
PHYSICAL REVIE%' C VOLUME 33, NUMBER 1 JANUARY 1986

Skyrme-force parametrization: Least-squares fit to nuclear ground-state properties
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We investigate systematically the possibilities and the limits of the Skyrme force for reproducing
nuclear ground-state properties in a spherical Hartree-Fock calculation. This investigation is per-

formed by means of least-squares fits of the force parameters to the measured binding energy, dif-
fraction radius, and surface width of eight selected nuclei. Particular emphasis is put on the density

dependence of the interaction, which turns out to be determined mainly by the surface width. The
least-squares fitting prmxiure yields the best-fit parameters together with uncertainties on them,
and it also allo~s one to estimate the uncertainties of an extrapolation to other fields, e.g., nuclear

matter properties. %e also study the contribution of random-phase-approximation correlations to
the ground-state properties and their influence on the parameters of the effective interaction. Here,
we a1so compare to giant dipole resonance energies.

I. INTRODUCTION

In the description of nuclear ground state properties by
Hartree-Fock calculations, enormous progress has been
achieved by the introduction of the density-dependent,
zero-range Skyrme forces. ' With the adjustment of a
few parameters in the effective force a good description of
nuclei throughout the periodic table has been obtained.
Meanwhile, there have been many efforts to improve on
the parametrization in order to get a better reproduction
of observables such as binding energies and rms radii and,
in addition, fission barriers or giant resonance energies.
In fact, one has achieved considerable improvement com-
pared to the first parametrizations, Skyrme 1 through
Skyrme 6 '

In the present paper we do not aim to add just another
parametrization to the existing ones; instead we want to
investigate systematically the possibilities and the limits
of the Skyrme-force parametrization. This is done by
means of the least-squares fitting technique, which optim-
izes the force parameters such that the Hartree-Fock cal-
culations best reproduce the experimentally determined
nuclear ground-state properties as, e.g., binding energies,
radii, and surface width. We restrict the investigation to
ground state properties for two reasons: First, we want to
study in an exhaustive manner the possibilities of the in-
teraction and a number of possible variations in the
theoretical approach; for this purpose it is necessary to
keep the calculations siinple and fast. Second, when fit-
ting to a variety of nuclei (in particular to chains of iso-
topes) one hopes to take into account some response
features of the nuclear system, namely the response to the
addition of single nucleons; we will look (after the fit) at

l

some dynamical nuclear properties in order to learn to
what extent this hope is justified. For the same reason, we
also include in a further exploratory step giant resonances
and ground state correlations (GSC) which we estimate by
a sum-rule approach.

Many investigations of the Skyrme force take recourse
to nuclear matter properties because there are some simple
analytic relations between the force parameters and these
properties. However, nuclear matter is not accessible to
measurement. We adopt a complementary point of view:
We extrapolate to the nuclear matter parameters, as they
result from the forces which we fit to experimentally
known ground state data, and, using the standard rules of
error propagation, we can also estimate the uncertainties
of this extrapolation.

The paper is organized as follows. In Sec. II we briefly
review the Skyrme force parametrization. In Sec. III we
discuss the physical meaning of an effective force and the
range where it is expected to be applicable. In Sec. IV we
briefly describe the sum-rule approach to giant resonances
and ground-state correlations. In Sec. V we outline the
fitting technique and the choice of experimental input
data. The results are discussed in Sec. VI; Sec. VII sum-
marizes our conclusions and gives an outlook to further
improvements.

II. THE SKYRME FORCE: THE PARAMETRIZATION
AND POSSIBLE REFINEMENTS

The Skyrme force is an effective force which
parametrizes the G matrix for nuclear Hartree-Fock cal-
culations by a zero-range, density- and momentum-
dependent ansatz of the form

Vsky t0( +&0 )5(r' rj )+ 2 1( +X1 x )[p125(r' rj )+5(r' rj )p12)

1 rj +rj+t2(1+x2P, )p» 5(r; —r,.)p»+ —,t3(1+x3P„)p 5(r; —rj)
2

+it4p125(r; —rj) I[o(1)+o(2)])&p12I+Veo„i d, + Veo„i,„,h, (2.1)
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wheie pi2
—p,.—p, and p, is the coordinate exchange

op rator. A force'of this so~ was propos~ m Mrly as
1959 by Skyrme, ' but the first satisfactory parametriza-

tion did not appear before 1972; in this paper the authors

used, explicitly or tacitly, a form restricted to xi ——xz ——0,
xi ——1, and a= l. Later modifications abandoned one or
the other of these restrictions, aiming at more flexibility
in the force in order to better reproduce the experimen-

tal data.
The ansatz (2.1}can be derived from a Bruckner 6 ma-

trix by the density-matrix expansion technique. " In this
expansion one can produce an arbitrary number of terms.
Too restricted a choice will not give enough flexibility to
reproduce the data. On the other hand, with too many
terms it is extremely difficult to find out which parameter
is responsible for which physical effect. The choice (2.1)
with xi ——x2 ——0 seems to be just adequate for fitting the
bulk properties of the ground states, and we will use this
form in the following. For more ambitious requirements

Hiip p——, p+Uiip+(VWi, Xp) cr,
2m

(2.2a)

where the effective mass m ' is

= —+ —,
' [r,(1+—,'x, )+r,(1+—,'x, )]

m

——,[ti( —, +x, ) —t2( —,+xi)], (2.2b)

the potential is

it may be necessary to let xi and x2 be different from
zero and also to employ further terms, e.g., to allow for a
density dependence in the p&2 terms. '

In order to get some insight into the physical meaning
of the different parameters we look at the Hartree-Fock
(HF) Hamiltonian resulting from the force (2.1). It reads

(UHF }q = ro( 1+Txo)p —to( & +xo)pq + —,
'
tip [(1+—,

' xi )p' —( —,
'

+xi )(p,'+p'„)]

ip '[(1+—,xi)p —( —,'+ 3)(p&+p„)]+—,[ti(1+ &xi)+t2(1+ —,xz)]v

—
~ [~i( ~ +xi)—~p( 2 +xi)]vq ——,

' [3ti(1+—,'xi) —t2(1+ ~x2)]hp

+ —,
'

[3&i(-, +xi)+&2( —,'+x2)]4pq ,'t4(V —J+—VJq), (2.2c)

and the spin-orbit potential is given by

Wig ——,
'

(ri t2}Jq ——,
' (x—, t, +xit2)J+ ,

'
t~(Vp+V—pq).

(2.2d)

Here, q denotes the protons or neutrons, and p, ~, and J
are the matter, kinetic energy, and spin-orbit densities,
respectively.

From these expressions we can draw inferences about
the way the various parameters act. The t& term intro-
duces a density-dependent repulsion which essentially
guarantees the saturation of the force in the central region
of the nucleus.

The p &2 components in the force have two effects:
They essentially determine the effective mass m' and
they give rise to a "surface wave" + in the potential.
The m' is responsible for the level spacing, and thus for
the energies of the giant resonances. The + has some in-
fluence on the oscillations of the charge distribution.
The four combinations to, t i(1+ z x i )+t2(1+—,

'
x2),

ti( —,'+xi) —t2( —,'+xz), 3ti(1+ —,'xi) —tz(1+ —,'xg), and

3&i( —,
'

+xi )+r2( —,
' +x2) would allow one to adjust these

effects separately. If, however, xi and xz are chosen to
be zero, these two effects, level spacing and charge osciila-
tions, necessarily are coupled. Nonvanishing exchange
parameters xi and x2 allow the adjustment of the contri-
butions from protons and neutrons separately. Therefore,
they provide a powerful handle on the nuclear density dis-
tribution in heavier nuclei, where protons and neutrons os-
cillate in opposite phase (e.g., Tondeur has adjusted the

s (ti —t2}Jq (2.3)

This term is sometimes discarded [this can be done con-
sistently by adding a rather involved tensor force to
Vsq„, (Ref. 10)], sometimes it is retained, and it is often
hard to fin out which option has been used in a particu-
lar calculation.

(2) The exchange part of the Coulomb force is approxi-
mated by the energy functional'

1/3

( ~co i, i ~= —4e f ~ rp (2.4)

In some calculations this exchange part is taken into ac-
count, in others it is not.

(3) The center-of-mass correction is performed in most
papers by using the so-called diagonal correction leading
to an effective mass

full charge density distributions of several nuclei includ-
ing 20sPb by using extremely large values for xi and x2).
But, in this paper we will not pursue these possibilities
any further since a determination of xi and x2 by mere
ground state properties is very cumbersome. In the fol-
lowing we will always assume xi ——xq ——0.

Up to now we have defined what we mean by the term
"Skyrme force." However, there are several additional
points that need to be specified. These further options
which are subject to choice in Skyrme-Hartree-Fock cal-
culations are the following:

(1) In the Hartree-Fock spin-orbit potential Eq. (2.2d}
there is a term proportional to t] —t2, namely
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@leg =Pl (2.5a)

This procedure might be a useful one in a mere ground-
state calculation. But it leads to incorrect collective mass
parameters for translation, rotation, vibration, and fission.
A more consistent center-of-mass correction is achieved

by retaining the free nucleon mass, but subtracting after
the Hartree-Fock calculation the translational zero-point-
motion energy

I+&=~-
I

~'HF& (3.1)

& +HF I jeff I @HF & (3.2)

defining the effective force for the Hartree-Fock calcula-
tion as

where F~ is an operator accounting for the (unknown)
correlations. The energy expectation value can be be re-
grouped

&+
I

V
I +&=&~'HFI+'. I'+

I
~'HF&

&p.'. . &

trans = (2.5b)
+jeff Fcorr ~Fcorr (3.3)

where p, is the center-of-mass momentum operator.
This choice is consistent with the zero-point-energy (ZPE)
correction in nuclear collective calculations' ' and with
the approximate estimate of ground-state correlations in

the random-phase approximation (RPA) (Refs. 15 and 16)
and therefore should be preferred. The difference between

the two options (2.5a} and (2.5b} becomes particularly im-

portant in light nuclei.
(4) In the evaluation of the nuclear charge density one

normally includes as a first relativistic correction the con-

tribution from the spin-orbit currents

—1 d5p„=, (rprs (r))
r dr

(2.6)

III. THE CONCEPT OF AN EFFECTIVE FORCE

The nucleus is a rather complicated many-body system
which cannot be described ab initio by a mere Hartree-
Fock calculation. The problem of the strong short-range
correlations requires more elaborate theories like the
Bruckner theory, ' the Jastrow method, ' or the exp(S)
formalism. ' All these theories embrace the Hartree-Fock
equations for the evaluations of the single-particle basis.
However, in those Hartree-Fock calculations one has to
insert an effective interaction which stems from the solu-
tion of the short-range two-body correlations. The gen-
eration of an effective force can be explained schematical-
ly in the following way: We split the correlated wave
function

I
4 & into a Slater determinant

I 4HF & and a fac-
tor F„

[for details of pl+(r} see Ref. 39].
With two choices for each of the four items we are left

with 2 options. Of course, each of these options yields
different results in a practical calculation, and therefore
they must be specified explicitly together with the param-
eter set used for the Skyrme force. In Sec. V we shall give
a brief account of a number of forces currently in use and
the most appropriate options to be used with each of
them.

A Hartree-Fock calculation is directly applicable only
for magic nuclei. In the case of nonmagic nuclei one has
to extend it to a Hartree-Fock-Bogoliubov calculation.
Since the Skyrme force, in general, does not have good
pairing properties, we introduce in addition a schematic
pairing force where the gap is given by 5=11.2/A'~i
MeV.

and (as pointed out in the preceding section) the Skyrme
force is thought to be a reasonable parametrization of
such an effective force.

If one determines the free parameters of this force an-
satz directly by a fit to measured data with a Hartree-
Fock calculation, one has circumvented the enormous
problems related to the evaluation of the correlations
I'~ . On the other hand, one has to pay a price for this

simplification: For any observable A one should con-
struct analogously an effective operator

+~ eff =Fcorr~Fcorr (3.4)

(where A may stand for the charge density, the form fac-
tor, the rms radius, etc.). Unfortunately we cannot evalu-
ate the transformation (3.4) since we do not know F„.
Therefore an effective force is usal together with the nor-
mal operators. This procedure should be acceptable for
those observables which are not much affected by I'„.
We expect that the low momentum components of the
form factor can be evaluated reliably without the transfor-
mation (3 4), since F„describes short-range correlations
and perhaps mesonic degrees of freedom, both of which
become more important only at higher momentum
transfers. This means that the calculation using an effec-
tive force but only a normal operator should reproduce
the bulk properties like radii and surface widths. Howev-
er, it is not advisable to put too much emphasis on higher
Fourier components, say, above the Fermi momentum un-

less one has some estimate for F [the spin-orbit contri-
bution to the density, Eq. (2.6), may be looked at as a first
step in this direction].

Besides this problein of effective operators for observ-
ables it is important to keep in mind that up to now we
have defined the Skyrme force as an effective force for
Hartree-Fock calculations and that any application out-
side this range requires a reconsideration of this effective
force. In fact, most applications of Skyrme forces exceed
the range of mere Hartree-Fock (or Hartree-Fock-
Bogoliubov) calculations. The force is widely used in
mean-field calculations of nuclear collective motion {like
constrained Hartree-Pock, time-dependent Hartree-Pock,
etc.) and also for calculating giant-resonance properties (in
a sum-rule approximation or in RPA). Of course, one can
declare the Skyrme force as the effective force for
Hartree-Fock plus mean field calculations or for Hartree-
Fock plus RPA, but then one has at least to readjust the
parameters. The important point, however, is that each
excitation consistently requires its corresponding ground
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state correlations and the Skyrme force is then to be de-

fined as the effective force for the description of the
ground state which is calculated in Hartree-Fock plus
those correlations which result from the excitations taken
into account.

The low-lying collective surface modes, which are
described by the mean-field theories, have large zero-point
vibrations in the region of the nuclear surface; therefore
they lead to smoother density distributions and to larger
surface widths in soft nuclei, but they have only little ef-
fect on the binding energy. In ma ic nuclei their contri-
bution is negligible in any respect. Therefore, for appli-
cations to low energy and large amplitude dynamics (fis-
sion, fusion, etc.) it may be justified to use a Skyrme force
which has bow fitted to measured properties of a few
magic nuclei in a mere Hartree-Pock calculation, where
eventually some barrier properties are also taken into ac-
count.

However, a calculation of the giant-resonance excita-
tions, which are particular RPA modes, must take into
account the corresponding RPA ground-state correlations
in order to be consistent. These correlations do have a
strong impact on the binding energies and moderate infiu-
ence on the bulk properties of the charge distribution den-
sity. ' Therefore, an extended use of Skyrme forces in
RPA calculations (or a sum-rule or fiuid dynamical ap-
proach to it '

) requires a redetermination by a calcula-
tion with RPA-correlated ground states. In the present
paper we concentrate mainly on the first sort of usage,
namely the Skyrme force as an effective force for nuclear
Hartree-Pock calculations (and large-amplitude mean
field dynamics).

IU. SUM-RUI. E APPROXIMATION
TO GIANT RESONANCES

AND GROUND-STATE CORRELATIONS

In order to estimate RPA properties we evaluate giant
resonances within a sum-rule approximation as outlined in
Ref. 21 and complemented by some features from Ref. 22.
For the L =Q and L =2 modes the model employs the
scaling approximation; for the isovector L =1 mode we
use the Goldhaber-Teller model (c.m. motion of protons
versus neutrons}. The latter is known to yield resonance
energies which are too high, a deficiency which is toler-
able at the present exploratory stage of the investigation.

When considering excitation properties one has to be
aware that each excitation mode introduces its corre-
sponding correlation into the ground state. Thus, the col-
lective multipole modes which we estimate by sum-rule
approximations have to be complemented by long-range
ground-state correlations which ensure that the multipole
width (0'0~ Q ~

%0& will be consistent with the 8(EL)
strength

~
( %0

~ Q ~
4,„,& (

. By means of the RPA opera-
tor algebra or by using the generator coordinate method
one can derive simple estimates of the effect of ground-
state correlations on observables. ' 0 2 For the form fac-
tor we use

(4.1a)

with

~=&Q'&, ~HF &Q'&HF (4.1b)

where Q is the multipole operator related to each giant
A A

resonance and Pac [H,Q] is the corresponding momen-
turn. . For the energy we have to take into account that the
Skyrme force is an effective force modeling a Briickner G
matrix. Thus we have to subtract from the correlation en-

ergy the collective contribution from the lowest order
ladder diagram. ' This leads to the effective correlation
energy

(A,HF —A, }
E„~=EHF g— (2L +1)fuo

giant HF
resonances

(A,HF —A, )(3A,HF+ A, )
X 2

4~HF
(4.2)

where the A, and A,HF are given by Eq. (4.1b) and irido is the
energy of the giant resonance.

V. DETERMINATION OF THE FREE PARAMETERS
BY A DIRECT FIT TO MEASURED DATA

A physical hypothesis is tested by a comparison to mea-
sured data. A quantitative judgment on the adequacy of
the hypothesis, the model, can be based on the variable X,
which is given by the sum of the deviations squared be-
tween model prediction and measured value:

(5.1)

Here, I M„ I is a set of observables to be chosen appropri-
ately, and M„'" and M„' are their measured and predicted
values, respectively. The weights ddlf with which each
observable enters into X in principle should be the statist-
ical errors in M„'"~, and systematic errors as well in M„'"~

as in M„'" should be dealt with separately. However, we
do not expect our theoretical ansatz to reproduce the data
within their very small statistical experimental errors. In
principle, this would mean that we have to reject the
model. However, it is our aim to explore the limits and,
possibly, to find hints for improvements, and therefore we
proceed in a more pragmatic way by choosing the uncer-
tainties such that the different observables contribute
roughly unity per data point to X (the corresponding
values are given in Table I). The value of g itself there-
fore is somewhat arbitrary; however, tendencies when
comparing different sets of data or parameters should give
important insight into the ability of the model.

The present problem is the description of nuclear
ground state properties by a Hartree-Fock-Bogoliubov cal-
culation based on a Skyrme-type force. The hypothesis
contains a number of unknown parameters p; which, in
this case, are the force parameters to t4, xo, xi, and a. —
The quantity X depends on the values of these parameters
through M„' (pi,pz, . . . ,pN) (which results froin insert-
ing the parameters into the Skyrme-Hartree-Fock-
Bogoliubov calculation). One looks for the best-fit pa-
rameter set p

' which minimizes g . The problem of
finding the minimum is a technical one; it will turn out to
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TABI.E I. Experimental data used in this investigation. The binding energies are from Ref. 33, diffraction radii and surface width

are taken from Ref. 26 ( R"' in Table I and cr"' in Table III), the spin-orbit splitting is taken as in Ref. 4, and giant dipole resonance

energies are from Ref. 28. The last column shows the uncertainties on these data which we assume throughout this paper.

—Eb (MeV)
R~ (fm)
o (fm)

(Mev)
e„(MeV)
E~ ~ (MeV)

127.6
2.777
0.839
6.3
6.1

342.1

3.845
0.978

416.0
3.964
0.88 1

506.5
4.356
0.911

783.9
5.040
0.957

16.8

11'S

988.7
5.537
0.947

15.7

1050.0
5.640
0.908

15.2

208Pb

1636.4
6.806
0.900

13.5

0.2%
0.5%
1.5%
0.1 MeV
0.1 MeV
0.3 MeV

Rd ——4.739/q 0"

with

(5.3a)

F(q ")=0. (5.3b)

The next important information on the nuclear charge
distribution is the surface width cr which is obtained from
the form factor at its second maximum,

2 A&i(q Rd)
a =

2 ln
q~ qmRdF(qm)

'

where q is given by

(5.4)

F(q }=2.form factor maximum . (5.5}

The form parameters R~ and cr are determined by the

be quite difficult and to consume much computer time in
the case under investigation here; however, with some care
it can be solved with well-known techniques.

The I -minimizing procedure not only yields the best-
fit parameter set, it also gives information on the uncer-
tainties and on the correlations of the parameters.

If the model describes the full physics, then the result-

ing parameter values would be independent of the particu-
lar observables taken into consideration; different sets
would lead to the same parameter values, which, however,

are determined with different precision. However, the ef-
fective interaction is only an approximation to the prob-
lern and we can only expect it to be more or less appropri-
ate for the description of selected observables; therefore,
the resulting parameter values will depend upon the selec-
tion of observables in the fitting procedure. Our confi-
dence in the model, i.e., in its predictive power, will in-

crease the more different available information about the
nuclei can be described by it.

It remains for us to specify a proper set of observables.
In the present case, we mainly consider Skyrme-Hartree-
Foek-Bogoliubov calculations; thus the observables in
can only be those for ground-state properties (in Sec. VI C
we also report on the inclusion of the giant dipole reso-
nance). Among these, the most prominent ones are the
binding energy

Eb =
& @HF

I

H
I @HF ) (5.2)

and the nuclear extension. To represent the nuclear exten-
sion we choose the diffraction radius R~ of the nuclear
charge distribution. The R~ is defined by the first zero
qo

' in the form factor F(q) for elastic electron scattering
by26

low-q behavior of the form factor; therefore, they are
rather insensitive to the neglect of short-range correlations
and mesonic currents. As a result, we feel that they con-
stitute, together with the binding energy, a set of ap-
propriate observables within the framework of Skyrme-
Hartree-Fock. In addition, we take into account the 1-s
splitting, 5e„~, of the Ip level in 'bO in order to roughly
fix the I-s parameter r4 (here, the indices n and p refer to
neutron and proton, respectively).

The choice of the observables is to be completed by the
choice of nuclei to be included in the fit. For technical
reasons we restrict ourselves to spherical Hartree-Fock
calculations for which very fast codes exist. For physi-
cal reasons we restrict ourselves mainly to nuclei with

stiff surface vibrations where we expect ground-state
correlations from the low-lying surface modes to be negli-

gible (a force determined in this way should also be useful

for fission/fusion calculations}. These requirements lead

us to choose eight more or less magic nuclei, namely ' 0,
8Ca 58Nj, 90Zr, ' Sn, and 08Pb W j.th the paj

'" Ca and "b' Sn our data set also contains information
about isotopic trends.

The values for Eb are taken from Ref. 33, those for Rq
and o from Ref. 26. The data for our standard set of nu-

clei are given in Table I.
In one case we also look at an enlarged set of nuclei

where in addition to the above standard set we include the
following nuclei: Ar, ' Ca, ' Ti, Cr, Fe, Ni,

Zn 88sr 92zr 96MO
'1

18sn and 2%pb We do not give
their data explicitly here; they may be found in the refer-
ences cited above.

As mentioned above, the minimization of X also allows

one to determine the uncertainty bp; of the minimizing
parameter values p '. These uncertainties correspond to
the range of the parameter values which still yield

&X~;„+1. We shall see that the parameters are strong-

ly correlated such that for the full information the full er-
ror matrix must be taken into account. Since this matrix
also depends upon the selection of data under considera-
tion, it is useless to always communicate the full matrices.
Instead we only gi ve the correlated and uncorrelated er-
rors corresponding to an increase in X by unity if the oth-
er parameters are kept fixed (uncorrelated) or if they are
fitted anew (correlated). The correlated errors on the pa-
rameters are larger by up to two orders of magnitude,
demonstrating the strong correlations of the parameters.
W'e discuss the error correlation for one example in Sec.
VI D.
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TABLE II. The parameters of Skyrme interactions currently in use. Apart from T3, a11 parametrizations are used in calculations
with 8 /2m =20.7525 MeV fm for protons and neutrons; for T3, 20.750 MeV fm has been taken for protons and 20.722 MeVfm2
for neutrons.

Force X3

Skyrme 1

Skyrme 2

Skyrme 3

Skyrme 4

Skyrme 5

Skyrme 6

Skyrme a

Skyrme b

T3

Skyrme M

Skyrme M

—1057.3
—1169.9
—1128.75
—1205,6
—1248.29
—1101.81
—1602.78

—1602.78

—1788.90

—1791.80

—2645.0
—2645.0

235.9
S85.6
395.0
765.0
970.56

271.67

570.88

570.88

301.50

298.50

385.0

410.0

—100.0
—27.1

—95.0
35.0

107.22
—138.33
—67.70

—67.70

14463.5

9331.1
14000.0
5000.0

0.0
17000.0
8000.0

8000.0

120

105

120

150

150

115

125

—99.50

—120.0
—135.0

12794.0 126

15595.0 130

15595.0 130

502.50 12764.0 130

0.56

0.34

0.45

0.05
—0.17

0.583
—0.020

—0.165

0.353

0.138

0.09

0.0

0.0
0.0
0.0
0.0
0.0

0.0
—2.5

—1.0

0.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
—1.7

+ 1.0

0.0

0.0

1.000
1.000
1.000
1.000
1.000
1.000

—0.286

—0.286

0.475

0.075

0.000

0.000

1.0
1.0
1.0

1

3

1

3

1

3

1

6

6

A particular advantage of the X -minimizing procedure
is the availability of the full error matrix. It can also be
used to estimate the uncertainties of an extrapolation, i.e.,
a prediction of values of observables which have not been
included in the fit. We shall give the results for the extra-
polation to nuclear matter properties with the uncertain-
ties calculated from the full error matrix.

VI. RESULTS

A. Paremetrizations currently in use

In this subsection we first want to review the X proper-
ties of the Skyrme forces currently in use. The parame-
ters of the interactions are given in Table II.

As pointed out in Sec. II, a Skyrme force is completely
defined only if the several options regarding how to han-
dle necessary corrections are specified. For the many pa-
rametrizations currently in use, we have performed calcu-
lations with all options discussed above. We calculated
with (LS= 1) and without (LS=0) the Is contribution to
UHF, Eq. (2.3); with (EX=1) and without (EX=0) the
Coulomb exchange force, Eq. (2.4); with the center-of-
mass correction in the effective-mass scheme (ZP =0) or
as the zero-point energy subtraction (ZP =1); and with
(SO =1) and without (SO =0) the Is contribution to the
form factor. In Table III we show for each interaction
the resulting X using that LS/EX combination which
gives minimum X2. Shortcomings and advantages of the
different interactions can be recognized from the X2 of the
single data sets. In all cases we find better results if we
include the Is contribution to the form factor (SO =1).
Concerning the other three optians, we found minimal X
for those options which had been used in the original pa-
pers, except for the Skyrme 1 force. There we also show
the calculation with ZP = 1 since this option yields better
energies than the conventional one. For the case of the
widely used Skyrme 3 force we also show a number of dif-

ferent options in order to demonstrate their influence.
With the options investigated here we possibly have not
enumerated all variants presently in use. In particular,
different handlings of the pairing force are in use, whereas
we use the constant-gap approach 6=11.2/A'~2 MeV
throughout this investigation.

In future refinements of the present investigation we
will also aim at describing giant resonance properties and
the finer details of the charge distribution. Therefore, in
Table DI we also show far the different interactions the
predicted values for several further characteristic proper-
ties of io Pb. We show the energies Erl af the isoscalar
breathing mode and E» of the isovector giant dipole reso-
nance and also the amplitude hp of the fiuctuatians of the
charge distribution, hp=p(r =1.8 fm) p(r =0 f—m).
Without going into details we only note the following ob-
servations which express partially well-known facts:

(i) The breathing mode energy increases with increasing
a, being too high in particular for the Skyrme interactions
1—6.

(ii) Even the energy ordering between E00 and E»
differs for the different parametrizations.

(iii) Apart from the Tondeur interactions T and T3 (cf.
Table II), which have been fitted in particular to measured
charge densities, all interactions yield amplitudes
which are too large.

B. Fit using Hartree-Fock ground states

It is our aim to determine the free parameters of the ef-
fective interaction in a Hartree-Fock calculation by a
direct and exhausting fit to measured ground-state proper-
ties. Since these calculations are very time consuming we
can perform the analysis only for a few of the options
mentioned above. Since the Is contribution to UHF direct-
ly follows from the force ansatz (2.1), we retain this term
throughout this investigation (LS =1). We also include
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TABLE III. The ability of the different Skyrme interactions to describe the data (force T from Ref. 8). The numbers EX, LS, ZI',
and SO indicate calculation with (1) or without (0) the corresponding term in the calculation {see the text). The columns labeled g; in-

dicate the contribution to g2 from the data set i. The last three columns show, for the case of 2 Pb, the calculated giant resonance en-

ergies for the (0,0) and (1,1) mode and the amplitude of the oscillation on the charge distribution; the corresponding experimental
numbers are shown in the last line [we have determined the value for dy from a model-independent analysis of all available elastic
electron scattering cross sections (Ref. 26)].

Force EX IS ZI' SO XE Xg X~ Xfg
2 2

20sPb

Eoo E)i hp 100
(MeV) (MeV) (e fm )

Skyrme 1

Skyrme 2
Skyrme 3

Skyrme 4
Skyrme 5
Skyrme 6
Skyrme A
Skyrme 8

T
T3

Skyrme M
Skyrme M
Experiment

'Reference 34.
bReference 28.

0 1

1 1

0 1

0 1

1 1

1 0
0 1

0 0
0 0
0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

562 18
171 31
760 113
29 246

967 283
967 281

84 255
912 263

1227 272
129 39
353 42

21 359
71 35

376 53
176 16
21 17

150 16
45 25

466 109
415 41

47 134
140 12
121 50
163 50
128 15
131 15
120 19
114 582
126 738
267 59

63 5

98 7
21 14
17 8
34 21
61 7

18.8
18.7
17.7
18.3
18.2
18.2
18.2
18.2
18.1
17.6
17.0
18,5
15.7
15.8
15.1
14.9
14.3
14.4
13 4'

16.7 —0.51
16.7 —0.50
18.7 —0.72
16.8 —0.60
16.8 —0.60
16.8 —0.63
16.8 —0.60
16.8 —0.60
16.8 —0.60
18.9 —0.96
19.5 —1.16
15.8 —0.49
16.7 —0.71
15.1 —0.86
14.4 —0.22
13.4 —0.65
15.3 —0.56
15.2 —0.56
13.5 —0.20

the Caulomb-exchange term (2.4) in all cases (EX=1)
and we always take into account the Is-current contribu-
tion to the form factor (So=1). The center-of-mass
correction, hawever, will be used with each of the two
choices, i.e., with a correction via the effective mass froin
Eq. (2.5a} (ZP =0}and with the correction by subtracting
ZPE accarding to Eq. (2.5b) (ZP=I). In addition to
preselecting these options, we kept the exchange parame-
ters fixed in the mass term at xi ——0 and x2 ——0. In order
to learn about the importance of the different nuclear
properties for the fit, we perform the analysis with dif-
ferent data sets. We first fit the parameters to binding en-
ergy Eb, diffraction radius R~, and spin-orbit splitting
Se„,~(' 0},and then, in addition to these data also to the
surface width o Thus, we .consider the faur cases fit E,
fit E, fit Z, and fit Z; here, E and Z stand for correct-
ing with the effective mass (E) or with the ZPE subtrac-
tion (Z), and the index o indicates inclusion of o in the
fit.

It is our intention not just to produce another set of
Skyrme parameters but, instead, to give some insight into
the behavior of the fit, its trends and limitations. To this
end it would be interesting to see the full dependence of X
on the parameters. However, ere cannot draws an eight-
dimensional function; we are limited to cuts through the
parameter space. A particularly critical and interesting
parameter is a, the power in the density-dependent term.
We find that this parameter cannot be determined directly

in our fitting routine; we therefore vary it by hand, i.e.,
for given a we fit the remaining parameters to, ti, t2, t3,
t4, xo, and x& by minimizing X . Thus having the cut
along the a axis anyway, we present in the following a
number of details of the analysis, as a function of a:

(i) the dependence of Xi on a and the contribution of
the different observables to Xi (Fig. 1);

(ii) the deviation between theory and experiment for the
different observables and for each fit nucleus separately,
dependent on a (Fig. 2);

(iii) the particular relationship between o and a (Fig. 3);
(iv) the dependence of the Skyrme force parameters on

a (Fig. 4);
(v) the extrapolation to nuclear matter properties (Figs.

8 and 9);
(vi) an extensive comparison of measured values with

calculated ones for one best-fit parameter set and for
many chains of isotopes (Fig. 10).

In Fig. 1 we plot the total X as a function of a, and
also the contributions to 7 from the different observables
(apart from Jt„which is practically independent of a and
the same for all fits}. Each point corresponds to an actual
fit with the corresponding a kept fixed; the density of
points in a had to be chosen so high in order not to lose
track of the minimum X . From fit E we learn that the
repoduction of the energies is independent of a, whereas
Xa, representing the information about the nuclear exten-
sion, produces a flat minimum determining a as
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FIG. 1. The total as a function of the density parameter a

and the contribution of the different observables t g2 F' E
performed with zero point carrection via the effective mass,

fits Z with a subtraction according to Eq. (2.5b)
re ers to t e inclusion of the surface width in the fit. Dashed
curve in g: calculated with the best-fit parameters fr h feers romt e it

u cr. For fits E and E there is indicated ap {where J„,
has a minimum) together with its uncertainty correspondin to
an increase in P„,by unity.

espon ing to

Overall, the fits E fit the data a bit better than the fits
Z. However, it depends on the application in view of
what option one finally prefers. For instance, in a calcu-
lation of potential energy surfaces for fusion/fission or

~ since, first, a proper description of the surface is im-

ZPE correction is more natural in that case than the a-
plication of an effective mass.

In Fig. 2 we plot, for each of the single observables E
taken into account in the fit, the difference between the
theoretical and experimental value, normalized to the un-

So+0.55
z ——. 0qs Calculating . the surface width o and the

corresponding X with the best-fit parameters from fit E
or each a shows that the calculated widths compare best

with the measured values for a=0.35. Th is remams true
when o is also included in the fit (fit E ). Thus the full
X for fit E finds its minimum at aE ——0.35+0.05. It is

~ ~

interesting to note that there is only a minimal change in
the best-fit parameter values for a=0.35, where the sur-
ace widths were already described best by the fit E cf.

Figs. l and 4). This result is the signature of a close rela-
tions ip between o and a which we demonstrat

'
d 'l

VI E.
igs. an, and which we will discuss also in Sin ec.

The results are very similar for fits Z and Z~, where
we use the ZPE correction (2.5b) instead of th ff
mass (2.5a). In. a&. In this case g is a little larger, particularl
when o. is includd, and here the minimum is shifted to

, p icuary

even smaller values of a (for numbers cf. Table VI .

Expgr ident F)t 2 Fit Z~

CGC

116 Sn

'24 Sn

Q9 f 208Pb

48 C~

16 0

0.2 0.4 0.6 0.8 0.2 0.4 0 6 0,8
a

FIG. 3. Surface w'

fits Z ce
idth o. as a function of a calculated f th

{ nter) and Z (right) for the nuclei indicated. The mea-
or e

sured values are shown on the left side.
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certainty of the data, i.e., X=(F,„z F—r„)/dd'. While the
energies and radii show, for each nucleus, an individual
behavior as a function of a, the surface widths of all nu-
clei decrease systematically with increasing o.. This is
shown again in Fig. 3. Note that the dependence of cr on
a is quantitatively different for the fits with and without
o, respectively (fit Z vs fit Z ): when a is included in the
fit it depends less on a. This is achieved at the cost of
other observables. In Sec. VIE we discuss the a depen-
dence of o within the model of semi-infinite nuclear
matter.

In Fig. 4 we show the resulting best fit parameters,
again as a function of a and for the different fits. One
clearly recognizes correlations between the parameters and
the value of a. Plotting is not precise enough to commun-
icate the force parameters since the uncorrelated errors for
each of them are very small. Therefore, in Table IV we
give the best-fit parameter sets for the four fits together
with the correlated and uncorrelated errors. The full error
information would be contained in the full error matrix,
but it is impossible to present all these 8)& 8 matrices here.
Concerning the uncertainties in the parameters, we add
only two remarks:

(i) The correlated errors are often larger by two orders
of magnitude than the uncorrelated ones; this indicates
that the parameters are strongly correlated, and this corre-
lation makes the fits numerically difficult and finally the
whole investigation extremely time consuming.

(ii) One can try to construct less correlated parameter
sets by building proper combinations of the Skyrme pa-
rameters. Indeed, in any particular fit one can project out
the well- and the poorly-determined parameter combina-
tions, but we did not find general rules which allowed us
to reduce the number of free parameters in the fit by fix-
ing beforehand the poorly-determined combinations at
some approximate value. %e present one particular ex-
ample in Sec. VI D.

We have not shown Xi, in any of the graphs since it de-

pends only very weakly on a. However, one peculiar ob-
servation concerning the 1s splitting in ' 0 is worth men-
tioning: We observe throughout all fits (actually, we have
performed many more than the ones presented here)
without any exception that the calculated Is splitting for
protons is smaller than that for the neutrons, whereas the
measured input data are just the other way round —the
present form of the interaction is not able to reproduce
this input data. The contribution from the Coulomb in-
teraction can account only for roughly 20 keV, which is
too small to invert the result. Therefore we must take the
result 5m~ ~5@„in ' 0 as a typical feature of this kind of
calculation. This sheds some doubt on whether it is ap-

ropriate to identify the calculated ls splitting in the inert
0 nucleus with the experimental input data given in

Table I [it may be that one should identify the calculated
5m~ „with the centroid energy of all levels with the ap-
propriate quantum numbers, which, for example, shifts

a a i s a i a ir
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FIG. 4. Best-fit parameters as a function of a for the fits E, E, Z, and Z . For errors on the parameters see Table IV.
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TABLE IV. Best-fit parameters for fits E, E, Z, Z, R, and 6 (for the meaning of the different fits see the text). The num-

bers in parentheses are the correlated (upper line) and uncorrelated (lower line) statistical errors. The fit Z is performed under iden-

tical conditions as Z but for the extended set of nuclei. For further details see Sec. V F.

Fit

0.80 —1140.25
(8.8)
(0.14)

309.61
(30)

(0.2)

t2

—122.22
{7)
(0.2)

t3

11608.1
(410)

(4)

111.4S
(2.2)
{0.9)

X0

0.7979
(0.26)
(0.008)

X3

1.632
{0.72)
{0.02)

—1664.05
(10)
(0.14)

—1137.57
(7.2)
(0.13)

358.83
(15)

(0.3)

284.67
(23)
(0.2)

—137.22
(5)
(0.2)

—92.73
(6)
(0.2)

10931.5
(240)

(2)

11269.5
(344)

(4)

120.14
(1.8)
(0.9)

111.95
(1.9)
(0.9)

1.0770
(0.25)
(0.005)

0.9260
(0.20)
(0.007)

1.6918
(0.46)
(0.009)

2.1561
(0.56}
(0.02}

0.25 —1983.76
{163
(0.14)

362.25
(15)

(0.3)

—104.27
(S)
(0.2)

11861.4
(253)

(1)

123.69
(1.9)
(0.9)

1.1717
{0.32)
{0.004)

1.7620
(0.54)
(0.007)

0.25 —1987,64
(5)
(0.09)

380.92
(7)
{0.2)

—109,88
(2)
(o.i)

11837.7
(76)

(1)

126.13
(1.5)
(0.6)

0.8897
(0.16)
(0.003)

1.2780
(0.26)
(0.006)

0.30

0.30

—1798.00
(7.5)
(0, 14)

—1800,16
(8.8)
(0.14)

335.97
(21)

(0.3)

336.23
{15)

(0.3)

—84.81
(4)
(0.2)

—85.74
(3)
(0.2}

11083.9
Q21)

(2)

11113.5
(160)

(2)

121.59
(2.4)
(o.9)

121.86
(2.2)
(o.9)

—0.4036
(0.11)
(0.004)

—0.4862
(0.11)
(0.003)

—0.8705
(0.22)
(0.007)

—1.0295
(0.20)
(o.oo6)

5s'~ (experiment) to 6.8 MeV (Ref. 37)].
In Table V we compile the X values for the different

fits and for the best-fit a in each case. In general, the g
for the data not included in the fit is considerably larger
than in the case where these data are also taken into ac-
count. Also shown in Table V are predictions for several
characteristic quantities in 2 'Pb. It is surprising to so:
that the calculated amplitude of the oscillation on p(r) is
independent of the details of the fit and, in any case, is too
large by roughly a factor of 3. The fits of this subsection
without the GSC yield giant dipole resonance energies
which are too high. The breathing mode energy is too
high in all fits; note that this also holds in the case of fit
Z in spite of the small compressibility in this fit.

C. A fit to correlated ground states

If one wants to use the Skyrme force in an RPA calcu-
lation one has to also take into account the RPA ground
state correlations. For such an application, however, we
have to abandon the above parameter sets. Instead one
must perform a new fit where the contributions from the
RPA correlation to Eb, R~, and cr are also taken into ac-
count. Moreover, it is also desirable to include one or the
other giant resonance in the fit. Here, we will only briefiy
present first results of such a fit in order to demonstrate
the importance of these effects.

The ground-state correlations are evaluated in a sum-
rule approximation (which is a very fast procedure) such

TABLE V. The ability of the different fits to describe the data expressed in terms of X; and the
predictive power for several quantities in 2 Pb. Numbers in parentheses indicate X for quantities not
included in the fit.

Fit XE

5.0
44
5.7
6.2

24. 1

24.8

8.7
13.7
9.9

16.0
7.8
8.4

(156)
20.7

(264)
26.2
26.1

25.4

4.9
5.1

4.9
5.2
54
5.4

X11
2

(740)
(790)

(1070)
(95S)

(4.6)
2.2

18.2
16.0
18.4
15.3
15.1
15.1

208Pb

E11
(MeV)

17.7
17.9
18.4
18.2
14.0
13.8

hp
(efm )

—0.56
—0.60
—0.60
—0.62
—0.62
—0.62
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that it can be implemented in the fit. ' A fit to ground
state properties only is performed with the option of fit
Z~, i.e., I.S =1, EX=1, SO=1, and ZP=1; we call it
fit R . In a further fit we also include the dipole giant
resonance energies (evaluated in the sum-rule approxima-
tion) for Zr, " ' Sn, and o Pb; this is fit 6 .

In Fig. 5 we show X, again as a function of a. With
respect to the fit Z performed without accounting for
GSC, the minimum is shifted to larger a. The reason for
this is that the correlations enlarge the surface width cr,

and thus lower Hartree-Fock values are needed, which
occur at larger a. In the fits with GSC the radii are better
reproduced, but the energies now are much worse, leading
to an increase in X«, by 10. On the other hand, these fits
yield excellent giant dipole resonance energies, indepen-
dent of whether or not these are included in the fit (R vs

6 ). This gives us confidence that we are on the right

track, and one must now look for other improvements
which also allow us to readjust the binding energies. The
parameters of these fits are also coinpiled in Table III. In
Fig. 6 we compare them to the fit Z: Including the GSC
has an important impact, in particular on xo and x3
which now become negative. A calculation of the GSC
with the pure Hartree-Fock fit Z gives much larger
correlations than with fits R and 6 . Thus, the in-
clusion of ground state correlations in the fit reduces their
influence. This demonstrates that one should not calcu-
late correlations with an interaction which is fitted
without accounting for correlations. The other way, just
omitting the GSC and using fit R or 6 in a pure
Hartree-Fock calculation, is less critical; but in any case,
the GSC have effects on the observables which are large
with respect to the achieved quality of the fits.

D. Parameter correlations

2
XR

2
XE

2
X~

20-

)0-

30-

20-

10"

30-

20-

EO-

As mentioned before, it is impossible to document the
involved error correlations between the parameters.
Therefore, in Fig. 7 we only show as an example the
correlation between the exchange parameters xo and x3 in
the fits Z and G . The eigenvectors of the error matrix
constitute orthogonal and error-uncorrelated parameter
combinations. In Fig. 7 we show the well-determined
combination X=axo bx& and —the orthogonal, poorly
determined Y=bxo+ax3 We also. show the coefficients
a and b which depend on a.

The findings in the case of fit Z can be understood
essentially by nuclear matter considerations. The ex-
change parameters xo and x& have no infiuence on sym-
metric nuclear matter, but they enter into the expression
of the volume asymmetry coefficient J (Ref. 30) in the
combination
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ditional data removes such uncertainties. The situation is
less transparent when more parameters are involved. We
did not find a generally applicable recipe to reduce the
numbers of parameters in the fits. Nevertheless, we be-
lieve that the correlations contain important physical in-
formation; therefore they need further study.
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E. Nuclear matter properties

We have exploited the information available from actu-
al measurements on nuclei in an exhaustive manner within
the framework of the Skyrme-force ansatz and, as a re-
sult, obtained a set of parameters with an estimate of their
uncertainties. In addition, we have obtained the full error
matrix which now allows extrapolation from the available
information to unknown quantities with an estimate of
their uncertainty. In this subsection we present the result
of the extrapolation to properties of symmetric nuclear
matter: the density p„, the binding energy per particle
E/A, the compressibility E„~, the effective mass m'/m,
and also the Landau parameters fo, fo, go, and go. The
expression for the Landau parameters in terms of the
Skyrme force parameters are taken from Refs. 12 and 31.
The expressions for the nuclear matter properties are stan-
dard (see, e.g., Ref. 30); they establish a relation between
the four properties E/A, p„, E, and m'/m and the
parameters to, 3ti+St2, t&, and a. For fixed a only three
of the nuclear matter properties can be independent; for
instance, the compressibility can be written in terms of the
others as

&.m =a.mxo —bsmxi (6.1)

with a„~= ro/N and —b„~ = ,' tip~ /N, —where N
guarantees the normahzation a +b = l. We expect this
combination to be the well-determined one, and in fact
this value of a„agrees within a few percent with the
values found for a in the fits and shown in Fig. 7, thus
suggesting that xo and x& enter into the fit dominantly
via the asymmetry energy.

When the Eii resonance energy (and correlations) are
also included in the fit, the resulting values for to, t3 an'd

p„yield practically the same values for a„and b„as
in fit Z. However, the a and b determined from the error
matrix are different from those in fit Z, and both com-
binations, X as well as F, are equally well determined in
fit G . Furthermore, we note that the volume asymmetry
coefficient is different in the two fits. From this we learn
that, in a fit, a restricted set of data may leave certain pa-
rameter combinations undetermined and that nuclear
matter parameters may serve as guidance to find those
which are well determined; including the appropriate ad-

FIG. 7. Correlation between the exchange parameters xo and
x3 as a function of a for the fits Z and 6 . In both cases, the
combination X =axo —bx3 is the combination mth the smaller
error; the orthogonal combination F =bxo+ax3 has the larger
error. The coefficients a and b vary with a as shown at the top.
The error bars are the statistical errors on the combinations X
and K

K„=—9(1+a)(E/A)

+10.127 p„[1+3a+(mjm' —l)(4—6a)] .

(6.2)

This should be kept in mind when looking at Fig. 8,
where we show the nuclear matter properties for the fits
E, E~, Z, Z, and G, again as a function of a. The cor-
responding numbers are given in Table VI. The clearest
result emerges for the nuclear compressibility, which is
found to be independent of the peculiarities of the fit and
to increase linearly with a. This behavior is evident from
Eq. (6.2} if the other nuclear matter properties do not de-
pend on a. However, the other properties do vary with a
(cf. Fig. 8), therefore it is finally a surprising result to find
that the infiuence of these variations on E„cancel, leav-
ing us with a linear dependence on a. Quantitatively, the
nuclear matter compressibility is found as E„
=182(1+1.04a} MeV. Therefore, E„~ can be deduced
once the correct density dependence a is known. Fits
without the surface width have a=0.8 and they predict
values of E„330MeV with a large uncertainty. We
mention in passing that this result compares surprisingly
well with that determined from the same kind of data
within the framework of the droplet model. Generally
accepted are values around 240 MeV; that is just what we
deduce from the fits including cr (cf. Table VI}. There,
the uncertainty in a is reduced considerably. Averaging
the different fits we get K~ =235+12 MeV. Here it will
be interesting to also include breathing mode energies as
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TABLE VI. Nuclear matter quantities determined from the different fits. Numbers in parentheses are the uncertainties (upper

line, from the error propagation of the seven fitted parameters; lower line, from the uncertainty in a as given in the second column).

In the last line we show a set of Landau parameters which is determined from different experimental data (Ref. 38).

0.80

(+ 0.55)
(—0.25)

—16.06
(0.06)

(+ 0.12)

(—0.06)

332.6
(1.3)

(+ 100)
(—40)

Pets

0.1590
(0.001)

( + 0.001)
(—0.001)

0.868
(0.04)

( + 0.01)
( —0.01)

fo

0.308
(0.05)

(+ 0.47)
( —0.21)

fo
0.96
(0.12)

(+ 0.08)
( —0.10)

go

—0.08
(0.13)

(+ 0.04)
(—0.04)

go

0.442
(0.009)

(+ 0.07)
( —0.04)

0.35

(0.05)

—15.95
(0.05)
{0.05)

247.9
(1.6)

(10)

0.1625
(0.001}
(0.001)

0.840
(0.02)
(0.00}

—0.07
(0.02)
{0.05)

0.79
(0.09}
(0.09)

—0.09
(0.08)
(0.08)

0.348
(0.008}
(0.007)

0.80

(+ 0.55)
{—0.25)

—15.91
(0.05)

(+ 0.12)
{—0.06)

329 4
(0.9)

(+ 110}
(—40)

0.1588
(0.001)

( + 0.001)
(—0.001)

0.843
(0.03)

(+ 0.01)
( —0,01)

0.259
(0.04)

(+ 0.43)
( —0.20)

0.85
(0.08)

(+ 0.08)
(—0.10)

0.17
(0.08)

{+0.02)
(—0.02)

0.509
{0.008)

(+ 0.06)
{—0.04)

0.25

(0.05)

—15.81
(0.04)
(0.05}

232.6
(1.9)

(10)

0.1627
(0.001)
(0.001)

0.783
(0.02)
(0.003)

—0.187
(0.02)
(0.04)

0.68
(0.09)
(0.06)

0.11
(0.09)
(0.04)

0.395
(0.009)
(0.008)

0.30

(0.05)

—15.53
(0.04)
(0.04)

236.7
(1.7)

(10)

0.1575
(0.001)
(0.001}

0.783
(0,02)
(0.01)

—0.155
(0.02)
(0.04)

0.97
(0.08)
(0.05)

—0.04
(0.08)
(0.04)

0.465
(0.007}
(0.003)

0.30

(0.05)

—15.53
(0.04)
(0.04)

236.6
(1.8)

(10)

0.1573
(0.001)
{0.001}

0.785
(0.02)
(0.01)

—0.153
(0.01)
(0.04)

1.02
(0.11)
(0.05)

—0.09
(0.24)
(0.04)

0.464
(0.006)
(0.003)

Ref. 38 0.20 1.50 0.55 0.70

ized values, i.e., the values calculated with the formulae in
Refs. 12 and 31 multiplied by 2k~m '/(irjii)2.

Without inclusion of a in the fits, the parameter fo has
a very large uncertainty due to the uncertainty in a. In-
cluding a shifts this parameter to negative values, going
further down when the effective-mass scheme is replaced
by the zero-point-energy subtraction (E ~Z~ }. Trusting
in the fits with cr and with the ZPE correction leads to
fo —0. 17+0.07. ——The situation for go is very unclear;
its value seems to be compatible with 0. Averaging over
the numbers from all fits we get f0 ——0.85+0.35. In each
fit go is quite well behaved; however, the values differ
substantially from fit to fit. Including o reduces the value
by 0.1; replacing the effective-mass scheme by the ZPE
subtraction increases it by 0.05, and including GSC in-
creases it further by 0.07. On the average we are left with
the quite small value go ——0.45+0.06. %e remark
without comment that these values do not compare well
with the set given in the last line of Table VI.

All these extrapolations must be taken with great care.
They are performed within a model which does not repro-
duce the known data for nuclei correctly; in particular the
fits E through Z give giant dipole resonance energies
which are too high, whereas the fits R and 6 give not
so good binding energies. It is impossible to say by now
to which extent the necessary improvements in the model
will infiuence the extrapolation.

F. Fit to an extended set of nuclei

We have repeated fit Z, at a =0.25, with the extended
set of data given in Sec. IV; we will call this fit Z'. The
new best-fit parameters differ by less than twice the corre-
lated error from fit Z .

In the additional nuclei, which are less magic than the
standard set, the surface width is larger on the average.
In view of this the fit is surprisingly stable with respect to
an enlargement of the data set. The resulting values for
the nuclear matter parameters are also in excellent agree-
ment with the values given in Sec. VI E: E/3
=—15.90+0.03 MeV, K~ =234.2+0.9 MeV, p„~
=0.162+0.001 particles per fm, and m '/m
=0.776+0.007. The Landau parameters essentially
remain in the ranges given above.

Enlarging the set of data in the fit reduces the statisti-
cal uncertainty of the extracted parameters and deduced
quantities. The systematic problems, however, increase.
In particular, the treatment of pairing and of correlations
has to be improved before far-reaching conclusions can be
drawn.

G. Shortcomings

In Fig. 10 we plot the X for the various observables and
for a wide variety of nuclei for fit Z~, at a=0.25. This
demonstrates that also in such a fit where X looks quite
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pararnetrization —by the method used here we have ex-
hausted this possibility. However, there are still several
possible refinements within the framework of the present
ansatz such that we cannot yet state whether or not we
have reached the limits of the effective force ansatz of the
Skyrme type as such. The model needs to be refined,
presumably by exploiting more of the flexibility in the
force ansatz.

VII. CONCLUSIONS
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FIG. 10. Trends in the deviation of the calculation from
measured values. Top: binding energies; center: radii; bottom:
surface widths for nuclei throughout the periodic table, in par-
ticular for chains of isotopes. The calculation is performed with
the parameters from fit Z, a=0.25. Nuclei included in the fit
are indicated by full symbols.

reasonable, systematic trends remain in the deviation be-
tween calculation and measured values. For the binding
energies we see isotopic effects; for the radii an additional
overall trend with A. This also holds more or less for the
surface width where one certainly must account most
carefully for correlations, nuclear deformation being one
of them. Systematic trends in X (rather than stochastic
behavior) show that something is still missing in the
theory. Further improvements might be expected from a
refined treatment of pairing. ' In addition, the problem
with the oscillations on p(r) seems to demand inclusion of
the exchange parameters x ~ and x2. At least up to now,
that has been the only way to reduce their amplitude. '

The present systematic study has revealed a number of
shortcomings and there is no room left to get rid of them
by readjustments of the parameter values of the standard

We have investigated the properties of the Skyrme force
by applying the method of least squares for fitting the free
parameters of the force to measured nuclear data, mainly
for the ground state, but in one case also for the excitation
energy of the giant dipole resonance. An interpretation of
the Skyrme force as an effective interaction for nuclear
Hartree-Fock calculations contains two problems: First,
the force should be used only for that restricted range of
applications where it has been fitted to; second, in order to
be consistent an analogous effective operator should be
used for the observables (e.g., the form factor or,
equivalently, the density distribution). The second prob-
lem is essentially avoided by using only those pieces of the
form factor which are insensitive to short range correla-
tions and mesonic effects; this is assumed to be the case
for the low-momentum components. With respect to the
first problem, we must distinguish between a force which
is appropriate for mere Hartree-Fock calculations (includ-
ing constrained Hartree-Fock calculations for evaluating
the collective potential-energy surface of anharmonic
low-energy modes), and another force which is appropri-
ate for RPA calculations on top of an RPA-correlated
ground state. %e have studied both concepts in this pa-
per, with an emphasis on the Hartree-Fock case.

As experimental input for the least-squares fit we have
taken into account binding energies, diffraction radii, and,
optionaBy, the surface widths of eight nuclei with at least
one magic nucleon number; in addition, we have included
the Is splittin of the lp level in ' O. These eight nuclei
from '60 to z sPb span a large A range and they contain
two isotopic pairs; thus we assume that they provide a
sufficiently complete body of information about nuclear
ground states. This assumption is confirmed by a fit with
an enlarged set of 22 nuclei which did not yield substan-
tially different results. Thus, the Skyrme force ansatz
yields indeed a good "interpolation" of nuclear properties
from ' 0 to Pb.

Apart from the precise values for the force parameters,
it is also necessary to specify further features of the calcu-
lations. %e include the Coulomb exchange term, we use
the (t, —tz) contribution to the spin-orbit force, and we
take into account the ls contribution to the form factor.
In particular, we investigate two possibilities for correct-
ing for the spurious center-of-mass energy, once by the
effective-mass scheme, second by an explicit subtraction
(after variation) of the expectation value of the center-of-
mass energy. The latter concept is the physically more
reasonable one in view of an application to constrained
Hartree-Pock and RPA calculations.

We find that the surface width cr is a particularly im-
portant ingredient in the fit. Without o the power of the



350 J. FRIEDRICH AND P.-G. REINHARD 33

density dependence in the force is only weakly deter-
mined, being a=0.80+c zi for the flt without tr. On the
other hand, by including o, we find smaller and better de-
fined values for a, namely a =0.35+0.05 with the
effective-mass scheme and 0.25+0.05 with the ZPE
correction scheme. Since ground state correlations in-
crease the surface width, in a fit including GSC one needs
smaller surface widths from the Hartree-Fock calculation
itself; this yields a slightly larger a: a=0.30+0.05 (with
GSC and ZPE). In any case we feel that the fits including
0 are more reliable for an application in fusion/fission
calculations because a good description of the nuclear sur-
face is important to obtain realistic barriers.

Alternative fits to RPA-correlated ground states and di-
pole giant resonance energies give different forces com-
pared to the previous fits. In particular, negative ex-
change parameters xc and xi are preferred in this case.
Thus we have to face the fact that we will need different
Skyrme forces for different applications (expressing a dif-
ferent range of "effectiveness" }. We mention in passing
that we have also worked out a force which is particularly
suited for light nuclei up to Ca and which we have used
successfully for calculating tsO-'60 fusion. i9

Nuclear matter parameters are deduced from the flt.
We also obtain an estimate for the uncertainty on these
parameters. We, so to say, extrapolate from the measured
ground-state properties of well-behaved finite nuclei to in-
finite systems by means of a Skyrme-Hartree-Fock model.
The extrapolation to the binding energy and the density of
the infinite system is well defined by the data, indepen-
dent of the different options (with or without o). The ef-
fective mass, however, is a bit more sensitive to the power
a and also to account for different data in the fit. The
nuclear compressibility exhibits a very clean linear depen-
dence on a and we find that including the surface width 0
in the fit allows us to flx the value of E„~ very precisely:
Fits without o yield large a and thus large E„(=300
MeV), whereas fits including o give low a and thus low
K„(=230MeV}. The influence of o on the determina-
tion of E can be understood within the model of semi-
infinite nuclear matter. The extrapolation yields the fol-
lowing values: K„=235+12 MeV, E/A = —15.8+0.4
MeV, p„~ =0.160+0.004 particles per fm, and m'/m
=0.82+0.07. We have also extracted values for the Lan-
dau parameters.

The correct treatment of error propagation in the least-

squares fitting procedure allows us to estimate the uncer-
tainties in the parameters and also correlations among
them. We find "hard" parameters which are well deter-
mined, and "soft" parameters with larger uncertainties.
The latter show that there is already some redundance in
the parametrization (at least as long as we do not include
more data in the fit). On the other hand, we find that
there are systematic deviations between measured and cal-
culated data, demonstrating that the model is not yet flex-
ible enough: There remain definite isotopic trends in the
deviations for Ei, and R~ and, in addition, an overall
trend in the deviation of Rq with mass number A. Thus,
we have both too many and not enough parameters at the
same time. That is to say we do not yet have the ap-
propriate parametrization. More theoretical understand-
ing of the Skyrme force would be very useful to reduce
first the number of free parameters and then add the ap-
propriate additional ones in order to allow a systematic
study also of an extended body of data. Corresponding
extensions are straightforward' and have already been
used for improving on the description of charge distribu-
tions. '~ The more complex experimental data are
described by the model, the more confidence we have in
predictions within the framework of this model. Howev-
er, it may also be that the ansatz has basic physical
shortcomings, that it finally fails to describe consistently
the whole body of known properties, e.g., including the
fine details of the charge distributions and the electric and
magnetic moments, etc. The present work must be ex-
tended to include more data and a more flexible, eventual-
ly also more fundamental, model. Corresponding work is
in progress.
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