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Isoscalar giant resonances of arbitrary multipolarity in deformed nuclei are studied with the help
of the variational principle within the framework of the nuclear elastic vibration. Particular atten-
tion is given to the fragmentation of the giant monopole and quadrupole resonances. It is shown
how the nuclear surface deformation contributes to the fragmentation through the coupling between
the monopole and quadrupole modes of oscillation. Simple formulas for the giant resonance ener-

gies of deformed nuclei are obtained for both axial and nonaxial deformations. Surface tension and
Coulomb repulsion are included in the course of formulation but practical evaluations are made
without them. Most numerical results are concerned with well-deformed nuclei such as those
around A =150.

I. INTRODUCTION

The nuclear elasticity approach to giant resonances has
initially been proposed by Bertsch' and an extensive study
of the isoscalar giant resonances based on elastic vibra-
tions has been made by Wong et al. Until now, howev-

. er, only the giant resonances of spherical nuclei have been
considered in this approach. This paper describes the iso-
scalar giant resonances of deformed nuclei of arbitrary
multipole degree within the framework of the nuclear
elasticity. Particular attention is given to the fragmenta-
tion of the giant monopole resonance which has recently
been observed '5 and which has now been confirmed.

The study of the classical vibrations of an elastic solid
body is not new and it has already been worked out in the
last century by Lamb for an idealized perfect elastic
medium. The conception of free vibrations has then been
applied to the oscillations of the earth by many geophysi-
cists. As to nuclear physics, Bertsch' has derived macro-
scopic equations for nuclear vibrations from the random-
phase approximation (RPA) equations of motion, and in-
terpreted this mode of collective motion in terms of classi-
cal vibrations of an elastic solid body. He has then for-
mulated continuous equations of motion in the framework
of the time-dependent Hartree-Fock theory and observed
that the nuclear giant resonances can be considered as
elastic vibrations of a nucleus. Wong and his collabora-
tors~'3 have dealt with the dynamics of nuclear fluid start-
ing from the time-dependent Hartree-Fock approximation
and have shown that the equation of motion for some col-
lix:tive motions of the nuclear fluid can be approximated
by the Lame equation which governs the classical theory
of elasticity. The study of the semiclassical limit of the
adiabatic time-dependent Hartree-Fock approximation
has become a subject of many investigations. ' ' '

Since Danos' and Okamoto" have first investigated
the isovector giant dipole resonance of deformed nuclei,
the problem of the fragmentation of the giant resonances,
especially that of the quadrupole resonance, has been ex-
amined by several authors. ' ' Furthermore, recent ex-
periments ' have indicated that the giant monopole reso-

nance in the ' Sm nucleus is split into two components.
In a previous paper, ' we have described the fragmenta-
tion of the giant resonances of deformed nuclei with the
help of the variational principle applied to the scalar
Helmholtz-type of equation. However, as is now under-
stood, ' 2 use of arguments based on hydrodynamics for
the discussion of the isoscalar-type of giant resonances
necessitates considerable effort in justifying such a pro-
cedure. Blaizot, and Sagawa and Holzwarth ' have
shown that the energies of isoscalar giant quadrupole res-
onance can be understood on the basis of a simple macro-
scopic model involving the Fermi surface distortion. This
model has been extended to isoscalar giant resonances of
arbitrary multipole degree of spherical nuclei by Nix and
Sierk. 2 It seems to us, therefore, worthwhile to describe
the isoscalar giant resonances of deformed nuclei in a
credible macroscopic model, such as the nuclear elasticity
approach. Since the validity of the nuclear elasticity
model and its origin have been fully discussed else-
where, ' we shall focus here our attention on the method
of calculation of the isoscalar giant resonances of de-
formed nuclei starting directly from the Lame equation
having coefficients relevant to nuclear elasticity. One
method of dealing with the giant resonances of deformed
nuclei is to solve the Lame equation in the spheroidal
coordinates system. However, owing to the difficulty of
solving analytically such an equation, it is more con-
venient to use the variational procedure which has been re-
viewed' in connection with the hydrodynamical approach
to the giant resonances of deformed nuclei.

In Sec. II, we start with a brief review of the equation
of motion of a perfect elastic nuclear medium and then
discuss the method of derivation of the eigenvalue equa-
tion which is relevant to the subsequent formulation of
the theory. The eigenvalue equation we have derived is
formally different from the corresponding expression in
Ref. 2 but its contents are much the same. In the present
study we have not considered the so-called toroidal oscil-
lations in which there is no dilatation. In Sec. III, we dis-
cuss the variational principle suitable for the nuclear elas-
ticity approach and then show how to solve the variation-
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al equation for the problem of the giant resonances of de-

formed nuclei. In this section we have obtained explicit
formulas for the resonance energies of deformed nuclei as
a function of nuclear deformation parameters y and 5.
Section IV is devoted to the discussion of the fragmenta-
tion of the giant monopole resonance by coupling the
monopole mode of oscillation with that of the quadrupole
mode with the help of the nuclear deformation pariune-
ters. Finally, we give a summary and conclusion in Sec.
V.

8 u

Bxj.
Ti)+~I =P (2.1)

II. EQUATION OF MOTION

Since the ingredients contained in the classical theory of
elasticity play a prominent part in the present study of the
giant resonances of deformed nuclei, we start with the
equation of motion which governs a perfect elastic medi-
um"

=VX, +VxrX, +VX VXrX, . (2.7)

Here the function X, is the solution of the scalar
Helmholtz equation V Xi+h X,=0, where h =(pcs )/
(A, +2@), and the functions Xz and X& also satisfy the sca-
lar Helmholtz equations V Xi~i~+ k Xz~&~

——0, where
k =pcs /p. Of three components of u, uz has no radial
component and the displacements at a point are always
orthogonal to the radius of the point. This is the so-called
toroidal motion which is not directly concerned with the
electric isoscalar mode of collective vibrations and there-
fore we discard the solution ui.

A general solution u can now be expressed in polar
coordinates as u=u, n, +usus+urn~, where

It is noted that the bulk modulus ~=Imp/9 is equal to
1,+2@,/3. We further assume that the dependence of the
displacement vector u on time is given by u(r, t)
=u(r)exp(isn't). A general solution of Eq. (2.4) is then
given by

u(r) =ui(r)+uz(r)+u&(r)

T&j =A, 65&j + 2)ue&j (2.2)

where T,J is the stress-strain tensor component, I"; the
body force, p the density, and u; the displacement. Here
the usual summation convention of tensor analysis is as-
sumed. The stress-strain tensor TJ is composed of the di-
latation b, =Bu;/Bx; and the strain tensor e;J:

u„=Ut(r)Yt (8,$),

u e
——V&(r)

aY,.u~= Vt(r}
sin8

(2.&)

where A, and p are the Lame coefficients which are as-
sumed to be constant. The strain tensor is exphcitly given
by

and I„,n~, and n~ denote, respectively, unit vectors in the
directions of r, 8, and ((}. The radial functions Ut(r) and
Vt(r) are given by

Bu Bu)
(2.3) jt(hr)+ C& 2 j &(kr), (2.9)

a. 1 l(l+1) .
h r k r

8 ll
(A, +2@)V(V u) —pVXVxu=p

f 2
(2.4)

For the nuclear elasticity the Lame coefficients are shown
to be"

In terms of the strain tensor the dilatation can be ex-
pressed simply by b, =e;;=divu, where u is the displace-
ment vector. If the elastic medium is free from the body
force, Eq. (2.1) reduces to

Vt(r}=At jt(hr)+Ct —— [rji(kr)] .
1 1 1

h' r ki r Br
(2.10)

In the above expressions, Yt (8,$) is the spherical har-
monics and jt(x) is the spherical Bessei function. The
constant multipliers A& and Ci are to be determined from
the boundary conditions which state that the stress-strain
tensor components TJ vanish on the nuclear surface. The
equations satisfied by the boundary conditions are then

E 2 , kf p, (2.S)
T =0 atr=RO,

T,g ——T,p
——0 at r =Ro,

(2.11)

1p= kfp ~ (2.6)

where E is the nuclear compressibility, m' the effective
nucleon mass, and kf the Fermi momentum. An alterna-
tive way of defining the Lame constant k is to introduce
the Landau parameter Fo in place of K, namely

where Ro is the spherical nuclear radius. In order to ob-
tain explicit expressions corresponding to Eq. (2.11), we
now describe the strain tensors in spherical polar coordi-
nates. For example, the symmetric strain tensors are ex-
pressed as

BQp
11 rr

, kfp(1+ —,Fo) .

In this case the nuclear compressibility becomes

K =3 kf(1+F0) .

1»e 1
e22 ——e~ ——— +—u, ,r Qg r

1 ~up 1 cot8
e33 ——e + Qp+ Qe .

r sin8 BP r ' r

(2.12)
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(A, +2@) + (2—Ui I(&—+1)VI] '

dr r r =Ro
=0, (2.13)

The antisymmetric strain tensors e,j (i&j) are shown in

Appendix A. When the explicit expressions of the strain
tensors are introduced into Eq. (2.2), we see that the boun-

dary conditions (2.11) take the forms

(2.14)

Upon introducing the explicit forms of UI and Vi, Eqs.
(2.13) and (2.14) become the functions of jI(hRo), ji(kRo }
and the constant multiphers A~ and CI. By equating the
ratio Ci/Ai obtained from Eq. (2.13) with that obtained
from Eq. (2.14) (see Appendix A), we get

(I —1}(l+2) S 1+1 &I g g 2(l —1)(21+1) 2 2l(I 1)(l +2) ~ 0+ ' + + I
4g

where g=hRo, rl=kRo ——g(iL/p, )'~ + 2, and Si(x)
=jI+i(x)/jI(x). Equation (2.15) is the desired eigenvalue
equation for free oscillations of a uniform, perfectly elas-
tic sphere. This equation is formally different from the
corresponding equation obtained by Wong and Azziz but
its contents are the siune. It is remarked that the present
constant multipliers Ai and Ci are not identical to those
of Ref. 2. For 1=0, the expressions in the two curly
braces of Eq. (2.15) yield a common factor which can be
eliminated from the

equation
and the eigenvalue equation

redllces to 4$j~(g}=g jo(g). The lowest solution of the
eigenvalue equation for 1=0 can be used to calculate the
monopole giant resonance energy. Once the eigenvalues
for a multipolarity l are evaluated from Eq. (2.15), the gi-
ant resonance energies of spherical nuclei can be estimated
by introducing the values of A, and p, defined by Eqs. (2.5)
and (2.6), into the expression

E'=(~+2V )
pB o pRo

(2.16)

It is remarked that the Lame coefficients are not a func-
tion of m but a function of the effective mass m ' in order
to compensate for absence in the formulation of the ef-

I

fects such as the momentum dependence and nonlocality
of the nucleon-nucleon interaction and also the coupling
of phonon to the single-particle motion. Although we use
the value of 0.75 for m'/m throughout the present study,
it is certainly advised to choose carefully the value of the
effective mass for further accurate comparisons with ex-
perimental results. For example, with the values of
K=220 MeV, m'/m=0. 75, and kf =1.25 fm ' we can
realize a very crude estimate of the giant resonance ener-
gies, namely 62.4A '~, 84.9A ', 66.9A ', and
126.4A '/ MeV for 1=0, 1, 2, and 4, respectively. The
monopole resonance energy in this estimation is too low
compared with the phenomenological value BOA

MeV. Inclusion of the mass-dependent nuclear compres-
sibility improves much of the resonance energies. Table I
lists the lowest eigenvalues of g and corresponding ener-
gies for 1=0, 1, 2, 3, and 4, obtained using the same
values of m '/rn and kf as before but with
K=220+ K@A '~3 MeV with the surface compressibili-
ty Ks ———550 MeV. Except for 3=50, the monopole
resonance energies are no~ correctly reproduced. For
more realistic calculations, use of more refined values of
the Lamb constants through the effective mass and the
Fermi momentum is necessary, as has been done in Ref. 2.

TABLE I. The lowest eigenvalues f=hRO and the corresponding giant resonance energies for 1=0,
1, 2, 3, and 4. AH results are obtained using the parameters K=K„+K+A ' ' ~ith K„=220 MeV
and Ks= —550 Me~ m /'m=0. 75, and kf ——1.25 fm

(~-'" MeV)

50

1.849
62.75

2.068
73.99

150

2.150
78.74

2.195
81.56

250

2.225
83.49

1.868
63.39

1.993
71.30

2.024
74.14

2.037
75.68

2.043
76.68

1.905
64.65

1.838
65.75

1.803
66.05

1.781
66.19

1.766
66.28

2.720
92.32

2.667
95.40

2.629
96.30

2.603
96.75

2.585
97.03

3.422
116.14

3.372
120.63

3.331
122.02

3.303
122.73

3.282
123.17
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So far we have implicitly assumed a constant nuclear
density. The case where the nuclear density is a function
of radial variable can be treated by integrating numerical-
ly the equation of motion, but this is beyond the scope of
the present purpose. A simple method of taking into ac-
count the effect of Coulomb force and surface tension is
to modify the boundary conditions so as to include these
forces in the eigenvalue equation. In fact, the displace-
ment vector field slightly changes the shape of the nu-
cleus. The restoring force maintaining equilibrium can
then be assumed to be surface tension as in the case of a
liquid drop. The total stress at the nuclear surface is then
the sum of the displacement stress T and the change in
the pressure due to the surface tension. As in Ref. 2, we
can also include the additional effect of Coulomb interac-
tion in the pressure change. The boundary value equation
corresponding to the first equation of (2.11) becomes now

[Trr +u, (r)F]„Ro 0, ——

where

(2.17)

III. VARIATIONAL PROCEDURE

For further formulations it is more convenient to
describe the Lame equation (2.4) in terms of the stress-
strain tensors T/ expressed in spherical polar coordinates.
We have (see Appendix B}

lT+ S=—peg il,
T

where

(3.1)

8 2 1 8 cT— +—— +
dr r'r 88

ot0 1 8
r ' rsin8 BP
r

Trr THr Tgr mr

X Tr8 T88 TPS n8

rP

S= (Tee+ Tee)n. +{T—e eot8Tee }ne—

(3.2)

{3.3)+ ( Te, +cot8 Tee)ne .

Multiplying Eq. (3.1) by u' and integrating the result over
the volume, we can extract the quantity co from the equa-
tion. Having integrated by part all integrands of deriva-

F=
2 {1—1)(1+2} 1—

Ro

Here o is the constant surface tension coefficient and x is
the fissibihty parameter. Wong and Azzizi have shown
that in this way one can uncover the low-lying vibrational
states but the inclusion of surface tension and Coulomb
force does not make many changes in the energies and
characteristics of the elastic vibrational states. Because of
the modification of the boundary condition, Eq. (2.13) has
an additional term Ui(Ro)F and the ratio of the multiplier
constants A&/Ci is modified and so is the eigenvalue
equation, but the method of derivation of the modified
eigenvalue equation remains unchanged.

tive forms and by taking account of the boundary condi-
tions (2.11) and (2.17), we arrive at (see Appendix B)

Af I
V u

I
dr+2y, f g I

e&J. I dr+Ui(Ro)RoF
2= l,j

f1 I
u

I

'dr

(3.4)

where e;1 and F are those defined in Sec. II. This equa-
tion, which is the variational expression for the Lame
equation, forms the basis of the present study and of a
subsequent paper ' which deals with the giant resonances
of fast rotating nuclei. If we use the boundary conditions
without surface tension and Coulomb interaction, the
quantity F disappears and Eq. (3.5) reduces to the corre-
sponding equation cited by Bertsch. ' The equality of Eq.
(3.4} can also be verified by integrating explicitly all in-
tegrals involved using the solution (2.8).

For deformed nuclei, the upper limit of radial integrals
is no longer a constant radius but a deformed surface
which is a function of angles as well as of deformation pa-
rameters. Therefore, the angular integrals have to be per-
formed after the radial integrals and thus the result of in-
tegrations can be expressed in terms of deformation pa-
rameters and the initial frequency of oscillation corre-
sponding to that of a spherical nucleus. For usual quad-
rupole deformations, the nuclear surface is given by

R =Ro 1+ gas. I'i. (3.5)

where az„are collective variables. In an equivalent way
we can also define the deformed surface by
R =R (1o+ )e, where e; are the increments of three axes
which can be expressed in terms of az„as

ei~q~
——e+ ———&(5/16m )(azo+ v 6ai2),

ei eo &(——5/4n——)aio . .
(3.6)

A, o(8 0)= I'io(8 4) (3.8)

Generally, all integrals in Eq. (3.4) can be evaluated nu-
merically but the task is laborious leading to results which
may screen general features of the giant resonances of de-
formed nuclei. We therefore derive a formal expression
which shows explicitly the effect of static nuclear defor-
mation on the giant resonances of spherical nuclei and
which allows us to easily carry out numerical calculations.
To this end we expand the radial part of integrands in
powers of the collective variable ai Although the calcu-
lations of the angular integrals are not straightforward

When use is made of the deformation parameters P and y,
the increments become simply e; = —,

' 5 cos(y —', i n ), —
where the Nilsson deformation parameter 5 is equal to
(45/16ir)' P

In the following we use the real version of spherical
harmonics @i~ instead of I'i, which is defined by'

ei, + (8,y)

=&(1/2)(, ')[I'i (8,4)+( —1) &i (8,{())], (3 7)
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due to the presence of complicated angular functions, the
final expressions are always elementary functions of I.
For example, the lowest order term of the expansion con-
tains the following integral:

~ %,+~ ~%,+m

si z8 888$ Bp

a'c, , a'c „+ ' ' +l(l+1) dQ
88 882

1.0

= ——,
'

I (I +1) . (3.9)
Qe- 3

3

where

Ro
a~ ——f pfU~(r)+l(l+1)VI(r)]r dr,

bI =pR o I && (Ro)+ fl (1 +1)—3]VI (Ro)],
1

(21 —1)(21+3)

(3.12}

(3.13)

)& I [l(l+ I)—3m ]so+ —,
' l(l+1)(so+2s+)5

& I .

(3.14)

The explicit forms of c~ and d~ are shown in Appendix B.
The expression (3.14) is the geometrical factor arising
from the nuclear deformation. The radial integrals aI and
c~ can be evaluated either numerically or analytically us-
ing the explicit forms of UI(r) and VI(r).

Now the giant resonance frequency of deformed nuclei
1s glve11 by

bl dl~ =~o 1— — 4, +m
QI CI +ZI

(3.15)

The first-order expansion in a2„contains an extra spheri-
cal harmonics Y2„and therefore the angular integrals are
further complicated but still integrable analytically.
Thus, up to first order of collective variable we get

p u v=aI+bI I+~, (3.10)

f~V, u~'«+2 f g ~e,, ~'«=c, +dg, +, (3.11)

0.8-

l

0.1
1

0.2 0.3
5

I

0$

responding to that of spherical nuclei is split into different
fragments following the values of rn and 5. It is
worthwhile to remark that the nuclear deformation par-
tially removes the degeneracy of the giant resonance ener-

gy and the complete removal of the degeneracy can be
achieved when we introduce the concept of the nuclear ro-
tation in addition to the nuclear deformation, as shown
in the study of the rotational splitting of the giant reso-
nances. Figure 2 displays the fragmentation of the iso-

3'

3
L= 2 5=0.25

A=~ 50

FIG. 1. Isoscalar giant quadrupole resonance of deformed
nuclei in the region of 3=150. The giant resonance frequency
of deformed nuclei co, in units of coo, the frequency correspond-
ing to spherical nuclei having the same mass number, is plotted
as a function of deformation parameter 5 for both prolate
(y=0') and oblate (y =60') figures. The indices after p (pro-
late) and o (oblate) indicate the projection components m=O,
%1, and 2.

where coo is the giant resonance frequency of spherical nu-
clei having the same mass number and z~= U~(Ro)RoF.
In deriving the expression (3.1S}, we have neglected a
second-order correction to z&, arising from the deformed
surface. The formula (3.15) is very simple and transpar-
ent. We see thus the effect of deformation through the
geometrical factor gq + multiplied by the constant
represented by the terms in the parentheses. %%en the de-
formation parameter 5 goes to zero, the geometrical factor
vanishes so that the frequency aP becomes coo.

Figure 1 shows the isoscalar giant quadrupole reso-
nance in deformed nuclei of the 3=150 region. In this
figure, the ratio colcoo is displayed as a function of the de-
formation parameter 5 for both prolate and oblate nuclei.
%e see clearly how the initial giant resonance energy cor-

1.0

I

-60 60 120 180

FIG. 2. Fragmentation of the giant quadrupole resonance co

vs nonaxial deformation parameter y at 5=0.25. The quantity
co is sho~n in units of coo, the frequency corresponding to spher-
ical nuclei having the same mass number. Curves a, b, c, and d
stand for m =2, 1, —1, and 0, respectively.
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scalar giant quadrupole resonance as a function of y for a
fixed value of 5=0.25. We see that the resonance energy
has generally three fragments, except for the values of y
which are not equal to a multiple of 30'. Figure 3 shows
the fragmentations of the isoscalar giant dipole and octu-
pole resonances in an axially deformed nucleus. It is not-
ed that the splitting of the giant dipole resonance is very
prominent. Figure 4 displays the fragmentation of the
isoscalar giant dipole resonance as a function of y for a
fixed value of 5=0.25. There are two fragments for axial-
ly deformed nuclei and three for triaxial deformation. It
is interesting to compare this figure with the correspond-
ing one' for the isovector giant dipole resonance. An
essential difference that we can bring into relief is that the
positions of the resonance energy peaks at y =0' and 60'
are interchanged between these two figures. For example,
the two peaks of the isoscalar dipole resonance energies at
y =0' correspond to those two peaks of the isovector giant
dipole resonance energies at y =60'.

Explicit forms of Eq. (3.15) for some multipole values
of I are certainly helpful to understand how the deforma-

1.2

1.2-

I

A=150

0.9

0.8-

-120
I

-60

Y(deg)
I

60
!

120 180

FIG. 4. Same as Fig. 2 for the isoscalar giant dipole reso-
nance. Curves a, b, and c stand for m=O, —1, and 1, respec-
tively.

tion affects the giant resonance energies with respect to
those of spherical nuclei. For 1=1,we get

N =I+—,qi5, m =0, m = —1,
N0

1+—,qi5, m =+1, m =0,1,1 (3.16)

1.0

0.9

0.8

'1

where the upper signs are for prolate deformation and the
lower signs are for oblate deformation. Here

T

1

5 ci Qi

which is equal to 0.8 for all nuclei. The formula (3.16) is
to be compared with a similar expression'7 for the isovec-
tor giant dipole resonance of deformed nuclei, obtained
within the framework of the hydrodynamical model. As
me have discussed in connection with Fig. 4, the signs in
front of the terms with 5 are opposite in the two corre-
sponding formulas. Besides, the constant q, in the hydro-
dynamical expression is about 0.9.

Similarly, for the giant quadrupole resonance, we get

N 2=1——,q25, m =0
No

3

3

1„0

09 I I

0.2 0.3
5(de format (on)

I

0+ 0.5

1 —
3 q25, m =+11

=1+—', qz5, m =2,

for prolate deformation and

N I=1——,q25, m =0
No

=1——,(3m +1)q25, m =+1

(3.17)

FIG. 3. Same as Fig. 1 for the isoscalar giant dipole and oc-
tupole resonances of deformed nuclei.

=1+—,
'

q25, m =2,

for oblate deformation, where

(3.18)
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1 b2 d2
92=

7 a2 c2+z2

which is approximately equal to 0.32 for all nuclei. This
value of q2 is to be compared with the corresponding
value 0.45 obtained in the hydrodynamical approach' for
the isovector giant quadrupole resonance.

For the octupole mode of vibration, we have

6) 8~1
(g q35

600

which is approximately equal to 0.34 for all nuclei. This
value of qi is to be compared with the corresponding
value 0.45 obtained in the hydrodynamical approach. ' It
is to be remarked that the values of qi are constant for
each multipole except for the A =50 region where the nu-
clear elasticity model is to be applied with care.

IU. GIANT MONOPOLE RESONANCE
IN DEFORMED NUCLEI

2
l5 q35

=1+—,
' q35, (3.19}

The fragmentatian of the giant monopole resonance
which has been observed and which has now been con-
firmed4 s can be explained by the contribution of the sur-
face deformation through the coupling between the mono-
pole and quadrupole modes of vibration. The trial dis-
placement vector u in Eq. (3.4) now takes the form

for prolate deformation and for m=O, +1, 2, and 3,
respectively, and

~00AM+ ~20+20+ ~22+22 & (4.1)

600

4~1—
)g q25

=1——,
' (2m +1)q&5

=1+—,
'
q25, (3.20)

for oblate defarmation and for m=O, +1, 2, and 3,
respectively, where

bi di
93=

6 a3 c3+z3

where ui~ stands for the displacement vector u having
specific values of I and m, and I i are the variational pa-
rameters which are to be determined from the variational
principle. As before, the angular functions in ui~ are the
real version of spherical harmonics @i+ (8,$), defined
by Eq. (3.7). It is noted that, owing to the angular
momentum coupling rule, the displacement vector u2~

cannot be coupled with that of upp, at least in the first ar-
der of collective variables a2„.

I.et us first define two quantities which arise from the
coupling between the monopole and quadrupole modes of
oscillation and which appear in the subsequent formula-
tion in addition to the quantities ai, bi, ci, and di. These
are

bp2 ——v'(2/5)pR 0[Up(R0) U2(Rp )],
BU0 BU2

d02 +(2/5)R0 ' 1I'jo(go)j2($2)R 0+2)u +U, U, +U, (U, 6V2)
Br Br 'r =80

(4.2)

where gp and $2 are the eigenvalues hR0 corresponding to 1=0 and 1=2, respectively. The numerator of the variational
Eq. (3.4) becomes now

I poco+(I'20+122)c2+ —,
' I 00(2120cosy+~21 22siny)5d02+ z', [(I zo —I z2)cosy+I"201 22siny]5d2, (4.3)

0,2

~Em ~l'm'~lm, 1'
2

Em, E'm'

0,2

g li I r»i, i
En&, E'rn'

(4.4}

whereas the denominator of Eq. (3.4) yields the same ex-
pression but with ap, a2, b02, and b2 in place of cp, c2,
102, and d2. Upon introducing the expressian (4.3) into
Eq. (3.4), we get the equation

where Bi~ i~ and Di i ~ are functions of alibi ~, b&~& ~,

ciil ~, dhoti &, bii, dpi, as well as deformation parameters y
and 5. This equation can be solved either for the ratio
co /coop or for the ratio co /co20 provided that all variation-
al parameters I l are known, where co00 and co20 are,
respectively, the monopole and quadrupole frequencies of
oscillation corresponding to spherical nuclei. To solve Eq.
(4.4) we note that, in accordance with the requirements of
the variational principle, the differentiation of Eq. (4.4)
with respect to I E must vanish. As a consequence, we
obtain three linear homogeneous equations of I i
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2 1 v2
(ape —co)I pp+ , f—025cosyI 20+ f025 smyI 22 ——0,

6

,
' f—p25cosy rpp+(azQ7 c—z+ —,', g25cosy)1 20+ —,'] g25sinyi 22 ——0,
v2 4

6
foz5sinyi 00+» gz5sinyi 20+(azo] —cz —» g25 cosy}1 22

——0,

(4.5)

where fpz bp—zoo dp—z and gz bzo——] dz—. The system of Eq. (4.5) has a nonzero solution if and only if the determinant
constructed with the factors which multiply each variational parameter I i in Eq. (4.5) vanishes. The determinantal
equation thus obtained can be reformulated so as to yield a third-order equation with respect to the square of the coupled
frequency, and this cubic equation gives generally three real solutions for physically meaningful values of the deforma-
tion parameters y and 5. The cubic equation takes the form

Gi )0] (0300+20 20 62)~ +[0]20(2 00+~20) 63]~ (~00 20 64} (4.6)

where

6;=+A;5 (1+cos y)+( —,', ) 8&5 (1+3cos y)

—„,Ci53 cosy[2 —(3—v 2)sinzy] . (4.7)

Here A;, 8;„and C; are one-column —four-row matrices
whose elements are functions of bz, dz, bpz, and dpz (see
Appendix C).

When 5 is equal to zero, that is for spherical nuclei, 6;
is identically zero, and Eq. (4.6) reduces to

lower sign is for y=n. Equation (4.10} is an elementary
quadratic equation for oz and its solutions are straightfor-
ward. In practice, it is more convenient to solve Eq. (4.10)
for the ratio co /0]00.

For the arbitrary value of y we solve directly Eq. (4.6).
By putting

0] =0 + —,'(P]pp+2cozp —62)/(1 —Gi),
Eq. (4.6) can be transformed to

(0] —0]00)(o] —o]zp) =0,2 2 2 2 2 (4.8)
0 +pQ +q=0, (4.12)

cz+ 2] d25
CO

az+ ,', b25— (4.9)

which is nothing but the uncoupled giant quadrupole reso-
nance frequency for the component of 1=2, m =2 in axi-
ally deformed nuclei. It turns out that in the case of y =0
or n., only the component of 1=2, m=0 of the quadru-
pole oscillations contributes to the coupling with the
monopole mode of oscillation. It is noted that in Eq. (4.5)
we have neglected the term zi arising from surface tension
and Coulomb interaction. The determinantal equation for
y=0 or m becomes now

(1—gi )0] —(0300+0]zo—gz)co +(coop]pzp —g3) =0, (4.10)
where

bO2 b2

2bozdoz 5 + o]oobz+dz

dO2
2

21Q2
o]pod 2

2

(4.1 1}

In the function g; the upper sign is for y=O and the

which shows that 03 can be independently either 0300 or
0]zo and therefore there is no coupling between the mono-
pole and quadrupole modes of oscillation in spherical nu-
clei.

When y is equal to 0 or ]r, all factors which multiply
I zz in Eq. (4.5) vanish, except for the last one in the third
equation. The determinantal equation then reduces to an
equation in which the left-hand side is a product of two
factors, of which one is just the factor in front of I zz in
the last equation of (4.5). By putting this factor equal to
zero we get

where p = —,'a +b —and q =2( —,'a) —,'ab+c. —
functions a, b, and c are given by

~00+ 0]20 62 o]20(2~00+ o]20} 63
2 2 2 2 2

0 =— b=
1 —Gi 1 —Gi

The

OO+ 22O —622 2

3(1—Gi)
(4.13)

v' —(1/3)p

Figure 5 displays two ratios 0]/coop and co/cozo as a func-
tion of deformation parameter 5 for the values of y=0'
and 60'. In this figure, where we have used the notations
o]0 and o]2 instead of o]00 and o]20, Pr and Ob stand for the
prolate and oblate deformations, respectively, and the ex-
plicit assignment 1.=2 indicates that the states remain
uncoupled. The most significant feature in this figure is
the appearance of the lower component of the ratio co/cop

2 4
Q)yak) 20

—64

I —Gi

Since the inequality

( —,
' p)'+( —,

' q)' & 0

is satisfied for physically meaningful values of y and 5,
Eq. (4.12) has generally three real solutions. The coupled
frequency co is finally given by

0] =2( —1)" 'v' —(I/3)p cos —,
' [u+(n —1}n]
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0.8- -0.8
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0.4 0.1
a (doformatio n)

0.2
I

0.3
I

0.4

FIG. S. Fragmentations of the giant monopole and quadrupole resonances versus deformation parameter 5. In order to see the ef-
fect of the coupling between the monopole and quadrupole modes of oscillation on the initial frequencies, the coupled frequency is
plotted separately for the giant monopole resonance and for the giant quadrupole resonance. For actual coupled resonance energies
see Fig. 6. See the text for further details.

and the higher coinponent of the ratio co/cot. Because of
the coupling, assignments of a definite multipole, either
monopole or quadrupole, to these states would not make
much sense. By comparing with Fig. 1, we see how the
coupling affects the resonance energies of the quadrupole
modes of oscillation in deformed nuclei. When we multi-
ply the phenomenological giant monopole and quadrupole
resonance energies, namely SOA ' and 643 ' MeV
corresponding to those of spherical nuclei, we can esti-
mate practically the variation of the resonance energies as
a function of deformation parameter 5. In the nuclear
elasticity approach the giant monopole and quadrupole
resonance energies amount to 793 ' and 663 ' MeV
for the region of 2 =150. Figure 6 shows the calculated
coupled giant resonance energies for y=O', 30', and 60',
that is, prolate, triaxial, and oblate deformations, by as-
suming a fixed value of the Nilsson deformation parame-
ter 5. The dashed lines indicate the positions of the com-
ponents of l=2, m=0 before coupling. The explicit as-
signments of 1.=2 for 64.4, 66.1, and 66.7 MeV mean
that these states having m= 1 or m=2 (y=O') are pure
and remain unchanged. As we see, the energy difference
between the states in each deformation is more than 3
MeV, except for oblate nuclei where the first two reso-
nance energies are very near each other so that one may

COUPLED 6 I ANT RESONANCE
E NERGY (A'~' MeV }

A= l50

78.8
L=o

82.3 823 8).5

66.&

L=2

69.9
L=2

64.4

60.9

69.3

66.1

61.4

68.0

W

62-9
62.7

L=2

'f=0
5=0

Y=0
g=0.25

7=30
5=0.25

'Y=60
6=0.25

FIG. 6. Coupled giant resonance energies for I=O and 1=2.
Two energy values in the extreme left are those for spherical nu-
clei and other energy values are calculated using the deforma-
tion parameters y =O', 30', and 6O' at 5=0.2S.
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observe three peaks at about 633 ', 683 ', and

81.5A '~ MeV, respectively, instead of four peaks.
It is important at this stage to evaluate the coupling

strength between the monopole and quadrupole modes of
oscillation. One method of studying the coupling strength
in the present approach is to calculate the overlaps be-

tween the trial coupled state u and the individual partici-
pants ut . When we define a reduced coupled displace-
ment vector u' by u'=u/I oo, the coupling strength can
be expressed as

, I z~

&~lr~ ~x &

(4.14}
&u i u& &u'

i
u'&

Once the values of ro are obtained from either Eq. (4.6) or
(4.10), the ratio of the variational parameters I z /I"oo

can be calculated from Eq. (4.5). For example, for y =0',
we get a simple expression

Izo

1OO

(boz~' —doz@

(uz+ zi bz)~' —(cz+ ~'i dz»
(4.15)

For oblate nuclei we get

00QP —Co
gz —)'ufo»

I zo foz=6
I oo 21(azr0 —cz)+(2—v 2)gz5

I zz &o —&o 1 I zo
z

= —2 6 +I oo foz& 6 I'oo

(4.16)

(4.17}

Table II shows the ratios I zo/I oo and I zz/I oo for p«l«e
and oblate deformations as a function of 5. The values of
the coupling strength defined by Eq. (4.14) as well as the
resonance energies are also given in this table. The reso-
nance energies without coupling strength are those for un-

coupled states, namely the components with m=1 for
both the prolate and oblate deformations and the com-

TABLE II. Coupled resonance energies, ratios I qo&q2&/I oo, and overlaps between the coupled state and the individual participants
to the coupling. The energies without coupling strengths are for the states which remain uncoupled. a, b, and c refer to
&u

I
I ~u &/&u

I
u& &uI r„u,.&/&u

I
u&. and &u

I
I zzuzz&/&u I u&, respectively.

0.15

Prolate (y =0')
0.25

( A» MeV)
I /I

b

80.22
—0.350

0.963
0.037

68.23 65.05 63.15
4.689
0.099
0.901

82.25
—0.481

0.937
0.063

69.85 64.42 60.85
3.345
0.173
0.827

Oblate (y =60')

{g-»' MeV)
I 2o~I oo

I 22~I oo

a
b
C

79.82
—0.180
—0.272

0.951
0.008
0.041

67.26
—4.256

8.778
0.012
0.208
0.781

64.21
4.064
3.708
0.066
0.537
0.397

64.11 81.50
—0.245
—0,427

0.898
0.009
0.093

67.94
—3.359

5.706
0.021
0.284
0.695

62.93 62.65
2.722
2.557
0.137
0.507
0.356

0.35

Prolate (y =0')
0.45

(a-»3 MeV)
I 2o~I oo

a
b

84.69
—0.566

0.922
0.078

71.61 63.81 58.57
2.791
0.226
0.774

87.47
—0.623

0.917
0.083

73.54 63.22 56.40
2.489
0.264
0.736

Oblate (y =60')

(Z-»3 Mev)
I 2o~I oo

I &2~I oo

a
b
C

83.74
-0.279
—0.559

0.849
0.004
0.147

68.56
—3.011

4.435
0.027
0.349
0.624

61.83 61.01
2.159
2.096
0.201
0.480
0.319

86.45
—0.294
—0.671

0.800
0.005
0.195

69.14
—2.836

3.753
0.027
0.404
0.569

59.36
1.850
1.855
0.256
0.459
0.285
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ponents with m=2 for the prolate deformation. As was

expectixl, the contribution to the higher energy state
comes mostly from the monopole mode of oscillation,
~hereas the contribution to the lower energy state comes
generally from the quadrupole mode of oscillation.

1
e12 ~21 ~rg—

2

BQ Bus
B8 Br r

Buii

r 88
1 1 Rue——cot8up+-
» r siii8

V. SUMMARY AND CONCLUSION

In this paper, we have investigated the isoscalar giant
resonances of deformed nuclei within the framework of
the nuclear elasticity. In particular, we have shown how
the coupling between the monopole and quadrupole modes
of oscillation modifies the initial fragmentation of the gi-
ant quadrupole resonance and thus gives rise to the frag-
mentation of the giant monopole resonance. We have
first briefiy reviewed the method of derivation of the
eigenvalue equation for elastic vibrations of spherical nu-
clei and this supplies a basis for the variational procedure
we have subsequently developed for the discussion of the
giant resonances of deformed nuclei. The variational
equation we have solved allowed us to express the fre-
quency of vibration in a simple form which displays expli-
citly the dependence of the resonance energies on defor-
mation parameters.

Although we have introduced surface tension and
Coulomb force in the course of formulation of the varia-
tional equation, we have not included the effects of these
forces in our numerical calculations. As pointed out by
Wong and Azziz, 2 the inclusion of surface tension and
Coulomb repulsion does not produce much changes in the
energies and characteristics of the elastic vibrational
states. Furthermore, we have not considered the damping
of the giant resonances. The introduction of the damping
due to the two-body viscosity leadsi to the Lame-Navier-
Stokes equation of motion and the extension of the
present method to such a viscoelastic system is beyond the
scope of the present investigation. The giant resonances
of fast rotating nuclei in the framework of the elastic
model will be discussed in a forthcoming paper.

The author wishes to thank Dr. P. Ring for helpful dis-
cussions.

APPENDIX A

1 1 ~u„~up 1
~31 13 &Pp = + — Q

2 rsin8 88 dr r

These complete the expression (2.12) for e,
In the absence of surface tension and Coulomb repul-

sion, the two ratios Ci/Ai obtained from Eqs. (2.13) and
(2.14) are given by

(4)
4 jig 2l(1+1)

(4)jl +
g dg )2

2l(l + 1)
de 7I

d

dg

j&(q)+ j~(n)
l(1+1)—2 .

d VJ

By equating these two expressions we obtain the eigen-
value Eq. (2.15).

APPENDIX 8

In this appendix we first derive Eq. (3.1). The dilata-
tion ~ of Eq. (2.3) in spherical polar cmrdinatM is simply

X=V u=e +eee+epp .

W1th this dllatatlon we get

(A, +2@)V(V u) =(~+2@) n»+
aZ 1 aa
ar " r a8 '

1

rsin8 BP

In spherical polar coordinates, the antisymmetric strain
tensors e,& (i+j) of Eq. (2.3) take the forms

The radial part n, of this relation can be reformulated so
as to give

T +— T,e+ . T~„+ (2e eee e~+cot8e,—e)+p—[V(V u) Vu]n, ,—

where the stress-strain tensors T take the forms T =A,b, +2pe and T & 2pe & (a&P) wit——h a,P=», 8, or P. Simi-
larly, the ng part can be written as

8 1 8
T,e+ — Tee+ T~+ [2p(eee e~—)cot8+3T—,e]+p[V(V u) Vu]ne . . —1 2

dr
' r 88 rsin8 BP r

In the same way we can transform the n~ part. We have

8 1 8 1 8 1
T&,+ T~+ . —T~+ (3T~,+2T~ cot8)+—@[V(V.u) —V u]n~ .

Br ' r 88 r sin8 8

By remarking the vector relation V(V.u) —V u= V X V Xu and using the identity
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2p(28~ —888—888) =2Trr —T88 —T88,

we see that Eq. (2.4) transforms to Eq. (3.1).
We next show how to derive the variational Eq. (3.4}. When we multiply Eq. (3.1}by u' and integrate the result over

the voIUme, the right-hand side becomes simply

—~2fi luI2dr.

As for the left-hand side, we first integrate by part those integrals having the derivatives in the integrands and then apply
the boundary conditions (2.11) or (2.17). In this way we get, for example,

t) 1 t) 1
ur Trr + Tre+ . Tr8 d'r

(u„'r )Ader 2ls —' —
2 (u,'r )e + . (u„'sing)e„8+ e„8 dr, '

r2 r I2 r ' rsing 8

t} 1 t) 1 t}
u8

g
Tr8+

gg
T88+ ~

g gp
T88

a
(u8 singgkdr 2p ' ——

2 (uer )e8„+ . (u8 sing)e88+ e88 'd~,
r sin8 8 r2 r r sing t)8

1 t) 1 t}
8r+ ~8 88+

t)u 8ddt 2p '—— (u8r )e8„+ . (u8 sing)e&8+ e8& 'dv. .
r sln8 r t}r r sln8 t)8

Adding together these results and the rest of the integrals, we finally obtain

—A, f (V u )(V u)dr 2ls f—(e~e~+e88888+e88e88+2er'gr8+2e~88+2e8~&r)dr .

ci Af[——A, Iji(hr—)] r dr+2is f r'+ UI'+[UI —l(l +1)VI]'+ 7'l(1+1) UI+r

The explicit forms of the quantities ci and dt in Eq. (3.11) are given by

'aU, ' VI 2 .—VI —l(l+1)VI 'dr,

~ 2

dl =R 0[ AIJI(hR 0)] +2lsRO 'Ro + UI (Ro)+[UI(Ro) —l(l + 1)VI(Rp)] —[7l(l +1)—12]VI (Ro)
dr r =It(&

The integration of the first term in ci is straightforward and the second integral can also be evaluated analytically giving
a very lengthy expression.

APPENDIX C

The quantities A;, Bt, and C; in Eq. (4.7) have the forms

A2

A3

&O2

21202d02 +co20b02
2 2

aptt2 d02+2to20b02d02
2 2

to20d 02

b 28)
2~2d2+~oob

a 2
d 2+ 2tooob2d2

.~4 . C4

b b

2b 2 ~02d02 +~02d 2

000 2 b2d 02 +2~02d02d2
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