PHYSICAL REVIEW C

VOLUME 33, NUMBER 6

⁴H and $(n, \alpha x)$ reactions on ⁶Li and ⁷Li

D. Miljanić, S. Blagus, and M. Zadro Ruđer Bošković Institute, Zagreb, Yugoslavia (Received 19 March 1986)

The cross sections for the ${}^{6}Li(n, \alpha x)$ and ${}^{7}Li(n, \alpha x)$ reactions have been measured by the detection of α particles in coincidence with other charged particles (x). Prominent structures in the coincident α -particle energy spectra have been observed only in the case of ${}^{7}Li$. They could be attributed to the processes involving the states of ${}^{4}H$.

The four-nucleon system is the lightest few-nucleon system to exhibit resonances at low energies. The only particle stable state is the ground state of ⁴He. There is now enough evidence showing that ⁴H and ⁴Li have only broad particle unstable states. However, the data on the positions and widths of these states have often been contradictory, especially in the case of ⁴H.

The neutron total cross section for tritium shows a strong resonance behavior at incident neutron energies around 3.5 MeV.¹ A phase shift analysis² of older ${}^{3}H(n,n){}^{3}H$ data indicated that the lowest T=1 levels of ⁴H are broad *P*-wave triplet resonances having assignments of 2⁻ and 1⁻, resonance energies of 3.4 and 5.1 MeV, and equal reduced widths of 5.5 MeV. However, this analysis was questioned by Morrow and Haeberli.³ Recent microscopic calculations^{4,5} predict broad overlapping resonances at low excitation energies in n+t system (i.e., low energies above the unbound n+t mass). On the other hand, the values of ⁴H ground state energy as obtained from different $^{7}Li(\pi^{-},tt)n$ reaction measurements⁶⁻⁹ range from 0.3 MeV (Ref. 6) to 8 MeV (Ref. 8) in the excitation energy in n + t system. ⁴H contributions were also observed in the following reactions: ⁶Li(π^- , dt)n (Refs. 6-9), ⁴He(π^- , γ)³Hn (Ref. 10), ⁶Li(⁶Li,⁸B)³Hn (Ref. 11), and ⁷Li(³He, ³He³He)³Hn (Ref. 12). The results of these measurements also differ, which could be explained by the complexity of these processes and experimental difficulties. The only available data on ³H(d,p)³Hn and ³H(t,d)³Hn reactions¹³ show a broad structure in the energy spectra, which could be attributed to the ⁴H ground state. In some measurements^{7,9} observation of ⁴H excited states was also claimed.

Because of the special interest in the level structure of four nucleon systems, which is proving ground for different few-nucleon theories, it is important to get consistent data on ⁴H states. One of a few relatively simple reactions for this study is the ⁷Li(n, α)³Hn reaction. Due to the α -t cluster structure of ⁷Li one could expect to observe ⁴H contributions in α -particle energy spectra at very forward (α -particle knockout) and very backward angles (triton pickup) for incident neutron energies above 10 MeV. However, measurements of the same spectra from ⁶Li targets can be used for different calibration and background test purposes. One does not expect any structures in the continuum part of the α -particle energy spectra from ⁶Li(n, α) reactions, because there are no triton excited states at low energies. However, no α -particle spectra from ⁶Li and ⁷Li targets from these angular regions could be found in the literature. The lack of data may be due to the difficulties in the preparation of pure lithium targets and to the unfavorable Q values of these reactions with respect to (n, α) reaction Q values for possible target contaminants and suitable backings.

In our experiment these difficulties were avoided by coincident detection of two outgoing charged particles. The experimental setup used in the measurements is shown in Fig. 1. 14.6 MeV neutrons were used to irradiate lithium targets. Charged particle products were detected in coincidence, using a counter telescope consisting of three proportional counters (ΔE_i) and a solid state detector (E).¹⁴ α particles were detected and identified using ΔE_2 , ΔE_3 , and E counters, while other charged particles were detected in a ΔE_1 counter. The ⁶Li(n, α)³H reaction was used as a calibration standard for pulses of the tritons detected in ΔE_1 counter. The proportional counters were filled with pure hydrogen (p = 10 kPa) to avoid (n, α) reactions on counter gases. Isotopically enriched targets were made from different compounds (e.g., LiF, LiH) by evaporation or by sedimentation onto thin gold or nickel foils. The foil thicknesses were chosen in such a way to stop heavy particle recoils and to allow higher energy (> 0.8 MeV) tritons to reach the ΔE_1 counter. Special care was taken to maintain the same conditions for both the ⁶Li and ⁷Li targets during their preparation, storage, and use in the measurements.

Many different coincident α -particle energy spectra were collected. Figure 2 shows typical spectra (background subtracted) measured at $\theta_{\alpha} = 0^{\circ}$. The vertical bars with horizontal arrows mark the maximum α -particle energies for different $(n, \alpha x)$ reactions. In the case of ⁶Li, the sharp peak at higher energies corresponds to the two-body reaction ⁶Li $(n, \alpha)^{3}$ H. The dashed curves correspond to the three-body phase space distribution as calculated by a Monte Carlo program. This calculation takes into account the an-

FIG. 2. Coincident α -particle spectra from ⁶Li(n, αx) and ⁷Li(n, αx) reactions. The dashed lines represent calculated threebody phase space distributions for the ⁶Li(n, αd)n and ⁷Li(n, αt)n reactions, respectively. The dotted line shows the calculated ⁷Li(n, α_0)⁴H reaction contribution ($E_r = 2.7$ MeV, $\gamma^2 = 2.3$ MeV for ⁴H ground state).

gular acceptance of the detectors as well as the energy losses of detected particles. In the case of ⁶Li there is no structure in the continuum part of the spectrum (no triton excited states). However, in the case of ⁷Li, there are significant departures from this distribution. Because of that, the ⁷Li(n, α_0)⁴H reaction contribution was calculated with the same Monte Carlo program imposing additionally a resonance of the form

$$f(E) \propto P_c \gamma^4 / [(E - E_c)^2 + (P_c \gamma^2)^2]$$
,

as it was done and explained in Ref. 9. P_c is the penetration factor, E_r is the resonance energy, and γ^2 is the reduced width. The values of the parameters were the same as in Ref. 9, i.e., $E_r = 2.7$ MeV, $\gamma^2 = 2.3$ MeV, and r = 4 fm. The dotted curve is the result of this calculation. It can be seen that the agreement in the higher energy part of the spectrum is satisfactory. Similar results were obtained for $\theta = 15^{\circ}$.

The structure in the lower part of the spectrum falls in the region where the first excited state could be expected. However, due to possible contributions of the four-body reaction, ${}^{7}\text{Li}(n, \alpha d)nn$, and higher background in this region, it is not possible to make any definite conclusion on the first excited state involvement.

In summary, some structures were observed in the spectra of the ⁷Li(n, αx) reaction, which could be attributed to the state(s) of ⁴H. A calculation using ⁴H ground state parameters ($E_r = 2.7$ MeV and $\gamma^2 = 2.3$ MeV) as obtained from the most complete study of the ⁷Li(π^- ,tt)n reaction,⁹ fits satisfactorily the higher energy part of the spectra. However, a complete calculation taking into account all the processes involved (e.g., sequential processes through ⁵He and ⁷Li states) is needed to establish the significance of the contribution of ⁴H states as well as the true values of their parameters. It would be highly desirable to perform kinematically complete experiments of other "simple" reactions [e.g., ³H(d,tp)n and ³H(t,td)n], which are the most suitable three-body processes to get data on ⁴H states.

This work was partially supported by the International Atomic Energy Agency under Contract No. 3312/RB, and by SIZZR of SR Croatia under Contract No. 07/NE.

- ¹T. W. Phillips, B. L. Berman, and J. D. Seagrave, Phys. Rev. C 22, 384 (1980).
- ²T. A. Tombrello, Phys. Rev. 143, 772 (1966).
- ³L. W. Morrow and W. Haeberli, Nucl. Phys. A126, 225 (1969).
- ⁴J. J. Bevelacqua, Phys. Rev. C 16, 1673 (1977).
- ⁵A. M. Badalyan, T. I. Belova, N. B. Konyukhova, and V. D. Efros, Yad. Fiz. **41**, 1460 (1985) [Sov. J. Nucl. Phys. **41**, 926 (1985)].
- ⁶R. C. Cohen, A. D. Conaris, S. Margulies, and J. L. Rosen, Phys. Lett. 14, 242 (1965).
- ⁷R. C. Minehart, L. Coulson, W. F. Grubb, III, and K. Ziock, Phys. Rev. 177, 1455 (1969).
- ⁸T. C. Meyer, Nucl. Phys. A324, 335 (1979).
- ⁹U. Sennhauser *et al.*, Phys. Lett. **103B**, 409 (1981); U. Sennhauser *et al.*, Nucl. Phys. **A386**, 429 (1982).
- ¹⁰J. A. Bistirlich et al., Phys. Rev. Lett. 25, 950 (1970).
- ¹¹R. B. Weisenmiller et al., Nucl. Phys. A280, 217 (1977).
- ¹²R. Franke et al., Nucl. Phys. A433, 351 (1985).
- ¹³N. Jarmie, R. H. Stokes, G. G. Ohlsen, and R. W. Newsome, Phys. Rev. 161, 1050 (1967).
- ¹⁴D. Miljanić, M. Furić, and V. Valković, Nucl. Phys. A148, 312 (1970).