2
(dashed-dotted curve). In the other cases the 'So peak
would be even smaller. The reason for this is the selection
rule, discussed above, which suppresses the 'So NN final
state. It is also because of this suppression that the predic-
tions of the solid curves are essentially unchanged if we cal-
culate using the alternative set of singlet potential parame-
ters that give the better value of singlet effective range.

It is at this point interesting to see what the effects of FSI
are on spin observables. Because one deals with ratios of
cross sections here, any question of the normalization of the
Jost function is less important than for cross sections. How-
ever, the phases of the Jost functions are now crucial. The
FSI effects in most spin observables are generally small.
They are most pronounced in cases when the cross section
peak is very narrow. Figure 4 shows selected results of our
calculations for such a case, viz. , 800 MeV and (8~ = 14.5',
8 -42 ). There are intriguing 40% spikes in the spin-spin
correlations, ANN, ALL, , and A~, in the region of lowest
relative momentum, while the beam polarization asymmetry
~~0 sho~s little effect.

These spikes are caused by a delicate interplay between
amplitudes which are enhanced (differently) by the singlet
and triplet FSI's. %e show the situation for ANN in more
detail in Fig. 5, where the 'So and 'S~ FSI contributions are
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FIG. 4. Selected spin observables as a function of final proton
momentum for pp pm+n at 800 MeV, 8 14.5' and 8 =42'.
Solid curves include FSI correction; dashed-dotted curves do not.
Beam polarization asymmetry data are from Ref. 2.

FIG. S. Spin-spin correlation parameter A &N for same kinematics
as in Fig. 4. Solid curve shoes the full calculation (same as in Fil;.
4). Calculations with only the 'So ( S&) FSI are shown by the
dashed (dashed-dotted) curve.
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plotted separately. The big effect seen for the 'So FSI alone
is due to the enhancement of the J-I. +1 ~aves. The 'Si
FSI effect alone gives ANN very close to —1 (ANN would be
exactly —1 if only singlet initial states were present). When
both FSI's are present, the large 'So peak is reduced to the
smaller spike shown already in Fig. 4.

Clearly, this prediction depends on our assumption thai
the 'So and Si FSI factors are each renormalized by the
same amount. " Nonetheless, the effects depicted here may
be large enough to be seen in experiments employing
present state-of-the-art accuracy. The only FSI effect seen
experimentally so far in a spin observable is, as far as we
know, the reduction of a large negative 3~0 at low NN in-
variant masses at beam energies around 500 Me&.' %e are
unfortunately unable to compare calculations directly with
the inclusive data shown in Fig. 14 of Ref. 3, since this
would involve an integration over the phase space accep-
tance of the experiment (and this is unknown to us). The
FSI-corrected Ago for the case of exclusive final-state
geometry shown in Fig. 2 of Ref. 3 is very similar to the
curve representing our model predictions without FSI. Un-
fortunately, the errors on the data do not allow a decision as
to whether the predicted FSI effects are actually present.

Finally, we remark that very recent work on spin transfer
coefficients4 shows large FSI peaks in the pion production

cross sections, but there is no apparent FSI structure in
the observables D~N, Dgo, , and DLo, . Here, e.g. , D~o,
=Dg~cosO+Dgt. sinO, where O is the angle of precession
of the spin induced by the spectrometer magnet which
analyzes the final proton. Our calculations at the relevant
kinematics show that Dqq, D~L, etc. , change appreciably
when FSI's are introduced, but the particular combinations
D~o and DLO do not.

In conclusion, we have shown that, following a conven-
tional prescription for including final-state interactions, a
considerable improvement in our three-body model predic-
tions is obtained in those kinematic situations where the fi-
nal NN pair has small relative energy. It is mostly in the
exclusive differential cross sections that the FSI effects are
large. In general, FSI effects on spin observables are small.
Here, the dynamically suppressed 'So FSI, which would
show up dramatically if it stood alone, has its effects cut
down substantially because of competition with the 'Si FSI.
It ~ould be interesting to see if effects of this size are, in
fact, present in the NN NNm reaction.
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