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The single particle energies extracted through the inverse gap equation method for each nucleus
are used in the nuclear structure calculations within the framework of the broken pair approxima-
tion for N =82 even isotones. This makes a modest improvement of the trend of the level energies
with particle number as compared to those obtained by using a fixed set of the single particle ener-

gies.

The nuclear shell-model calculations usually proceed
with the notion that the observed nuclear properties are
attributed only to the few valence nucleons outside the as-
sumed inert core. The core just renormalizes some of the
nucleon properties such as the nucleon charge, etc., and
the two-body interaction matrix elements. The input pa-
rameters, viz., the single particle (s.p.) energies (€= pjm )
of the valence levels and the effective two-body interac-
tion matrix elements (TBME) relevant to the space are
held fixed in the calculations for all the nuclei in the re-
gion. The input €; are taken either from the experiment
where available or are calculated empirically, or are even
treated as parameters. The effective TBME are obtained
from the G matrix corrected for the renormalization con-
tributions due to the core, or are calculated from the as-
sumed phenomenological form of the interaction, or are
adjusted to fit the experimental data. However, it is
known that €; do vary with mass number, which is essen-
tially a many-body effect. Unfortunately, it is very diffi-
cult to quantitatively ascertain this variation either from
experiment or from theory. However, for some special
cases such as single-closed shell (SCS) nuclei, it is possible
to obtain €, for a specific nucleus through the inverse gap
equation (IGE) (Refs. 1 and 2) procedure. The IGE
method assumes that for SCS odd- 4 nuclei, the observed
low-lying states with a given spin and parity correspond-
ing to the valence s.p. orbitals are pure one- (or a mixture
of one- and three-) quasiparticle excitations. This, togeth-
er with the observed odd-even mass difference, then deter-
mines the quasiparticle energies (E,). The knowledge of
E, in turn yields, by inverting the gap equation, the pair-
ing strength (G) of the TBME and the physical gap pa-
rameter (A,) of the Bardeen-Cooper-Schrieffer (BCS)
theory apart from an overall normalization factor. The
normalization is fixed through the number equation. The
s.p. energies €, are then obtained by ascertaining whether
a particular level is above or below the Fermi level from
one-nucleon transfer reaction data. The results of IGE
calculations are available® for N=82 isotones. In this pa-
per we investigate the effect of variation of €, and G on
the calculated spectrum of even N=82 isotones. We use
the broken pair approximation (BPA) (Refs. 4 and 5) for
the energy calculations. We restrict the protons outside
the Z=>50,N=82 inert core to occupy five valence levels
(1g7/2,2d5/2,2d3/2,331/2,1]11]/2) and use the S-8 interac-
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tion between the valence protons. It is observed that the
use of the input parameters €, and G obtained by the IGE
procedure improves the results as compared to those ob-
tained by using a fixed set of €, and G. We now describe
briefly the method of calculation and then discuss the nu-
merical results.

The IGE method assumes that the observed few low-
lying excitations of odd-A4 SCS nuclei corresponding to
the valence orbitals are described in terms of one- (a mix-
ture of one- and three-) quasiparticle excitations. Half of
the odd-even mass difference calculated from the nuclear
mass tables is then added to the observed excitation ener-
gies to obtain the respective single-quasiparticle energies
(Eg). The procedure to account for three-quasiparticle
admixtures either by perturbation or through the iterative
method is discussed in detail in Ref. 3. The relevant ef-
fect of three-quasiparticle admixtures in our context is to
slightly modify the single-quasiparticle energies. Once E,,
are known, the BCS gap equation becomes a real nonsym-
metric eigenvalue problem

MA' =wA’ . (1)
The matrix M has the form

(2jp+1)
(2ja+1)

1 "2 G (aabb0)
aa
M= T

=% (2)

Here a denotes all but the magnetic quantum number m,
of the label @. The matrix M is made positive with the
proper choice of the phase for the pairing TBME
[G(aabb0)]. The inverse of the highest eigenvalue w, of
Eq. (1) gives the pairing strength (G) of the two-body ef-
fective interaction, while the corresponding eigenvectors
A’ (wo) having all positive components are related to the
physical gap parameters of the BCS theory through an
overall normalization factor. The normalization factor £
satisfying the constraint E,—£A,(wy) >0 is fixed from
the number equation. One needs to know whether a par-
ticular level is above or below the Fermi level before one
can extract the single particle energies of the valence lev-
els. This information can readily be ascertained from the
respective one-nucleon transfer reaction data. The results
of IGE calculations are available® for N=82 isotones, in
which the observed spectra®’ of odd-4 nuclei (shown in
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FIG. 1. The calculated proton s.p. energies and the quasipar-
ticle energies (taken from Ref. 6) used in the IGE calculations
for N=82 isotones.

Fig. 1) and the odd-even mass difference P (given in Table
I), obtained from the mass tables,® have been used. The
results of the analysis of one-nucleon transfer reaction
data are then used in extracting the s.p. energies. The cal-
culated s.p. energies are shown in Fig. 1 along with the
quasiparticle energies which correspond to the lowest ex-
citation energy of a given spin and parity. The calculated
G, the strength of the pairing part of the interaction, and
the fractional uncertainty Ap in the particle number are
given in Table I, along with the odd-even mass difference
P. The extracted s.p. energies and G do vary smoothly
with mass number. In fact, the results indicate partial
shell closure at Z=64 with a gap of about 2.56 MeV, sup-
porting the semimagic nature of the f;f’Gd nucleus.

In the BPA the ground state |y,) for p pairs of identi-
cal valence nucleons outside the core is assumed to be

| Yo} <S5 [0) . @3)
Here the pair distributed operator S, is
172
(2j,+1)
S, =36, ]GT Abylaa) @
a

TABLE 1. The odd-even mass difference p obtained from the
observed binding energies (Ref. 8), the calculated G, the pairing
strength of the TBME, and the fractional uncertainty Ap in the
particle number P.

No. of P G

valence protons (MeV) (MeV) Ap
5 1.578 0.186 0.012
7 1.892 0.189 0.003
9 1.994 0.187 0.002
11 1.996 0.187 0.036
13 2.008 0.182 0.001
15 2.670 0.186 0.001
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and A}M is a two-particle creation operator with total an-
gular momentum J and projection M. The expansion
coefficients ¢, (v,/uz,vi+ul=1) are determined by
minimizing the expectation value of H with respect to the
ground state |1,). The BPA basis states are obtained by
replacing one of the S, operators appearing in | ;) by
the A}M(ab) operator. An orthonormal set of states for a
given spin and parity J" are constructed from these basis
states for diagonalizing H. This yields the excitation en-
ergies and the corresponding wave functions.

It is to be pointed out that an accurate set of expansion
coefficients (¢’s) can also be obtained from the following
iterative procedure, starting from any arbitrary set of ¢’s.
The calculated BPA wave function for the ground state
(J=0) is rewritten as

ZxaAg;(aa)(ST)P_1 |0) . (5)

The new set of ¢’s are determined from the calculated x’s
by requiring that Eq. (5) has the same form as that of
| o) [Eq. (3)]. The BPA calculations are again per-
formed and the next set of ¢’s obtained. The procedure is
rapidly converging; in practice two to three iterations are
sufficient for an accurate determination of ¢’s. This
avoids the need for determining ¢’s through the minimi-
zation.

Explicit numerical calculations have been carried out
for N=82 isotones, restricting the valence protons outside
the Z=50,N=82 core, in five (1g7/2, 2d5/2, 2d3/2,
3512, and 1hy; ;) shell-model s.p. levels. Two sets of cal-
culations have been performed. In the set labeled BPA,
the s.p. energies €; with values 0.0, 0.96, 2.75, 2.83, and
2.54 MeV for 1g7/2, 2d5/2, 2d3/2, 351/2, and lh”/z,
respectively, and the strength G=0.187 MeV of the S-6
interaction are held fixed for all N=82 isotones. In the
second set labeled BPA1 the specific values of ¢; and G
obtained from the IGE for the respective nuclei are used.
The calculated results for both sets are displayed in Fig. 2.
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FIG. 2. The calculated and the experimental (Expt.) excita-
tion energies in MeV. BPA represents the results obtained by
using a fixed set of €, and G for all N=82 isotones, while BPA1
corresponds to the results obtained with the IGE values of €,
and G for specific nuclei.
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It is clear from the figure that the use of €; and G gen-
erally improves the results; even the 21 state in P=8 in
BPA1 appears as the first excited state, which is not the
case in the BPA. The calculated excitation energies for
higher excited states are generally smaller both in the
BPA1 and the BPA. This difference in energy is almost a
constant for a given spin and parity, and it is of the same
order of magnitude for all J” states. However, the BPA1
agrees relatively better. Thus this makes a modest im-
provement of the trend of level energies with particle
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number as compared to those obtained by using a fixed set
of s.p. energies. Therefore, specific s.p. energies relevant
to a particular nucleus, if available, should be used in nu-
clear structure calculations.
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