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Interacting boson mode1 with surface delta interaction between nucleons:
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The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the
structure and interaction of the bosons in the interacting boson model. %'e have obtained analytical
expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interac-
tion for the case of degenerate orbits. A connection is made between these coefficients and the pa-
rameters of the interaction boson model Hamiltonian. A link between the latter parameters and the
single boson energies is suggested.

I. INTRODUCTION

The interacting boson model' has been an important
development in nuclear structure physics. In both its
forms, IBM-1 and IBM-2, the model has had remarkable
phenomenological success. Furthermore, tremendous pro-
gress has been made in formulating the thoiretical basis
of the model. This has allowed a connection to be made
between the phenomenological model and the underlying
microscopic structure, which is the nuclear shell model.

Much of the theoretical work on the IBM has focused
on the calculation of the parameters of the IBM-2 Hamil-
tonian from a microscopic basis. A reasonable procedure
which is often used for doing such a calculation, is the
following:

(1) A representation is developed of the bosons in the
underlying fermionic, shell model space; i.e., s and d bo-
sons are represented as S and D pairs in the fermion
space.

(2) An effective interaction between the S and D pairs
in the fermion space is chosen.

(3) A mapping is developed between the fermion pic-
ture and the corresponding picture in the boson space.

(4) The parameters of the IBM Hamiltonian are calcu-
lated and/or the spectrum of the particular system is
determined.

the s-d space and degrees of freedom outside the s-d
space. This coupling plays an important part in the re-
normalization of the parameters of the IBM Hamiltonian.
It is usual to use a quadrupole-quadrupole interaction but
higher multipoles in the interaction are needed and have
to be put in by hand. This leads to more parameters in
the theory. An attractive feature of the surface delta in-
teraction (SDI) (Ref. 4) is that all multipoles are included
and are determined by a single parameter, the strength.

II. BOSON-BOSON INTERACTION

We will describe a calculation in which we followed a
procedure such as outlined in steps 1 through 4 above.
We will restrict ourselves to rather schematic situations in
which we consider two boson, i.e., four particle configura-
tions, where the nucleons occupy degenerate orbits.

We shall construct the bosons by determining the spec-
trum arising from placing two identical particles in one or
several different degenerate j orbits. If these particles in-
teract via an SDI, then for each value of angular momen-
tum A, only a single state of each A is shifted in energy.
All the other states have zero interaction energy. We con-
sider this lowest energy state of each A to be a boson of
angular momentum A. Thus for A=0, 2,4, . . . , we con-
struct s, d, g, . . . , bosons, respectively.

The energy of a A boson is given by:s

The IBM is a drastic truncation of the full shell-model
calculation. However, it is possible to ameliorate the
severity of the truncation by refining the above procedure
at each step. For example, in addition to s and d bosons,
other bosons, such as g, i, k, etc., can be included. It is
also possible to include noncollective degrees of freedom
as well. It is hoped that much of the effect of configura-
tions that lie outside of the IBM can be taken into account
by renormalization of the parameters of the IBM Hamil-
tonlan.

The effective interaction is an important choice to be
made because, not only does it determine the interactions
between the bosons, but it governs the coupling between

j' Aeh= gg t (2j+1)(2j +1) ) ( G, (1)
J J

where the sum j,j' extends over the set of degenerate or-
bits and G is the strength of the SDI.

For the set of degenerate orbits, we consider several
choices: (1) a single j shell; (2) two degenerate orbits, ji
and ji+1; (3) two degenerate orbits, j, and j, +2; (4) a
degenerate major oscillator shell, i.e., j& ———,', —,', . . . , j.

%e now consider a situation in which we have one neu-
tron boson and one proton boson, each constructed in the
manner described above, interacting via an SDI in a par-
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ticular space of degenerate orbits.
The SDI between particles 1 and 2 is written as:

VsDi =4WG5(QN )v ),
where 6 is the strength.

We can also expand the SDI in multipoles, i.e.,

VsDi ——G[1+5P2(cos8)v )v )+9P4(cos8)v )v )+ ] .

(3)

In a similar fashion, we can make a multipole expan-
sion for the interaction between the neutron boson and
proton boson, namely

V.-p = V.-b --p-b,
FO+ 5F2F2(cos8„p)+9F4&g(cos8„p) + (4)

We do not specify here a relation between 8& )v and
1 2

8„&, but require the equality of matrix elements of the
two-neutron and two-proton system with those of one-
neutron and one-proton boson. Thus we have mapped the
fermion picture onto the boson representation. This is
known as the Otsuka, %rima, and Iachello (OAI) map-
ping.

If the angular momentum of each boson is labeled by
Az, where p =n or p, then the inatrix elements of
V„b „~b „can be evaluated in terms of the Fo, Fi,
F4, etc. The matrix elements are given by:

Ap Ap K An An EC Ap A J
(A„AP',J

i V„P i
A„'AP', J)=(—) A„A@A„APg (2I(. +1) () 0 () () () ()

K
0 0 0 0 0 0 A'„A,' K (5)

where A=(2A+1)' '
By using an SDI as the origin of the effective n-

boson —p-boson interaction, we can evaluate numerically
all the matrix elements on the left-hand side of Eq. (5).
Diagonalization of the Hamiltonian matrix then yields the
two-boson spectrum.

One can also invert Eq. (5) and evaluate the parameters,
F», of the n-boson —p-boson interaction in terms of the
two-boson matrix elements. Notice that all the radial in-
formation is contained in the F» and thus the F» depend
on the structure of the bosons and on the single particle
configurations. We will use F», F», and F» to denote
coefficients of the Eth multipole that have different radi-
al components. However, there is considerable simplifica-
tion if the SDI is used. For example, we find that always:

0=4

where G is the strength of the SDI.
The other free parameters are

F2 ——v'(1l5)(A„=O, Ap ——0;0
i V„p i

A„'=2,Ap
——2;0),

(7a)

F2 ——( —', )(A„=2,Ap ——2,0
i V„p i

A„'=2,A@=2;0)

—( ~ )(A,=2,Ay=2;2
~ V„p ~

A„'=2,A' =2;2)+F0,
(7b)

and M is the Majorana operator given by:

Mwr $2(d«sn

des�«)

(d«sm des«)

+ g g (dt df' )(»)(d d )(»)

E=1,3
(8c)

V„represents extra terms that are usually neglected in
the IBM Hamiltonian. We can write V„as:

V= g Y (dg )' '(d„d )'

M =0,2,4

(Sd)

We can link the parameters of V„~ given in Eq. (7) with
the usual IBM parameters given in Eq. (8). These expres-
sions are given in Appendix A,

In an earlier publication, one of us (Moszkowski)
showed that for certain matrix elements, the coefficients
of the n-boson —p-boson interaction are related to the sin-

gle boson energies. It can be shown that for matrix ele-
ments were A„=A~=0 and A„'=A~ =K&0 [see Eq. (5)],
the parameters of V„~ in Eq. (4) are given by:

To make contact with the IBM, we rewrite V„p in
terms of the usual IBM parameters, ' i.e.,

(8a)

Here Eo is a constant, Qz
' is the quadrupole operator

given by:

(8b)

F = —v'(7zlo)(A„=O, A, =2;2
~ V„, ~

A„'=2,A,'=2;2)
ex

I'g ——46 (9)

= —&(7/10)(A, =2,Ap ——0;2
~ V„p ~

A„'=2,Ap ——2;2),

(7c)

F4 ——( —,
' )(A„=2,Ap ——2;0 i V„p i

A„'=2,Ap ——2;0)

+(—,
' )(A„=2,Ap ——2;2

i V„p i
A„'=2,Ap ——2;2)

—( —„)Fo .

where e~ and eo are the energies of J=E and J=0 bo-
sons, respectively. The energies ez are given explicitly by
Eq. (3). A derivation of the result (9) based on a physical
interpretation of the bosons is given in Appendix B.

Equation (9) also holds for matrix elements that have
An 0~ Ap ++0~ An E~ Ap =0 as well as for matrix
elements having A„=X&0 Ap 0 A 0 Ap K.

The parameters F» for matrix elements involving U =2
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III. RESULTS

Table I shows a comparison of the ratios:

~x scand; X=2 4
Fo eo

' (10)

which are equal when Eq. (9) holds. Numerical values are
given for the four different configurations of single parti-

bosons only, i.e., no s bosons, are somewhat more difficult
to obtain analytically but can still be obtained in closed
form, at least for degenerate configurations with an SDI.
These expressions are given in Ref. 5.

To summarize, we have established a connection be-
tween the parameters Ex of V„b „~b, „ in Eq. (4) and
the parameters of the IBM Hamiltonian in Eq. (8).
Furthermore, we have a numerical procedure for calculat-
ing the Fx [see Eq (7.)]. However, the interesting feature
is that, for certain matrix elements, the Ex have a simple,
analytical form, namely that given by Eq. (9). The goal
now is to see if the exact result given by Eq. (9) for the
case where s bosons are involved can be exploited to ob-
tain simple results for the case where only d bosons are
involved. If this is possible, we will have established a
simple, analytical procedure for determining the parame-
ters of the IBM Hamiltonian in terms of the strength of
the SDI.

cle orbitals that we have considered. Table II gives the
analytical expressions for these ratios.

These results indicate that Eq. (9) holds approximately
for the case of a single j shell and for the case of a degen-
erate major oscillator shell, i.e., j;=—,', —,', . . . , j. The
agreement is slightly worse for the case of two degenerate

j shells ji and ji+2. The case of two degenerate j shells
having ji and ji+1 apparently causes the greatest viola-
tion of Eq. (9). In the limit that j~ ao, we see that these
ratios are equal. This limit, namely that the A's of the bo-
sons are small compared to the maximum single particle j,
can also be interpreted as a semiclassical limit.

The approximate agreetnent of the ratios in Eq. (10)
means that, at least for certain cases, we have a way of es-

timating the values of the parameters of the IBM Hamil-
tonian by knowing the values of the single boson energies.

The task ahead is to generalize these simple estimates to
the more reahstic case of nondegenerate single particle or-
bits. Furthermore, it would be interesting to know if the
approximate connection between the parameters of the
IBM Hamiltonian and the single boson energies has any
greater significance.
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TABLE I. Coefficients of a multipole expansion of the boson-boson interaction for different configu-
rations.

F'
4e2/ep

Fl
4e4/ep

3
2

0
0.8000
0
0

(i) Single degenerate j shell
5
2

0.3265
0.9143
0.1837
0.3809

0.5805
0.9524
0.3265
0.4675

9
2

0.7199
0.9697
0.4050
0.5035

1 3
2~2

(ii) Taro degenerate j shells j and j+1
3 5
272

5 7
2~2

7 9
2&2

F2
4e2/ep

F4
4e4/ep

1.9600
1.6000
0
0

0.1836
1.1429
0.3266
1.1429

0.5378
1.0667
0 AAAA

0.7273

0.7126
1.0390
0.4918
0.6474

(iii) Two degenerate j shells j and j+2
1 5 3 7
2&2 272

5 9
2 l 2

F2
4e2/ep

Fl
4e4/ep

1.7411
1.8857
0.1354
0.2857

2.0797
2.2730
0.4954
0.7350

2.0111
2.3780
0.6299
1.4831

(iv) Degenerate oscillator shell j;= 2, 2, . . . , j
3 1 5 1 7

2&2 t,o2 2
—to—
2 2

1 9—to—
2 2

F2
4e2/ep

Fl
4e4/ep

1.9600
1.6000
0
0

2.4693
2.2857
0.6748
0.9524

2.7777
2.6667
1.3611
1.5758

2.9835
2.9091
1.8390
1.9953
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TABLE II. Boson-boson multipole coefficients (analytic expressions).

to j

eo

1 (2j —1)(2j +3}
4 (2j)(2j+2)

1 (2j —1)(2j+1}
4 (2j —2}(2j+2)

(2j —1)
(2j +2)

eq

eo

1 (2j —3) (2j+5)
4 (2j)'(2j +2)'

9 {2j—3)(2j —1)(2j +3){2j+5)
64 (2j —2)(2j)(2j +2)(2j +4}

9 (2j —3) (2j+5)
(2j)'(2j +2)'

1 (2j —4) (2j+4)
4 (2j —2) (2j+2)

9 {2j—3)(2j —1)(2j+1)(2j+3)
64 (2j —4}(2j—2)(2j +2)(2j +4}

9 {2j 3 )2(2j + 5 }~

64 (2j —2) (2j+2)

{4j—1)
{4j+4)'

1 (2j —3)(2j —1)(16j+35)
8 (2j)(2j +2)(2j +4)

APPENDIX A: IBM PARAMETERS
IN TERMS OF MULTIPOLE COEFFICIENTS

ments apply only in spherical nuclei and not in the de-
formed region.

Ho=I'0

a =F2,
Ca=0

X=X =X„=—v'(10/7)F2'/Fg,

g, = —( —,
' )F' + (

—", )F' + ( —,
' )F2&',

gi ——( ~~ )F2+( ~~ )F4 —( 7 )F2X

F() ——(
—", )F'i+( ', )Fg FiX— —

I'2 ———( ,", )F'i+( —„)F—4+(—„)Fi&,
Y~=( —,", )Fg+( ,', )F4 —( —, )FiX—

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

Other authors have been coming to the conclusion that

g2 ——0, based on fits to data. Of course, all these argu-

The parameters of the IBM Hamiltonian in Eq. (8) can
be expressed in terms of the parameters Fir given in Eq.
(7). These are displayed below.

APPENDIX B: BOSON-BOSON INTERACTION
FOR NUCLEONS IN DEGENERATE ORBITS

WITH SDI

This is a derivation of the expression

Fx =4«x/eo (B1)

based on an analysis of the nucleon pair wave functions,
and in particular of the correlations induced by the sur-
face delta interaction (SDI). For the sake of mathematical
simplicity, we neglect spin in our considerations; includ-
ing spin does not change the results.

We consider now two particles in a collection of degen-
erate orbits interacting via an SDI with strength G. For
each value of angular momentum L, only a single state of
each L is shifted in energy. We consider this lowest ener-

gy state of each L to be a boson of angular momentum L.
The energy of this shifted state is

1 1' L
eL ——gg(21+1)(21'+1) G . (B2)

I 1'

The corresponding wave function is

1 1' L t' I.
]I]L]]r(1,2)=(M/v Q) yy/1' 0 0 0 yy, I &] (8]i]t]])&] (8i,y2) i (B3)

where l=(21+1)', Q=g(21+1) is the total pair degeneracy, and i is a normalization constant. The labels 1 and 2
refer to the two particles, respectively.

For L =0 or s bosons, in particular, we have the following:

(1,2) =(M/v Q) g g( —) Y'] (8],P])I'] (8z, ])]]i)
l m

=(~/4mv Q) g (21 +1)P](cos8]z)
I

using the addition theorem for spherical harmonics.
Appropriately normalized, this becomes

]Ijoo(1,2) =(1/v Q) g (21+ 1)P](cos8]z) .

For an S-pair, the two particle density is



334 C. H. DRUCE AND S. A. MOSZKO%'SKI 33

p(1,2) = ~%~(1,2)
~

'
=(1/Q) g g (21 + 1)(2!'+1)Pi(cosSi&)Pi (cos8,2)

E E'

1 /' L
=(1/Q)ggg(2L+l)(21+1)(2l'+1) 0 0 PL, (cos8&2)

L E E'

Notice that setting L =0 in (B2) gives The intrinsic two particle density is simply the product:

eo ——QG pi(1,2) =pi(1)pi(2) . (89)

and the comparison of (82) and (B6) yields:

p(1,2) = g (eq /eo)(2L + 1)PL, (cos8i2) .

Thus the two particle wave function for an S pair is sim-

ply related to the SDI energies for all the pairs.
The two nucleons forming an S-state pair have conju-

gate wave functions, and thus the same single particle
densities. I.et us define the "intrinsic" single particle den-
sity by:

pi(1)= y (ei, /eo)' (2L +1)PL,[cos(8i —8,)],
L

where 8i can be regarded as the angular coordinate of bo-
son I.

The actual two particle density may be obtained by
averaging over all possible directions Si of the boson, i.e.,

p(1,2)= J p(i1, 2)d Qi/4n . (810)

Next, we use the intrinsic densities to calculate the in-
teraction between bosons. Let I and II denote, respective-
ly, the angular coordinates of the two bosons. Nucleons 1

and 2 are associated with boson I, while 3 and 4 are asso-
ciated with boson II. Now 1 and 2 have the same densi-
ties, and so do 3 and 4. Thus the boson-boson interaction
is four times the interaction energy between any pair, as
long as each boson has one nucleon represented; for exam-
ple, nucleons 1 and 3. For an SDI, nucleons 1 and 3 only
interact if they are at the same angle.

Thus we can write:

V~,.~.=46Jpi(1)pii(1)d Ql/4~

=46 g g (eL, /eo)' (eq /eo)' (2L+1)(2L'+1)Pq[cos(8& —8,)]
L L'

XPg [cos(8i —Sn)]dQi/4ir

=46 g (eq /eo)(2L + 1)PL, [cos(8i—Sii)]

If we now expand Vb „b „as a multipole expansion: we verify the result that was to be proven:

Vga ——g F»(2E+ 1)P»[cos(Si—Sn)]
K

(B12) F» ——46e» /eo .
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