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Ground state structure of the 4 =186—196 Os-Pt region is investigated through a self-consistent
Hartree-Fock-Bogoliubov calculation employing a pairing plus quadrupole plus hexadecapole model
interaction Hamiltonian. The influence of the hexadecapole degrees of freedom on the triaxiality is
especially examined. A gradual prolate to oblate shape transition is found in Pt isotopes but such a
change is almost abrupt in Os at 4 =~194. This difference in behavior of the Os and Pt isotopes is
obtained only if all the hexadecapole degrees of freedom, instead of merely an axial Y4, component,

are treated fully self-consistently.

I. INTRODUCTION

By now there exists an exhaustive list of theoretical as
well as experimental papers devoted to the study of the
structure of the complex transitional Os-Pt region. Of
particular interest is the change of the quadrupole defor-
mation parameter 3, and asymmetry parameter y as a
function of the mass number A for the Os and Pt nuclei.
Recent empirical results"? indicate that the prolate
(y=0°) to oblate (y =60°) shape transition, in going from
lighter to heavier isotopes, takes place quite gradually in
Pt isotopes, whereas in Os it occurs almost suddenly at
A~192—194. Our main motivation here is to throw
some light on the understanding of this dissimilar
behavior of the Os and Pt isotopes in the mass region
A=186—196.

But before going into details of our present work we
would like to mention briefly some of the relevant work
already done. The microscopic and semimicroscopic ap-
proaches®~ 10 usually lead to y-soft or y-unstable'! ground
state intrinsic shapes of these nuclei, which- means that
the energy minima are very shallow in the ¥ space. On
the other hand, various y-rigid models'>~'® have had
good success in reproducing the experimental data on low
lying excitation energies and B(E2) transition rates.
However, now the experimental data are so exhaustive
that the weak points of the theoretical models cannot go
unnoticed. For instance, the y-rigid models do fail to
reproduce well the B(E 2;y —g.s.) transitions.

In recent years more productive have been the so-called
IBM-1 and IBM-2 interacting boson model ap-
proaches!’ =22 to describe the collective properties of the
transitional nuclei. It is a well-known fact that the nu-
clear deformation is caused by the n-p interaction
amongst the valence nucleons of a nucleus.?>?* In this
sense the IBM-2 version has the right ingredients and has
been applied very successfully to interpret the data in the

-Pt region. Very recently, Casten® has attempted to
present a unified model to study the change of nuclear de-
formation (essentially the excitation energy ratio E,/E,)
as a function of A4 in terms of the product of the valence
number of protons and neutrons in a nucleus. Stuch-
bery?®?’ finds that even IBM-2 is not able to explain
simultaneously the energy spectrum, B(E2) transition

33

rates, and g-factors as a function of spin as well as the
mass number. Thus study of the intrinsic structure of the
transitional region is still an interesting and challenging
problem.

Now coming back to the triaxial shapes of the transi-
tional nuclei, in 1972 G6tz et al.” had shown in a detailed
Strutinsky calculation®® that inclusion of the hexadecapole
(Bs) degree of freedom is very essential to get the oblate
shape at a correct mass number. Ragnarsson et al.® have
shown that the prolate shape gets lowered in energy com-
pared to the oblate shape if a 8, deformation term is in-
cluded in the Hamiltonian. Baker et al.'>~% have shown
from the analysis of their data that heavy transitional Os
and Pt nuclei do possess nonzero (small) negative hexade-
capole deformations and the ¥ and B, degrees of freedom
cannot be separated from each other. However, we must
emphasize that, for the reasons of numerical simplicity, so
far in all the theoretical studies”®3°=33 only a B,*Y 4
term or a somewhat generalized form of this term is in-
cluded such that it is always operative along any axis of
symmetry (X, Y, or Z corresponding to which y is 120°,
60°, or 0°, respectively). For a general intermediate value
of y it is some admixture of various Y,, terms. Soon, in
the next section, we shall elaborate more on this. Thus,
actually for a triaxial nucleus (say, ¥y =20°—40°) it may be
essential to treat the hexadecapole degrees of freedom in a
more realistic way. With this aim we have performed a
self-consistent Hartree-Fock-Bogoliubov (HFB) calcula-
tion>* to study the ground state intrinsic shapes of the
Os-Pt nuclei adding a hexadecapole interaction term to
the pairing plus quadrupole model Hamiltonian of
Baranger and Kumar (BK) (Ref. 3) and find some in-
teresting results.

In Sec. II we outline the calculational scheme, and we
present our results and discussions in Sec. III. Finally the
conclusions of the present study are summarized in Sec.
Iv.

II. CALCULATIONAL SCHEME

As mentioned in the previous section, the Hamiltonian
used is essentially the pairing plus quadrupole model in-
teraction of BK (Ref. 3) with an extra hexadecapole term
added to it
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H=SeCiCa—+ 3 1 3 aalalQf|v)(BlQM|8)CiCCsC,—+ 3 6. 3 clcle.c, . (1)
na A=24 aB7,0 T a,y
u,0,7

Various symbols have the same meaning as in Ref. 3, viz.,
X, is the multipole interaction strength and G, the pair-
ing interaction strength with o,7=proton or neutron and

Qi =r2Yy,(6,4) . %)

The basis space and spherical single-particle (sp) energies
are precisely that of BK.}

The expectation value of the above Hamiltonian (1) is
minimized with respect to the relevant shape parameters
of the Bardeen-Cooper-Schrieffer—type (BCS) intrinsic
many-body wave function

o=[[(U; +Vala])|0), 3)

1

where aiT creates a particle in the deformed Nilsson orbi-

tal
|iYy=3CLa) @)

and a;lr does so in the corresponding time reversed orbital.
V; and U; are obviously the BCS transformation ampli-
tudes for the occupation and emptiness of an orbital |i ).
Then the main task is to carry out the energy minimiza-
tion calculation in three types of numerical schemes:
(S1): Standard self-consistent HFB calculation of BK
(Ref. 3) with

X,=70/4%, x,=0.0,
G,=27/4, G,=22/4 (5)

(all in MeV). For all the nuclei considered here, except
194,190, results can be directly taken from Ref. 3.

(S2): Besides B, and ¥ which are present in the BK
many-body wave function, an axial hexadecapole defor-
mation parameter 3, is also included in the wave function.
Usually it is simply introduced through the use of a
Nilsson-type deformed one-body Hamiltonian

1 .
h =h; —#iwp, |cosyQy+ TZSIH?’(sz +Q>_3)

—#iwBsQy0 » (6)

where h; stands for the spherical sp part and
fin=41.2/A4"'" is the oscillator frequency. However, this
form of the B, term is correct only for y=0° or 180°. In
recent years, as already mentioned, it has been somewhat
generalized®*3! in such a way that for any axis of symme-
try (y=0°, Z axis; y=60°, Y axis; y=120°, X axis) we
have always a corresponding Qg term operative, and for
any other ¥ values some combination of Ym()? ), Yyl ),

and Y(2) is present. Thus in this scheme (6) is replaced
by

f

1 .
h=h; —fiwp, COS‘)’Q20+725‘HY(Q22+Q2_2)

—#0Ba Cx(7)Q40(X) + Cy(1)Qu0(¥)+Cz(1)Qu0(2)],

0))

where the forms of the coefficients C(y) guarantee the
above-mentioned properties. We use the one proposed in
Ref. 30. Thus in this scheme of calculation we have three
free parameters, f3,, ¥, and B, besides the pairing gap pa-
rameters A, and A, for protons and neutrons, respectively.

(S3): Treat all the components of the hexadecapole
force self-consistently to minimize the energy. One
straightforward way, which we have adopted here, is to
perform a self-consistent HFB calculation with the gen-
eral Hamiltonian of Eq. (1) with X450. In this case
neglecting in the manner of Baranger and Kumar’® the ex-
change matrix elements, the one-body Hamiltonian corre-
sponding to the hexadecapole term will look like

h4= EDwa ; H=—4,—2,0,2,4
m

with

We may define B, through the relation
fiwBy=Dy . 9)

It is obvious that now we have five deformation param-
eters, By, ¥, Bs D4y, and Dy. However, in a self-
consistent iterative calculation the computing time is
comparable to the case when only the first three parame-
ters are considered as free.

In the case of schemes S2 and S3 the interaction
strengths in Hamiltonian (1) are taken as

X,=X,=70/4"*, G,=28/4, G,=23/4. (10

Several values, including X,#X, in the neighborhood of
BK values, Eq. (5), have been tried but these seem to be
good enough to reproduce approximately the pairing gap
parameters and S, of BK.> It should be clear that S1 and
S3 differ only in the choice of the Hamiltonian, i.e., the
interaction strengths (5) and (10). On the other hand, S2
and S3 utilize the same Hamiltonian to calculate the ener-
gy but differ in the choice of the many-body trial wave
function for the variational calculation.

III. RESULTS AND DISCUSSIONS

Our main concern here is to investigate the effect of the
hexadecapole degrees of freedom on the value of ¥ as a
function of A in the transitional region with an additional
motive to ascertain the extent of the usefulness of expres-
sion (7). We must emphasize that the present attempt is
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still only a model calculation. The basis space is restrict-
ed only to two major shells N =4,5 for protons and
N =5,6 for neutrons. The values of interaction strength
parameters (10) are also, perhaps, not very unique though
rather close to the BK values (5).

A. Self-consistent intrinsic results

Through the minimization of energy as a function of
various shape parameters we determine their equilibrium
values in the three schemes of calculation S1, S2, and S3,
for A =186—196. Our results for the shape parameter B,,
¥» B, and the pairing gaps (in MeV) A, and A, are listed
in Table I for the nuclei considered here. The three rows
of numbers for each isotope correspond to the schemes
S1, S2, and S3, respectively. From the ground band ex-
perimental spectrum"?2%%-3 the ratio E,/E, is also
enumerated to be compared with the ideal rotor value of
3.33 and the vibrator limit of 2.0. We notice that for the
Pt isotopes considered here this is almost a constant 2.5,
whereas for Os it reaches this value only at 4 =196. We
should remind that in S3 we have actually three indepen-
dent hexadecapole parameters Dy, but for the compar-
ison we have listed only 3, calculated from Dy, using the
relation (9).

As pointed out long ago by Ragnarsson et al.,? the ef-
fect of the B4 term is to favor the prolate shape compared
to the oblate one. We too find the tendency of ¥ decreas-
ing in the presence of hexadecapole terms, and the larger
the value of B, the bigger is the effect. Considering only
the quadrupole force, BK (Ref. 3) found that osmium iso-

topes exhibit prolate to oblate shape transition from
A =186 to 192 somewhat gradually in comparison to Pt
(see the first rows of Table I). Whereas our results corre-
sponding to S3 show an opposite behavior which seems to
agree with the present understanding based on the analysis
of the experimental results (for instance see Ref. 2), par-
ticularly the decay pattern of several excited O states to
the ground band 2% state. We should further add that for
19205 we also get a prolate (y=0) minimum with
B,=0.145 and B,= —0.045 which is higher compared to
the absolute minimum at y =46° only by about 75 keV.
Thus these two minima would compete with each other to
describe the physical ground state. In their Strutinsky?®
calculation including a B, term Gotz et al.” predicted Os
nuclei with competing prolate and oblate axial shapes.
Here the S2 approach seems to be good enough to predict
a rapid prolate to oblate structural phase transition in Os
isotopes. Nevertheless, to produce a gradual shape change
in Pt isotopes S3 seems to be essential. The most signifi-
cant difference between the S2 and S3 schemes is seen in
the case of Pt and !°?Pt out of all the nuclei considered
here.

B. Potential energy surface plots

The values of the shape parameters presented in Table I
correspond to the energy minima. But at the same time a
study of the variation of energy in the full parameter
space is often very useful. However, we have three free
parameters in the S2 approach and five in the S3 ap-
proach. From Table I we notice that B4(S3)>B4(S2),

TABLE I. Self-consistent intrinsic results for Os and Pt isotopes with mass numbers 4 =186—196. For every A three rows corre-
spond to the three schemes of calculation, S1, S2, and S3, respectively. For prolate shapes (y =0) the second and third rows become
identical. As an experimental measure of deformation the ground band energy ratio E4/E?2 is also listed.

760S 78Pt
%! B ! Bs A, A,  E./Ep B ! Bs A, A.  EJEp?

186 0.199 0.0 0.0 0.760 0.970 3.17 0.188 0.0 0.0 0.722 0.984 2.56
0.214 0.0 —0.052 0.738 0.935 0.194 0.2 —0.031 0.784 1.036
0.214 0.0 —0.052 0.738 0.935 0.194 0.2 —0.031 0.784 1.036

188 0.180 214 0.0 0.790 0.993 3.08 0.170 20.2 0.0 0.672 1.050 2.53
0.196 0.0 —0.055 0.729 0.970 0.178 7.6 —0.035 0.744 1.077
0.196 0.0 —0.055 0.729 0.970 0.178 6.8 —0.035 0.747 1.071

190 0.170 49.5 0.0 0.834 0.994 2.93 0.155 60.0 0.0 0.682 1.092 2.49
0.172 0.0 —0.052 0.759 0.977 0.157 40.0 —0.013 0.724 1.166
0.172 0.0 —0.052 0.759 0.977 0.159 25.8 —0.026 0.706 1.122

192 0.152 60.0 0.0 0.851 0.935 2.82 0.144 60.0 0.0 0.681 1.038 2.48
0.151 54.8 —0.006 0.919 1.036 0.144 53.0 —0.006 0.740 1.137
0.155 46.3 —0.017 0.897 1.003 0.147 454 —-0.014 0.722 1.109

194 0.143 60.0 0.0 0.849 0.789 2.75 0.134 60.0 0.0 0.681 0.951 2.47
0.137 58.4 —0.004 0.925 0.912 0.132 57.4 —0.004 0.743 1.056
0.138 55.7 —0.008 0.920 0.910 0.134 53.4 —0.009 0.734 1.047

196 0.125 60.0 0.0 0.861 0.629 2.53 0.125 60.0 0.0 0.680 0.817 2.47
0.113 58.5 —0.004 0.943 0.803 0.119 58.6 —0.004 0.748 0.940
0.115 56.0 —0.009 0.939 0.803 0.121 56.3 —0.007 0.742 0.938

“Data taken from Refs. 1, 2, 29, and 34—36 for Os and Refs. 37—39 for Pt isotopes.
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whereas B4(S1)=0. So, we have drawn potential energy
surface (PES) contour plots in the (8,,7) space for a fixed
value of B, calculating energy only in the scheme S2. The
effect of S3 is reflected only qualitatively through the use
of a larger B4. In the figures, the top right corner of each
plot S1, S2, or S3 indicates that the 8, value used there
corresponds to the equilibrium value in that scheme. The
contour lines labeled A4,B,...,J correspond to 20, 50,
100, 150, 250, 800, 1000, 1250, and 1500 keV energies,
respectively, on each figure. This separation is rather ar-
bitrarily adopted to have a better disposition near the
minimum. Instead of all the nuclei considered here we
have chosen only some typical interesting cases, namely
190,192,1940)¢ anq 188,190p,

Figure 1(a) shows that for '°Os BK predict almost an
oblate shape with y ~35°—60° within an energy spread of
| AE | =20 keV. But with the inclusion of a B, term [Fig.
1(b)] it becomes totally upside down, the value of By""
remaining unchanged. Also the minimum becomes more
localized in the ¥ direction.

Nucleus '%20s appears most interesting. Figure 2(a)
shows a well developed oblate minimum corresponding to
the BK Hamiltonian. The effect of B4=—0.017, of
course with a different Hamiltonian, is seen in Fig. 2(b).
This minimum becomes better localized in the B, direc-
tion but becomes shallower in the y direction with a clear
minimum at ¥ =~45°. As already mentioned in Sec. III A,
we get a second prolate minimum for !%?0Os with
Bs=—0.045. This is illustrated through the PES of Fig.
2(c). The Y ~45° minimum of Fig. 2 now shifts to y =~35°
with the oblate side fully closed with about 150—200 keV

T T T
g JIHG F FS
=0
45 -
1
A
4
30k B s
0 c G
~
D
H
15+ E -
/I
or b
1 i i
00 006 012 a8 024

B2

curve, and softening on the prolate side. In the self-
consistent calculation S3 the prolate minimum is about 75
keV higher than the absolute minimum at y =~45°. We
must remember that in the self-consistent calculation S§™"
has different values: —0.017 and —0.045, respectively,
corresponding to the triaxial and prolate minima. In or-
der to ascertain whether the prolate minimum survives
against the zero-point motion we have also calculated PES
with such an energy correction (ZPE) (Ref. 10)

E=(®|H|®)—ZPE,
(11)

ZPE= ﬁ (@] £} ®) /27,

i=1

with i=1, 2, and 3 meaning X, Y, and Z axes. #;
stands for the ith component of the angular momentum
operator and .#; is the Inglis moment of inertia.’ As
displayed in Fig. 2(d) this leads to an even better
developed set of prolate and oblate (instead of y=45°)
minima, with B;=—0.045. However, the equilibrium
values of B, remain almost unaltered. This is why for
other cases PES’s are not shown including ZPE.

Next we come to the PES plot of '**Os [Figs. 3(a) and
(b)] with B4,=—0.008 and —0.0344, respectively. For
this nucleus also corresponding to larger B, value [Fig.
3(b)] there is a second minimum at y=0. But this is
about 350 keV higher compared to the oblate one. So, ac-
cording to the energy spacings of Fig. 3(b) this prolate
minimum is not clearly seen, except for such a tendency
with the convergence of the “E” lines.

60 T T T
M 100 o J1 H G G HI Se
‘ s \
. Bz-0.052 E \
a5k -
E
30 - -
e D
c
15} .
B
/ A\
0 1 —

00 006 012 o118 0.24
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FIG. 1. (a) Potential energy surface (PES) plot in the (8,,7) space for '®Os with the BK Hamiltonian designated here as the S1
scheme which is indicated on the top right corner of the plot. The equilibrium value of B, corresponding to the same scheme is also
written. The contour lines labeled 4, B, ...,J correspond to energies 20, 50, 100, 150, 250, 500, 800, 1000, 1250, and 1500 keV,

respectively. (b) Same as (a) in the S2 scheme.
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FIG. 2. (a) Same as Fig. 1(a) for '”20s; (b) in the S3 scheme; (c) with large B, value corresponding to a second minimum at y =0;

and (d) including zero-point-energy corrections.

Figure 4(a) displays the PES plot of '*¥Pt with the BK
Hamiltonian. No doubt there is a clear minimum at
¥ =20°. But this is only a small localization within about
the 50 keV region. Then all the lines run almost parallel
at each B, from y=0°to y=60°. On the other hand, in
the S2 scheme [Fig. 4(b)] we get a well developed prolate
minimum with 84= —0.035. Thus inclusion of the hexa-
decapole interaction term in the Hamiltonian seems to
have a big effect. Finally, to demonstrate the effect of
B4=—0.013 and —0.026 corresponding to S2 and S3,
respectively, for '%°Pt, we compare Figs. 5(a) and (b). The
former shows a minimum at about ¥ =30° with a uniform
shallowness towards prolate as well as oblate ends. We
know that BK get an oblate minimum (see Table I),

whereas Fig. 5(b) shows more softness towards y =0.

Thus in Figs. 1—5 we have been able to see a rather
subtle influence of the hexadecapole interaction term in
the Hamiltonian and the importance of its proper self-
consistent treatment. It should also be noted that it af-
fects only the y degree of freedom, the equilibrium values
of B, remaining almost unchanged in going from S1 to S3
for a given nucleus.

C. Nilsson plots

For a deeper analysis of nuclear structure at the s-p lev-
el it is always desirable to examine the s-p energy Nilsson
plots. We have drawn these diagrams for protons (Fig. 6)
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FIG. 3. (a) Same as Fig. 2(a) for '%*Os; (b) same as Fig. 2(c) for **Os.

and neutrons (Fig. 7) using the Hamiltonian (7) with the
main motivation to see the effect of a B, deformation on
the prolate or oblate deformed s-p orbitals. Obviously,
the mass dependence comes only through the oscillator
frequency #iw=41.2/4'/3. We have taken 4 =190. The
maximum value of | B, | is taken to be 0.2 only as, for the
present, this is the range of our interest. We have two sets
of plots with B,=0.0 and —0.045 for protons as well as
neutrons. Considering !*°Os as a representative nucleus in
this region whose protons fill completely the h,;,, sub-
shell and neutrons fill the i3/, subshell at §,=0.0, we
have plotted energy levels approximately within +2 MeV

(a)

60 -
B8Pt 4 { uG F EDC CDE F S
;54=°

45 |- B
!

30+ B 4

-
o

—
L

1 S i — -
o aoé 012 018 024
B

about these states. Each curve is labeled by the projection
quantum number k of angular momentum j. Solid lines
indicate positive parity and dashed ones indicate negative
parity states.

Figures 6(a) and (b) display the proton Nilsson diagram
with B,=0 and —0.045, respectively. The Fermi surface
(er) for Z =76 is indicated by the thick curve in both the
figures. The value of B;= —0.045 is rather a strong per-
turbation for the 8, <0.1 region. But for us a more useful
range is around |f,| =0.15. Comparing carefully Figs.
6(a) and (b) we notice that the levels at the Fermi surface
for Z=76 do get rearranged in the presence of B,

_ (b)
H G <;HSﬂ

60 Mggpr
B,=-0.035

|
i
45 -
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FIG. 4. (a) Same as Fig. 1(a) for '**Pt; (b) same as (a) in the S2 scheme.
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FIG. 5. (a) Same as Fig. 4(b) for 'Pt; (b) same as (a) in the
S$3 scheme.

whereas for Z =78 (Pt) it does not happen. Particularly,
if we look at Table I for the equilibrium values of B, for
the Pt isotopes, the largest value of 3, is —0.035. So, for
such or smaller B, values the Z =78 Fermi surface should
indeed remain unaffected. On the other hand, for '*80s
we need B,= —0.055.

Similarly, we have Figs. 7(a) and (b) for neutrons. We
observe that on prolate as well as oblate sides for
| B2 | =0.15—0.2 there is a considerable rearrangement of
the orbitals near the N =114 Fermi surface. It is impor-
tant to realize that on the oblate side small k, small / neg-
ative parity orbitals are interwoven with small k, large /
positive parity orbitals. On the other hand, on the prolate
side important orbitals come from large ! hy/, and i3,
states with large k values. To give a better picture of how

FIG. 6. (a) Single particle energy Nilsson plot for protons
corresponding to mass number 4 =190 with 8,=0.0. The Fer-
mi surface for Z =76 is indicated by the thick curve. Solid lines
imply orbitals with positive parity and dashed ones with nega-
tive parity. (b) Same as (a) with B8,= —0.045.

some orbitals near € get reordered in the presence of B,
we have listed in Table II five neutron orbitals giving their
energies and wave function components Cy [Eq. (4)].
From the sign of the parity indicated over the k values
the [ values can be ascertained for the basis space used
here. There are four sets [(a)—(d)] corresponding to
B,=0.16, ¥y =0, 60°, and B4,=0, —0.045. Let us mention
about some notable changes. For example, in the first
part of Table II - is about 500 keV below the Fermi
surface (underlined) and in the second part of Table II it
is only about 80 keV below €r. Another level % (i13,2)
is only about 225 keV above € in the third part of Table
II but in the presence of B, it is pushed up by about 560
keV.

Of course, the net macroscopic effect like the equilibri-
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FIG. 7. (a) Same as Fig. 6(a) for neutrons. The Fermi surface for N =114 is indicated by a thick curve. (b) Same as (a) with
Bs=—0.045.

TABLE II. Five Nilsson orbitals for neutrons near the N =114 Fermi surface for prolate and oblate
shapes with and without 3, corresponding to a realistic value of 8,=0.16 in the Os-Pt region are listed:
(@) y=0, B4=0; (b) y=0, By=—0.045; (c) y=180°, B4=0; (d) y=180°, By=—0.045. The Fermi sur-
face is underlined. j and its projection quantum number k (labels on Cy) are listed. The parity is indi-

cated by the symbol .

€ J
(MeV)  k” T T 7 T 7 T T
(a)
—0.969 3~ 0370  —0.836 0265 —0.304 —0.044
—1.084 L7 0.037 0.693 0.588 0.327 0250  —0.048
—1.085 +° —0.040 0.999
—1.248 37 —0.999  —0.051
—1.589 7~ —0950  —0302  —0.074
(®)
-0.992 3§~ 0.997 0.071
—1.258 3~ —0.343 0.829  —0.256 0.356  —0.050
—1277 4* —0.058  —0.998
-1.337 17 —0957  —0271  —0.107
—1.419 17 —0.014 0.640  —0.634 0332  —0.227 0.042
(©
—1222 47 0.008 0.001 0.046 0.003 0.232 0.006 0.972
-135 37 —0.005 0041  —0.009 0224  —0.019 0.974
—1.448 37 —0.640  —0.358 0.547 0393  —0.097
—1.503 3~ —0.762 0.318 0.559  —0.073
-1.609 37 0.030 0.012 0.206 0.031 0.977
@
—1.069 +7 0.011 0.001 0.060 0.002 0.262 0.010 0.962
-1.257 37 —0.002  —0.044 0005  —0.243 0028  —0.969
—1.629 3% —0019  —0005 —0200 —0.045 —0979
—1.725 37 0.717 0302  —0445  —0438 0.070
—1.818 3~ 0842  —0257  —0.468 0.080




33 SHAPE TRANSITION IN Os AND Pt ISOTOPES 329

um value of B, or v is related in a very complex manner
to the sum of the single-particle expectation values of the
multipole operators. Through Figs. 6 and 7 and Table II
we can get at least an appreciation and some understand-
ing of how some orbitals are affected in the presence of a
hexadecapole deformation.

IV. CONCLUSIONS

In a microscopic many-body approach we are able to
get a structural phase transition in the Os-Pt region which
seems in conformity with the recent empirical analysis of
Casten et al.?> Baktash et al.** have recently concluded
that y-soft models show an overall better agreement with
the systematics of static quadrupole moments in this re-
gion. Looking at energies as a function of ¥ in Figs. 1-5
our results also are y soft.

To understand the behavior of the Os isotopes inclusion
of a 3, term like Eq. (6) or (7) should be enough as most
important are the prolate (4 3,, ¥y =0) and oblate (—p,,
y=0) shapes, the transition being almost abrupt at
A=192—-19%4.

However, to get a smooth shape transition in the Pt iso-
topes a fully self-consistent treatment of the hexadecapole
term in the Hamiltonian (1) is essential, and of course this
is the right thing to do.

Thus from the present investigations it emerges that (i)
Os are prolate for 4 <190, oblate for 4 >194, and at
A =192 prolate and oblate shapes compete with each oth-
er. (ii) Pt are prolate for A < 186, oblate for 4 > 194, and
triaxial but not y rigid for 4 =188—192.
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