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The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is
combined with the interacting boson model of nuclei to produce a transition matrix for elastic and
inelastic scattering in algebraic form which includes coupling to all the intermediate states. We
present closed form analytic expressions for the transition matrix elements for the three dynamical
symmetries of the interacting boson model. We show the effect of channel coupling on the elastic
and inelastic differential cross sections for proton scattering on nuclei which behave like a spherical
quadrupole vibrator, a y-unstable rotor, and both prolate and oblate axially symmetric rotors.

I. INTRODUCTION

Electron scattering from nuclei can be analyzed using
distorted wave Born approximation (DWBA) because the
electromagnetic interaction with the nucleons inside the
nucleus is small compared to the interaction between the
nucleons. For hadronic scattering from nuclei the
strength of the underlying interaction requires use of a
distorted wave impulse approximation (DWIA), based on
the two-body t matrix rather than the potential. However
for 800 MeV proton scattering from collective nuclei,
DWIA is not accurate at high momentum transfer 'The.
coupled channel approach gives improved agreement.
These data and calculations' demonstrate that multiple
scattering can be important for medium energy proton
scattering from nuclei. How that importance grows with
momentum transfer has also been shown theoretically. '

An alternative to the coupled channels approach calcu-
lates the scattering to all orders in the Glauber approxi-
mation which is a good approximation for 800 MeV pro-
tons. ' For scattering to the yrast band of a strongly de-
formed nucleus, the scattering matrix can be calculated in
the intrinsic frame to all orders, and then the scattering to
a particular final state in the yrast band obtained by pro-
jecting out the angular momentum of this final state.
This generalized Glauber calculation agrees well with
data. However, this simple method is valid only for the
yrast band in a well-deformed nucleus. In this paper we
shall show that the interacting boson model {IBM) (Ref.
6) can be married with the Glauber approximation so that
the scattering can be calculated to all orders in closed
form for nuclei described by the IBM. The method fol-
lows from the fact that the Glauber transition operator is
a linear rotation in the IBM space.

In Sec. II we shall review the Glauber or eikonal ap-
proximation. We refer the reader to Refs. 4 and 5 for the
derivation and the details of the Glauber scattering ma-
trix. In Sec. III, we review the IBM and in Sec. IV, we
combine the IBM and Glauber in a natural way. In Secs.
V—IX we develop the representation matrix for a single

boson, we determine the scattering matrix to all orders in
closed form for a spherical quadrupole vibrator, a y-
unstable quadrupole rotor, and an axially symmetric
quadrupole rotor, and conclude with a discussion of the
large N or "classical" limit. In Sec. X we show the results
of sample calculations which illustrate the effects of chan-
nel couplings in each of these idealized cases. In a subse-

quent paper we will report on applications to specific nu-

clei.

II. THE EIKONAL
OR GLAUBER APPROXIMATION

For medium energy proton scattering, the Glauber or
eikonal approximation is a good approximation for elastic
and inelastic scattering out to moderate angles. Here we

apply this approximation to proton scattering on a nu-
cleus described by the IBM which provides a closed form
expression for the full coupled channels scattering ampli-
tude. The essence of the IBM is a description of the nu-
clear degrees of freedom in terms of bosons rather than
nucleons. These bosons are introduced into the dynamics
via creation and annihilation operators and the algebra of
the operators is exploited to solve the problem.

We now wish to consider a proton (mass m) interacting
with an IBM nucleus. The most general Hamiltonian we
can write down for this is

2

H = + V(r)+ W(r, a)+HT,
2%i

(2.1)

where r is the projectile coordinate. V(r) is the general
distorting or optical potential that the target presents to
the projectile. It is the part of the projectile-target in-
teraction that is independent of the boson operators.
W(r, a) represents the coupling of the projectile to the bo-
son degrees of freedom represented here by the generic bo-
son operator a. W is defined to have vanishing diagonal
matrix element in the ground state since that diagonal
piece is already in V. Finally, HT is the target Hamiltoni-
an in the absence of the projectile. For notational simpli-
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(2.3)

and where k is a unit vector in the direction of the aver-
age momentum

k+k'
1k+k'I ' (2.4)

and b is orthogonal to K. We split g into two parts,

4=4+0 (2.5)

The first part is associated with V. It is the average opti-
cal model phase. Since V contains no boson operators, P
cannot cause transition between nuclear states. The
second part, P, is associated with W and is the transition
phase. We can write

( JfMf ~

e'+ ' —1
~
J;M; }= Tf'(Q)

HAJJ, J, ;JPJJ, M

where Tf; is the transition matrix

Tf; ——e''"UfI (Q),

and Uf; is the nuclear matrix element

Ufl —(JfMf ~
U(y)

~

J'M~ )

of the transition operator

U(g)=e'+ '.

(2.6}

(2.7)

(2 &)

(2.9)

If one expands U, the first nonvanishing term (ig) gives
the distorted wave impulse approximation for the scatter-
ing amplitude. The phase g provides the distorted wave.

However, for a target nucleus described by the IBM, we
can do better. %e can evaluate the nuclear matrix ele-
ment (2.8) completely without making a first-order (or im-
pulse) approximation. We note from the definition of

city we temporarily suppress the spin degrees of freedom.
The standard eikonal approximation exploits the high

energy of the projectile compared with interaction ener-

gies ( V and W). In addition we neglect the nuclear exci-
tation energy (carried in HT) which would seem to be an
excellent approximation for a few hundred MeV projectile
incident on a target with a set of closely coupled collective
states with an energy scale of the order of hundreds of ki-
lovolts to a few MeV. Neglect of HT is equivalent to as-
suming that the interaction time of the projectile with the
nucleus is very short compared with the time for nuclear
collective motion. This approximation is analyzed in
more detail in a related approach.

If we neglect Hr, the standard eikonal treatment may
be applied to the Hamiltonian to yield for the scattering
amplitude from initial target state J;M; to final JfMf
with the projectile going from momentum k to k'

(k'=k+q),

&, k'JfMf ~r ~kJ,M, &

'b e'q b
J&Mf e'+b' —1 J;M;, 2.2

2%i

where the eikonal phase f is given by

f(b) = —
2 J dz[ V(b+Kz)+ W(1+Kz,a)],

g(b), that the expectation of f(b} in the ground state van-

ishes,

(g.s.
i g(b)

i g.s. )=0 (2.10)

and hence, there is no first-order contribution to the elas-
tic scattering. However, for projectiles for which multiple
scattering is important, there can be corrections ta the
0%IA even in the elastic channel.

The main focus of this paper is determining the condi-
tions for which these multiple scattering corrections are
important and how they can be calculated.

S )S

and the quadrupole (J =2+ ) boson operators are

d~, d =(—1) d; m = —2, —1,0, 1,2 .

(3.1a)

(3.1b)

The boson Hamiltonian which determines the nuclear
wave functions and spectra is primarily composed of a
single boson energy and a quadrupole interaction between
bosons. This boson Hamiltonian is generally taken to be

H=eNe ~Q Q, (3.2)

where s is the single-boson energy and ~ the interaction
strength. The quadrupole number operator,

Xd ——gd d (3.3)

counts the number of quadrupole bosons. Thus the first
term makes the J =2+ pair higher in energy than the
J =0+ and hence corresponds to the pairing energy. The
quadrupole operator is

Q =d s+s d +X[dtd]' '. (3.4)

The first term changes monopole bosons into quadrupole
bosons and vice versa, while the second term reorients the
quadrupole bosons. Hence the quadrupole interaction
mixes quadrupole bosons into the ground state thereby
producing deformations. Thus, this boson Hamiltonian

III. THE INTERACTING BOSON MODEL
OF NUCLEI

The interacting boson model of nuclei (IBM) assumes
that the low-lying collective levels of nuclei are composed
primarily of J =0+ and 2+ coherent pairs of valence nu-
cleons which are approximated as bosons. There are two
versions of this model. The original version did not dis-
tinguish between neutrons and protons. This version is
valid for the lowest collective states of deformed nuclei
since these states are primarily symmetric in the neutron
and proton degrees of freedom. The second version called
IBM-2, does distinguish between neutrons and protons.
This version gives a better description of the nuclear states
and for some transitions is absolutely necessary. However
in this paper we shall consider IBM-1 to simplify the dis-
cussion of the concepts. The generalization to IBM-2 is
straightforward but increases the number of indices and
hence the coinplexity of exposition.

The monopole ( J =0+ ) boson creation and destruction
operators are
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P =s'd +d's, m=21, . . . , —2,
C =i(s d —d s), m =2, 1, . . . , —2.

(3.5b)

(3.5c)

These multipole operators are the 35 generators for a
special unitary group in six dimensions, SU6. The general
transformation operator in SU6 is given by

)s.p+((().c+&g s(li T(l) (3.6}

where 8, 8, and 8' ' are the 35 angles of the SU6
transformation analogous to the three Euler angles for an
SU2 transformation.

The boson Hamiltonian in (3.2) is diagonahzed in the
space of N boson, where N is one-half the number of
valence nucleons. This boson space forms a basis for the
symmetric irreducible representation of SU6 of rank X.
Hence the matrix elements of the SU6 transformation
operator (3.6}between boson eigenstates,

Uf (8)—&'JfMf
I
U(8)

I
J'M~ ) (3.7)

will be the representation matrix for this irreducible repre-
sentation of SU6. That is, this matrix is a generalization
of the Wigner D matrix for SU2.

The SU6 group has three possible subgroup chains. The
first group chain is

SU, &U, &SO,&SO, . (3.8)

The generators of the U5 subgroup are the multipole
operators in (3.5a). The generators of the Sos subgroups
are those of Uz with odd multipole operators and have
1= 1,3. The generators of the SO3 subgroup are the angu-
lar momentum operators and have I= l. The IBM Ham-

I

incorporates the predominant features of the effective nu-

clear Hamiltonian as determined by phenomenology.
In the IBM, multipole moment operators of the nucleus

are expressed in terms of boson operators:
T(I) (d td )())

(3.5a)

iltonian (3.2) has a Us dynamical symmetry for a.=0.
This symmetry corresponds to the quadrupole spherical
vibrator model.

The next group chain is

SU, &SO,&SO,&S~, . (3.9)

The generators of the SO6 subgroup are the odd multipole
generators 1=1,3 (the SO5 generators) plus the quadrupole
operator in (3.5b}. The IBM Hamiltonian has an SO6
dynamical symmetry for a=0 and X=O. This symmetry
corresponds to the y-unstable quadrupole rotor model.

The third group chain is

SU6DSU3DSO3 . (3.10)

The generators of the SU3 subgroup are the angular
momentum generators (1=1) plus the quadrupole opera-
tor in (3.4) with 7=+@7/2. The Hamiltonian has an
SU3 dynamical symmetry for e=0 and X=+@7/2.
Hence there are two possible SU3 symmetries, one with
negative g and one with positive X. Negative X corre-
sponds to a prolate deformation whereas positive X corre-
sponds to a oblate deformation. ' These two choices give
the same energy spectrum and transition rates but we
shall show that they give different differential cross sec-
tions for cases in which multiple scattering is important.

The mapping of fermion operators, such as the density
operator onto boson operators is not a completely solved
problem. However, there is no doubt that the leading
terms in the mapping of a one-body fermion operator,
such as the density operator, will be linear in the boson
operators defined in (3.5)." The tensor properties of these
multipole operators, plus the condition that all matrix ele-
ments be real, lead to the forms of the total spin zero den-
sity,

p'"(r)=p(r)+~(r)& &"'(r)+ g p T'" I'("(r)
1=2,4

(3.11a)

and for the spin vector density,

(1)(r) g(r)l pI (2)(p))(1)+ y p (r)r T(l)y(l)(r))(1)+ g t y (r)[T (I)y(l+ l)(r))() )+g (r)[T(l) y(l —1)(r))(l)
I (3.11b)

I =2,4 1=1,3

where F' '(r) is the spherical tensor of rank l and projec-
tion Nt.

There are additional constraints on the functions if the
8(EA, ) matrix elements are to be reproduced The elect.ric
multipole moment operators are

g(l) fd3p ly(l)(~r)~(o)(r) (3.12)

Hence the 8(EA, ) are given by

2

8(E2)= f «r'&J =2'll«)'»+p2(r)T"'ll»

(3.13a)

and

2
&«4)= f ««'&J =4+IIP4(

(3.13b)
The microscopic theory of the IBM has made some

progress in determining a(r), p&(r), y)(r), and A)(r) from
the nuclear shell model. ' ' These functions can also be
determined phenomenologically from electron scatter-
Ing.

IV. THF MARRIAGE
OF THE GLAUBER APPROXIMATION

AND THE IBM

To combine the IBM and the Glauber or eikonal ap-
proxiination, we work in impulse approximation and as-
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+f,"'fp',"(1+Kz)dz (4.1)

where for completeness we have introduced an index r
that differentiates between target protons and neutrons.
From (3.11) we see that Pb) is then linear in the SU& gen-
erators. Hence for its real, the Glauber transition operator
U of (2.9) will be in the form of the SUs transformation
operator given in (3.6). Thus the Glauber transition
operator will be a unitary transformation on the bosons in
the nucleus, and the matrix Uf;(P) given in (2.8) will be
the representation matrix for the symmetric representa-
tion of SUs. This means that, like the Wigner D matrix
of SU2, this more general matrix can be calculated in
closed form, implying that the scattering in the Glauber
approximation can be calculated to all orders in the
projectile-nucleus coupling within the IBM space. Thus
all multiple scattering in which the nucleus is virtually ex-
cited to all intermediate states of the IBM is evaluated ex-
actly. This is equivalent to doing a distorted wave cou-
pled channels calculation in that space of states. In gen-
eral since the scattering amplitudes f' ' are complex, P
will be complex and the linear transformation will then be
just the analytic continuation of a unitary transformation.

If the spin degrees of freedom of the projectile are aver-

aged over in the experiment, only the spin scalar densities
and forward scattering amplitudes in (4.1) will survive. In
the rest of this discussion we shall consider this case, but
realize that for measurements in which projectile spin
measurements are made we should use the more general
formalism. For convenience then we drop the spin super-
script. We note then that only the even multipole genera-
tors of SU6 are involved in the transition operator. We
also drop the distinction between neutrons and protons.

For strongly absorbed probes, the representation matrix
needed can be greatly simplified. The spherical harmonic
of the projectile coordinates can be expanded in powers of
(z/b):

Y'"(r)= Y' '(1)+0
b

(4.2)

For a strongly absorbing probe, the integration in (2.2)
over impact parameter b will be concentrated primarily at
the surface of the nucleus. However, the integration over
z in the phase (2.3) covers the entire nucleus. Hence, the
first term in (4.2) will dominate. Under this assumption
the transition phase becomes,

p(b) = [g(b)& +g2(b) T'"].Y'"(b)

+g,(»T'".Y"'(b), (4.3a)

sume that the range of the projectile-nucleon interaction is
short compared with the size of the nucleus. The interac-
tion potentials V and 8'of (2.1) or equivalently the eikon-
al phase P of (2.3) can then be written in terms of the
projectile-nucleon forward scattering amplitude f' ' (S is
the channel spin) and the density operator p' ' of (3.11).
We then obtain for the phase

AS(b)= g f', ' fp,' '(b+Kz)dz

g = f f dza((b'+z')'i'),

g2
— f f dz Pz((b +z )' ),

f f dzP4((b +z )'i ) .g4=

(4.3b)

(4.3c)

(4.3d)

Since in this approximation the spherical tensor is com-
pletely outside the integral over z, the transition phase is

just a rotation R (b) through the Euler angles defined by
the projectile of a reduced transition phase,

g(b) =R(b)g' 'R t(b),

where the reduced transition phase is,
2

0"'=g(»l'o+ g 0m(b)d dm+4o(b)d doo,

(4.4a)

(4.4b)

with,

g(b) =&5/4n g (b), (4.4c)

2 2

m —m 0
S

is the signer 3-j symbol. These phases are given by

Po(b) = [—( —,', )'/'g, (b)+9( ,', )'~ g4(b—}],(4.5a)
4m

$2(b) = [(—,
' )' g2(b)+ 3( 7o

)' g4(b)],
4n

0i(b) = —[4o(b)+42(»]

(b)=$ (b) .

(4.5b)

(4.5c)

(4.5d)

Hence, in this approximation the transition operator
(2.9} can be written as a product of three-dimensional ro-
tation, a simpler SUs transformation, and finally the in-
verse three-dim. ensional rotation:

U(P) =R (b) U ' 'R (b),
~here U' ' is the reduced transition operator and is just

(4.6}

U (o)

The matrix Uf;(gi) then becomes

Uf;(0) = g Dsrsr (»Dsr~, (»Uf' '(4».f
where the reduced transition matrix is

(4.7)

(4.8)

Uf's (Q) (JfsM (
U' '~ J;,M—), (4.9)

and Djsl~ (b) is the usual Wigner D matrix. 9

For the target with angular momentum zero, J; =0, we
can use (4.5) and the integral representation of the Bessel
function, J~, to do the azimuthal angle integration in
(2.2). This leads to a one-dimensional integral.

( 1)IN 2 2 l
P~(b)= g (2l+1) () gi(b),

4m'(1+ o)
(4.4d)
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(k',J,M ~F ~k,J;=M~ ——0)=, '. . ' . I bdb J (qb)(e'~Ug' 5—f;) .
2 J+~ J

2
'

2

(4.10)

Hence our task simplifies to calculating the representa-
tion matrix for a much simpler unitary transformation.
The transformation of a single boson is derived in the next
section.

V. REPRESENTATION MATRIX
FOR A SINGLE BOSON

It is straightforward to determine that the eigenbosons are

~ + =cosQ s +slnQ d 0 ~

B = —sinu s +casu do,

(5.2a)

(5.2b)

where

The basic ingredient in deriving the representation ma-

trix far a many-body system is the representation matrix
for a single boson. Fram (4.4b) we see that under the
transformation by the reduced transitian operator, the
quadrupole bosons with rn +0 are diagonal. However, the
s and do are transformed into each other. The best way
to derive the transformation matrix is to write these bo-
sons in terms of the eigenbosons of the transition phase:

[1t)( ),B+]=e+B+ . (5.1)

rived from the transformation of the single bosons given
in (5.5). The general result has been derived in terms of a
five-dimensional integration. ' We present in the next
section some special results which can be given in closed
orm.

VI. TRANSITION MATRIX
FOR A (}UADRUPOI. E VIBRATOR

The dynamical symmetry group of the quadrupole
spherical vibrator is the U5 group as noted in (3.8). The
ground state of the quadrupole vibrator is a boson conden-
sate of N monopole bosons, where N is one-half the num-
ber of valence nucleons. The excited states are labeled by
the number n of quadrupole bosons, or "phonons, " with
the energy of the states increasing approximately linearly
with n Fo.r a given n there is a multiplet of states with
the quantum number, r, designating the number of quad-
rupole bosons not coupled in pairs to angular momentum
zero, the quantum number, n2„designating the number of
quadrupole bosons coupled in triplets to angular momen-
tum zero, and of course the angular momentum, J, and its
projection, M. The allowed values of these quantum
numbers are

and

s1nQ =
' 1/2

0+4'0
2

' 1/2
0 —00

cosQ =
2

(5.2c)

(5.2d)

v.=n, n —2, . . . , 0 or 1, (6.1)

r=3nq+&)(, , (6.2)

where nz and A, are integers, and then the allowed J are

and for each r the allowed angular momenta and n)), are
determined by all possibilities of partitioning r,

(
—2+F2)1/2 (5.3) J=2k, ,2A, —2, 2&)(,—3, . . . , A, . (6.3)

The eigenvalues are

e, =00+0 . (5.4)

The eigenstates of the quadrupole vibrator in terms of
these quantum numbers are monomials of rank N-n in
the monopole bosons and of rank n in quadrupole bosons:

Some algebra leads to the results:

U(0)stU (0)—1 e&( o(gr~t+gdt )

U(0)dtU (0)—I e&((o(gg t+ ~&d t
)

U(0)dt U (0)—1 e&~»&dt ~0
where

W (b ) =cosP —

i(golf�

)sing,

W'(b) =cos(t&+i($01'P)sin&))&,

(s.sa)

(s.sb)

(5.5c)

(5.5d)

N&n&r, na, J,M ) = ri (e t))V —n(d t.d t)n &&2—

The normalization q~ is

(2r+ 3)!!
(N n)!(n + r—+ 3)!!(n r)!!—

(6.4a)

(6.4b)

(5.5e)X(b) =(ig sing)/(t& .

Thus we see that the s and do are transformed into each
other, while the other bosons only acquire a phase. It is
easy to check that this transformation is unitary for ((), ((&0,

and g real.
The representation matrix for many bosons can be de- d.d

i
r, r, r, na, J,M ) =0, (6.4c)

and the state with N =r is a complicated function of the
quadrupole bosons but has the property:
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which is consistent with the definition of the r quantum

number which is that it is the number of quadrupole bo-

sons not coupled to angular momentum zero.
The ground state of the quadrupole vibrator is then

( t)N
~0) = ~N, n =~=J=M =0& = (0&, (6 5)

where
~
0) denotes the doubly-magic core. If we operate

on this ground state vrith the reduced transition operator
(4.7), then

to) — S~rb (Ws +Xdo)f N

Uto'[0 =e ' [0, (6.6)

where we have used (5.5a). If we take the matrix element
with respect to a general final state with n quadrupole bo-
sons, given in (6.4}, we can use the binomial theorem to
expand (6.6) in powers of quadrupole bosons. The re-

TABLE I. Coefficients A J for lowest values of w.

1

[
& ]1/2

[
9 ]1/2

3[ 3ss &'

0

[ io5 l'

duced transition matrix for scattering from the ground
state to an excited state is then

( Nn, rnaJM =0
~

U'o'
~
N n =7 =na= J=M =0)= N!(2m+ 3)!!

(N —n)!(n +v+3)!!(n—r)!!

1/2

~~
'+~0 ~N —nXng

where A~ z is a constant which is independent of the Glauber phases g. The constant is

(r,~,r, na, J,O
~

(do)'
~
0)

tnt J

(6.7a)

(6.7b)

The eigenfunctions for the SO6 dynamical group chain
do not conserve the number of monopole or quadrupole
bosons. Instead of the quantum number n used in the
quadrupole vibrator, the SO6 quantum number is o and
the allowed values are

cr=NX —2, . . . , 0 or 1. (7.1)

The coefficients A~ ~ are given in Table I for the lowest

values of r.
We note that the J =3+ state cannot be excited. This

result, which holds for any odd angular momentum state
within the IBM space, follows from the approximation
made in (4.2). Hence, the degree to which any unnatural
parity state is excited is a measure of the validity of this
approximation. The results in (6.7) give the amplitude for
exciting the individual states in a spherical quadrupole vi-

brator. The average probability for exciting the states in

an n-phonon multiplet has been given previously (Ref.
17).

VlI. GAMMA UNSTABLE ROTOR

I

where

INa
(2o +4)!!

(N +o+4)!!(N—o )!!
(7.3b)

and

It (st)2 dt. dt (7.3c)

[P,I ]=0.
The state for N =o is

(7.4)

~
o,cr, r, na, J,M) =X&D&(or)(s )

X(I') ! r, r, ~,n, ,J,M &, (7.5a)

~here

is an SOs invariant. That is, the $06 generators commute
with this four-boson operator. In particular, for the quad-
rupole operator (3.5b),

Since SO5 is also a subgroup of SO6 as well as U5, the
remaining quantum numbers are the same as for a quad-
rupole vibrator with the allowed values of r being

v=o, o —1, . . . , 0.
D~(a~) =

I /2
2 +'(o —r)!(2r+3)!!
(o+ 1)!(cr+r+3)!

1

4

The eigenfunctions are given by

~
N, cr, r, na, J,M) =rI~~(I )

/
~

cr, o,r, na, J,M),
(7.3a)

X
(o+1—p)!

(cr ~ 2p)!p!— (7.5b}

Using the above eigenfunctions and the basic transfor-
mations (5.5) we can derive the reduced transition matrix.



33 MEDIUM ENERGY PROBES AND THE INTERACTING BOSON. . . 253

4'o=o 4 =g ~ (7.6a)

W = W'=cog, X =i sing . (7.6b)

In the SOs hmit, X=O and g4 ——0. Hence the angles P
will take the simple dependence,

Since the quadrupole operator (3.5b) is a generator of
the SO6 group, it will not connect different representa-
tions of SO&, and consequently the transition matrix will
not either. Furthermore because of (7.4) and (7.3a), the
transition matrix will not depend on ¹ Hence we shall
have

(N, rr', r', n&,J',M
(
U' '(N, cr, r,na, J,M)=5 (o,o,r', ns, J',M

(
U' '!,o,cr, r, n&,J,M) . (7.7}

Thus the scattering shall be entirely within the SO6 multiplet. The ground state has ~=na= J=M 0 and o=N. With
many steps of algebra the reduced transition matrix can be shown to be

(N, N, ~,n„JM =0
~

U'"!N, N, ~=n, =J=M =0)=
' 1/2

3 2"+'¹!
(N+ 3)(N +2) A~ gX'

X g D~(Nr)(cog) (7.8)
P

This expression can be written in two additional, but equivalent ways, one in terms of Gegenbauer polynomials, '

C„' '(x},
1 /2

(N, N, r, na, JM =0
i

U' '
i
N, N, r=ns ——J=M =0)= ' ", (2r+2)!!3(N —7 )l(2T+ 3)!!

XX'A JC~'+, '(cosP), (7.9)

and the hypergeometric function, ' F(a,b;c;z),

(N, N, r, na, J,M =0~ U' '~ N, N, r=na ——J=M =0)=
(N +3)(N +2)(N + 1)(N —~)!(2~+3)!!

1/2

X'A~ J

(N r) N+ ~—
+2;r+ 2;sin'y (7.10)

From the last expression, since F(a,b;c;0)=1, it is easy
to confirm that the reduced transition matrix reduces to
5, 0 for /=0, as it should since this is the case of no
scattering.

~N;i)=(8;) ~0),

where for i =o (oblate)

(8.2a)

VIII. AXIALLY SYMMETRIC ROTOR 8, =st+ [dt+~3/2(d2+d z)],
2

(8.2b)

/=0, 2,4, . . . , 2N . (8.1)

The SU3 ground state band is generated from a boson
condensate of intrinsic bosons

In the limit of an axially symmetric rotor, the number
of quadrupole bosons is not conserved just as for the y-
unstable rotor. In addition, since the SO5 group is not in
the subgroup sequence (3.10), the quantum numbers r and

n~ are also not conserved. The SU3 quantum numbers
(A,,p) for the ground state band are (A,,p}=(2N,O) and the
allowed angular momentum are

and for i p (prolate)

at=s'+~2d,'. (8.2c)

We use the fact that an oblate intrinsic boson can be writ-
ten as a rotation about the x axis of a boson with zero z
projection,

8, =R~(s —ado�}R„. (8.2d)

Then the SU3 states in the ground state multiplet will
just be projected from this condensate of intrinsic bosons:

~

N(2NO), JM & =(+1)'" + ' fdna(n)D~J, '(n)(s'+v 2d~t)"
~
(}&,

8 Ai
(8.3a)
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3 (2J+ 1)N!(2n)!
(2N —J)!!(2N+J+1)!! (8.3b)

The upper sign is for positive X (oblate) and the lower sign
for negative X (prolate).

In the SU3 limit,

7g2=+ g~ f4=0 s
2

(8.4a)

((}o= + 70~ 4'1= iso iti2 = —2!(}o (8.4b)
322'

W =cosg+ —sin((},
l

3
(8.5a)

where R(Q) is a rotation about the three Euler angles

(8,, 82, 8&), and Dobro(Q} is the Wigner D matrix. The nor-
malization AJ is

1/2

(8.5c}

U"'(s' 1/2d'-)U""=e "(s' v2d'-)

U'o'(v 2st+do)U' 't=e '(v 2st+d )

(8.6a)

(8.6b)

Here we also see the difference between the different
SU2 subgroups. While p is independent of the sign of X,
the p~ have the satne magnitude but different signs for
the two choices.

Because the SU3 eigenstates are given in terms of a bo-
son condensate, the most convenient way to derive the
representation matrix is to write the rotated intrinsic bo-
son in terms of the eigenbosons (5.2}; in fact the intrinsic
boson is proportional to one of the eigenbosons. In each
case, the eigenbosons transform as

W' =cos((}+—siniI!,
3

(8.5b}
The matrix element of U' ' between the states will then
reduce to the four-dimensional integral:

1/2

( N, (2N, O),J,M
i

U' '
i
N, (2N, O),J=M =0)=

(41r)' (2N)!

x f f f f d8!d81 sin82d82sin8zd82P, (cos82)

, [3iyo/2] —(3t'$0/2)
X [cos82cos82 e +s11182s11182 cos( 81 —81 )e ' ]

(8.7)

Sotne algebra produces a reduced transition matrix in terms of a hypergeometric function:

(2N + 1)!! N ——!
J
2

1/2

( N, (2N, O),J,M =0
i

U' '
i
N, (2N, O),J=M =0)=( 1)

(2J + 1)!!

—2i%$0, 6igo, J/2 J J+ l 3 6igo
~J+—'l —e

This can also be written in terms of Jacobi polynomials, P„' '~'(x), '

1/2

(2J+1)¹!N !——J
2

(8.8)

(N, (2N, O),J,M =0
i

U' '
i
N, (2n, O),J=M =0) =(+1)

2 / (2N + 1)!!(2N+J + 1 )!!
1 )!!2!v

2iiVpo, 6!!!!&,g/2 —(/+1/2, —(iV+1&jXe (e —1) PN (J/2! (x (8.9a)

where

x =2e —I .
6i po

The difference in oblate and prolate comes from the
fact that iI}o differs in sign for each case [Eq. (8.4b)].

IX. THE LARGE N LIMIT

For X large the interacting boson model approaches the
geometric collective model. ' In this case the reduced

I

transition matrix becomes special functions. In taking
this limit, we must pay attention to the fact that the func-
tion a(r) is normalized so that the 8 (E2) from the ground
state to the first excited state is reproduced [see Eq.
(3.13a)]. Therefore a and hence g [Eq. (4.3b)] scale as the
matrix element of the quadrupole operator. Also, for pro-
ton scattering, the forward scattering amplitude f is

predominately imaginary. Hence we introduce the re-
duced g,
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lg
(2+

I I Q I
Io' &

(9.1) (2,+IIQIIO,+),=v'2N(N+3r2) . (9.2c)

(2 i+
I I Q I I

0 i+ ) g
——&5N, (9.2a)

The reduced matrix element (2&+
I IQ I

IOi+ ) can be derived
from the reduced transition matrix by taking the g~O
limit. For U5

Therefore, since g is fixixl by the 8 (E2), for N large g be-
comes small. Hence in taking the X large limit, we as-
sume g small, but g not necessarily small. For example in
the U5 limit,

for SU6,

(2i+
I IQ I

IOi+ }6 v'N——(N +4),
and for SU&,

(9.2b)

~2
cosg=l- g

2
(9.3)

and then we have, assuming 7=0 and hence the relations
(7.6),

(2r+3)ll
( N, n, ~,ns, J,M =0

I

U' '
I
N, n =r=ns ——J=M =0}

(n +~+ 3)!!(n—r)!!

g «&5N, n «N,

1/2
I'/10A~g e~5 (9.4a)

(9.4b)

which agrees with the geometrical model. ~

For Sos we take the limit in the hypergeometrical function using the relation that (N}~=I (N+p)iI (N)~N . The
result is

(N, N, r, ns, J,M =0
I

U' '
I
N, N, r=n~ J=——M =0} ~ I'3(2w+3)!!]' A q( —1)'

N~ ao g

g &~N, r g&X,

where ii is the modified spherical Bessel function of order I. '

In the SU3 limit, the hypergeometric function becomes a confiuent hypergeometric function's

(9.5a)

(9.5b)

(N, (2N, O),J,M=Oi U' 'iN, (2N, O),J=M =0) ~ (2J+1)' " (Ã) e+'~ 'M J+—+
(2J+1)ll 2

' 2' 2

(9.6a)

g (&~2N, J&(2N . (9.6b)

X. RESULTS OF CALCULATIONS

U(0)( —
)

Rf ——

Qf
(10.1)

We are interested in the size of the coupled channel ef-
fects in elastic and inelastic scattering. This will depend
trivially on the size of the coupling and more substantially
on the nuclear model, the number of bosons, and the
momentum transfer q. First, we should comment that the
effects of channel coupling can be viewed as a correction
to the reduced transition matrix Uf',. ', (4.9), expressed as a
power series in the coupling, i.e., as a power series in g of
Eq. (9.1). The importance of these terms are known to
grow with q, so our question may be expressed as what is
the nature of the power series, and how fast do the correc-
tions appear?

We analyze the effects of channel coupling by consider-
ing the ratio Rf of the reduced transition matrix Uf' '(g),
(4.9), which includes all the coupled channel effects, to the
leading order (in g) nonvanishing term in Uf'

' which we
cu ufo):f '

5 RU5 g~/10 (10.2)

For elastic scattering and N~ oo in each of the IBM
limits R can be expanded to give

U5 105 ~+(f /10) 1+ & —2+ & —4+ (10.3a)

so, 3ii(g) g
2

g
4

g 10 200
(10.3b)

where we have assumed that the initial state is the ground
state of the nucleus. If no coupled channels contribute,
then Rf ——1. However, we should keep in mind, that in
general uf '-(g)" where n can be greater than one; that
is, the leading order may not be zeroth or first order in g,
but may be some higher order.

In the U5 limit we see from (9.4a}, that as N ~~, &f is
state mdependent:
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( + —)II
e+(g/2) g

0 (2n+1)n! io5

'+ 10- 105
(10.3c}

io4

Note that there are no terms linear in g. The terms quad-
ratic in g are the same in all three cases by virtue of hav-

ing fitted g to the 8(E2). Furthermore, odd powers in g
appear only in the SU3 limit. Physically, these odd terms
arise because of large quadrupole self-couplings in the 2+
and higher states. In the SO6 limit such terms are zero
since this hmit corresponds to a y-unstable rotor which
has zero quadrupole moment. For finite N there are odd
terms in the U& limit only if X&0. In practice these terms
are always small, and they vanish as N-+ oo because they
are of single particle rather than collective strength.

These features are illustrated in Figs. 1 and 2 where we
have plotted the potential model (8= 1) and the complete
elastic cross sections for 800 MeV proton scattering from
a fictional nucleus. This nucleus has the radius (5.85 fm)
with diffusivity (0.575 fm) of ' sSm (a vibrator}, but a
quadrupole coupling consistent with that of 's Sm (a rota-
tor). For the Us calculations a value of X= —0.60, ap-
propriate to '~Sm, is used. We chose such a composite
example because there is no single nucleus for which all
three IBM symmetries apply. We also chose a rather
large 8(E2) to make the coupling effects visible for the
lowest states. Had we chosen the 8(E2) of ' Sm they
would not have been. The proton-nucleon interaction is
characterized by a zero range interaction with total cross
section or ——46 mb and ratio of real to imaginary part
r = —0.38. (These are not free values but have been

)04

~02
E

Cy

cl
'D

)0 2

0.5 l.5 2.0 2.5 5.0 3.5
q(fm

FIG. 1. Calculated elastic scattering cross section of an 800
MeV proton from a fictional Sm nucleus possessing either U5 or
SO6 symmetry. The dotted line is the cross section without and
the solid line with channel coupling. The dashed line is the
square of the dispersive contribution to the cross section. The
parameters for this calculation are given in the text. Out to
momentum transfer of 4 fm ' differences between SO6 and U~
are not visible.

to 2
F

Q Io
b

g)Q
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~ 0
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)0- I
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to-~ I l I I I ll
l.5 2.0 2.5 3.0 5.5 4Q

q(fn ')
FIG. 2. Calculated elastic scattering cross section of an 800

MeV proton from a fictional Sm nucleus assumed to have SU3
symmetry. The dotted line is the cross section without and the
solid line with channel coupling. Beyond a momentum transfer
of 2.5 fm ' the coupled channel calculation is sensitive to the
oblate or prolate shape of the nucleus and hence the solid line
there splits into a short dashed or long dashed 1ine, respectively.
The parameters for this calculation are given in the text.

I I

0.5 l.o

modified to correct the effective central potential depth to
the relativistic impulse approximation value. ) We take a
Woods-Saxon nuclear density and its derivative for the
transition density. These are the inputs used in all calcu-
lations presented here.

In Fig. 1 we present our computed elastic cross section
with (solid line} and without (dotted line) the effects of
coupled channels for either the U5 or SO6 limit of the
IBM. There is no visible difference between these two
IBM symmetries. We also computed the dispersive
correction to the amplitude (the difference between the
amplitude with and without channel coupling), which we
call bf, square it and present it for comparison as the
dashed line in Fig. 1. We see that even the differences be-
tween the U5 and SOs corrections are invisible. The chan-
nel coupling corrections themselves begin to affect the
cross section near q =1.0 fm ', and dominate the cmss
section beyond q =3.0 fm '. For q less than 4.0 fm
the differences between the Uq and $0s models are not
visible.

In Fig. 2 we present computed elastic cross sections for
prolate (long dash) and oblate (short dash) SU& nuclei.
For comparisons, the elastic cross section with no multi-
ple quadrupole scattering is also presented. The prolate
and oblate calculations begin to differ due to the third-
order term near q=2.5 fm

%'e can understand the results in Figs. l and 2 by using
the analytic-stationary phase methods. ' ' If we separate
the scattering amplitude into near and far side contribu-
tions, g in the expansion of R, (10.3}, can be evaluated at
the stationary phase point. With a derivative or Tassie
form for the transition density, this makes g proportional
to iqbo where bo c+inz (c is——the nuclear radius and z
the diffusivity) is the singular point of the Woods-Saxon
form. It is the fact of i that makes the positive qua-
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so, i2(g) g2 g~
E.2,

' ——15, =1+ (10.4a)

and

+ 3 —n

=e+-(gn) "
„~0 (2n +3)(2n +5)n!

—2-1+1+' + "
7 14

(10.4b)

Note that again odd terms appear only in the SU3 case,
but now there is a linear term. Also the quadratic terms
in the U5 and SOs cases are slightly different.

In Fig. 3 we show DWIA and complete (with full chan-

iO4

dratic corrections in R lead to a reduction of the elastic
cross section.

In summary, we find effects due to g by q=1.0 fm
due to g by q=2.5 fm ', and no hint of effects due to
g out to q=4.0 fm '. It is only in these g terms that
the difference between U5 and SO6 would begin to be seen.
These calculations have been carried out to large values of
q using a large coupling strength. We conclude that for
all but the most deformed nuclei, dispersive corrections to
elastic scattering can be characterized model independent-
ly in terms of the coupling to the nearby collective states.
Of course, varying the radial dependence of the coupling
potential would change the elastic scattering, but for a
given choice it would be the same for Us and SO& nuclei,
and nearly the same for prolate and oblate SU3 nuclei.

We now turn to the effects of channel coupling on exci-
tation of the first or yrast 2i+ state. The large N limit of
the dispersion correction factor, 8, for U5 is given by
(10.3a) and for SOs and SU3 is

nel coupling) cross sections for excitation of the 2,+ yrast
state in the U5 and SO6 cases. Also shown is the square
of the magnitude of the correction (the difference between
the DWIA and coupled channel amplitude) to the ampli-
tude for the U5 case. This correction was calculated with
X=0.6, which introduces a linear correction for finite N
We have taken %=8 in this case, only to illustrate the
possible effects of this linear term. If we set X =0, the to-
tal dispersive correction to the amplitude is increased
slightly. For SO6 the total dispersive correction is some-
what smaller than the plotted curve. All three calcula-
tions (U„X= —0.60, U5, 1=0, and SOs) lead t'o 2i+ cross
sections identical on the scale of this figure.

As was the case in elastic scattering, there are no visible
differences between the Us and SOs corrected cross sec-
tions, partly because the effects of channel coupling are
very small for inelastic scattering. This may seem
difficult to understand, since for the Us case R is state in-
dependent for large N. Nevertheless the result persists in-
dependent of variations in the details of the couplings,
and is also true for odd parity excitations. The relative
insensitivity of inelastic scattering to channel coupling
arises from the fact that though corrections to both elastic
and inelastic scattering fall with momentum transfer at
about the same rate, since elastic cross sections fall faster
than inelastic, dispersive effects become important more
rapidly in the elastic case.

In the $0s limit R is a purely even function of the cou-
pling for any N This is .also true of the large N limit of
U5. For the SU3 limit on the other hand 8 contains all
powers of the coupling. In Fig. 4 we present the DWIA
and complete cross sections for excitation of the 2&+ state
for prolate and oblate SU3 nuclei. Dispersive effects are
visible at all momentum transfers, but these effects are
much larger in the prolate than the oblate case. This
comes about because the linear and quadratic terms work

iO4

E
/'X

b oi~Je

ioc-

C

Cy
)02

D
b

io'—

to ' I

0.5 I.O l.5 2.0 2.5 3.0 3.5
q (frn )

FIG. 3. Calculated cross section for excitation of the first 2+
state in a fictional Sm nucleus, possessing either SO6 or U5 sym-
metry, by an 800 MeV proton. The dotted line is the cross sec-
tion {0%'IA) without channel coupling. The solid line is the full
cross section with dispersive corrections. The square of the
corrections themselves is the dashed hne. The parameters are
discussed in the text. The U5 and SO6 cases are identical on the
scale of the figure.

(00

I

0.5 I.O l.5 2.0 2.5 3.0 3.5 40
q(tm-i)

FIG. 4. Calculated cross section for excitation of the first 2+
state in a fictional Sm nucleus, assumed to possess SU3 symme-
try, by an 800 MeV proton. The dotted line is the cross section
{0%'IA) without channel couphng. The solid hne {dashed hne)
is the cross section with channel couphng for the prolate {oblate)
case. The parameters are discussed in the text.
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together in the former case and tend to cancel in the
latter.

Again the analytic-stationary phase method can be used
in (10.4b} to illuminate the results in Fig. 4. The g term
becomes +kiqbo, where A, is a real constant depending on
the 8(E2) and kinematic factors. We can then write in
the near side amplitude

~i9~0 +(i.iqbo /1 I

(10.5)

ligbo
Combining this with the e ' that comes from the ampli-
tude, ' ' the effect of g is to change bo to ho[1+(A, /7)].
Hence the plus sign (oblate} corresponds to a larger radius
and diffusivity and therefore decreases the cross section
and moves minima inward, while the minus sign (prolate)
corresponds to a smaller radius and diffusivity with the
opposite affect in the cross section.

It is also interesting to study excitation of higher 2+
states. This can be done easily in the IBM. For the
second 2i state the dispersive ratio for U5 is given by
(10.3a) and for SO6 by

so, 105ii(g } g
i

g
~

g
'+ l8+ 792' (10.6)
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Z
b IQ- I

IQ 2

!.0 2.0
q {fm I)

3.0 4.0

FIG. S. Calculated cross section for excitation of the 22+ state
in a fictional Sm nucleus, assumed to possess SO6 symmetry, by
an 800 MeV proton. The dotted line is the leading contribution
to the cross section, in this case second order or two-step, and
the solid line is the cross section with channel coupling in all or-
ders. The dashed line shows the square of the magnitude of the
dispersive corrections. The parameters are given in the text.

In Fig. 5 we present the cross section for excitation of the
22 state in the SO6 limit. There is no direct population of
this state; in lowest order it is a two-step process. Similar
results apply for the excitation of the 22+ state in the Ui
limit. The dispersive corrections, which are fourth order,
are quite small. Comparing Figs. 3 and 5 indicates that
for real nuclei

8 (E2'Oi+-+22+ )/8 (E2;Oi+ ~2i+ ) & 0.01

would be required for the two-step effect to be important

and not overwhelmed by an admixture of a one-step ef-
fect. Many Pt isotopes have ratios in that range. Interfer-
ence between weak one-step and two-step effects would al-
low determination of the sign of the one-step process and
might contain other nuclear structure information.

XI. SUMMARY AND CONCLUSIONS

We have seen that by exploiting the algebraic simplicity
of the interacting boson model combined with the eikonal
approximation and the adiabative assumption we can
derive closed form expressions for proton nucleus elastic
and inelastic scattering that take channel coupling among
the IBM states exactly into account. This is equivalent to
a full coupled channel calculation, but is simple to imple-
ment and is physically more transparent. In the eikonal-
IBM treatment, the Glauber or eikonal exponent is linear
in the generators of the IBM SU6 symmetry group. There
are then two major technical steps in calculating the
scattering amplitude. The first involves calculating the
matrix element of the transition operator between nuclear
states. Since that operator is an exponential of the genera-
tor this calculation is equivalent to calculating the repre-
sentation matrix of the appropriate IBM transformation.
This can be done in closed form for nuclei that have one
of the three IBM subgroups as a dynamical symmetry.
For nuclei which do not have these dynamical sym-
metries, the representation matrix can be calculated nu-
merically. The second step involves evaluating the impact
parameter integral over the appropriate combination of
Bessel function and representation matrix. This is a sim-

ple one-dimensional numerical integral. In this paper we
have shown how the two steps are carried out with partic-
ular emphasis on the representation matrix for the three
special IBM symmetries: U&, SO6, and SUi.

Having developed the formalism we turned to a numer-
ical example to see the effects of the channel coupling.
Since our purpose is exploratory and pedagogical, we did
not attempt to address particular nuclei, that will come in
later work, but rather we took a composite example based
on a samarium isotope with a large 8 (E2}but which can
be described alternatively as a vibrator (U5), y unstable ro-
tor (SO6},or axial symmetric rotor (SU3).

One principal purpose is to examine the effects of chan-
nel coupling or of dispersive effects as they are also called.
For elastic scattering the lowest-order dispersive effects
are second order in the channel coupling and these
second-order effects depend only on the 8(E2). Third-
order terms are only important in the SU3 case, ~here
they distinguish oblate from prolate deformations. It is
well established that channel coupling effects grow in im-
portance with momentum transfer. We find that in our
numerical example, which has a large 8(E2}, second-
order contributions to the elastic scattering become visible
around momentum transfer q=1.0 fm ' and third-order
around q=2.5 fm '. Fourth-order and higher processes
are not significant until at least q=4.0 fm ' if at all.
Hence for reasonable values of momentum transfer,
dispersive effo:ts are important but they depend largely
on the 8 (E2) and in particular do not distinguish the SO6
and U5 cases for fixed 8 (E2).
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For inelastic scattering to the first 2+ state the effects
of channel coupling depend on the nature of the nucleus.
For both the spherical quadrupole vibrator (Us) and the
y-unstable rotor (SO&} dispersive corrections become im-

portant at relatively high momentum transfer ( &2.5 fm).
This follows from the fact that both these limits corre-
spond to y-unstable nuclei and hence the correction to the
DWIA begins at second order. Thus for y-soft or y-
unstable nuclei we do not expect large dispersive correc-
tions to inelastic scattering. However for nuclei which are

y stable (SU3) we find first-order dispersive corrections to
the leading order, and these are important at all angles.

For inelastic scattering to the non-yrast state in the U5,
SOs, and SU3 symmetry limits, the leading excitation pro-
cess is second order (two-step) and dispersive effects are
small particularly for Us and SOs. For more realistic
situations there could be admixtures of representations
and hence first and second order could be comparable.

The combination of the interacting boson model and

eikonal scattering theory yields a simple but powerful ap-
proach to intermediate energy proton scattering from nu-

clei exhibiting a wide class of collective motion. In partic-
ular the ease with which channel coupling is included per-
mits systematic studies even when strong coupling is im-
portant. We plan to apply these methods to a range of
specific nuclei spanning the different IBM symmetries.
There are a number of generalizations of this method to
other hadronic probes, to odd nuclei, and even to the
scattering from molecules ' that are also under investiga-
tion.
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