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Low equation, pion-nucleon scattering, and Castillejo-Dalitz-Dyson pole
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%'e examine the p-wave mN scattering at medium energies by means of the Low equation with a
view to determining the form factor of the mN interaction. Solutions of the equation with and
without a Castillejo-Dalitz-Dyson {CDD) pole are used. The solution with no CDD pole corre-

sponds to the old Chew-Low model, whereas the one with a CDD pole corresponds to the quark ver-

sion of the Chew-Low model. The ~N interaction form factor is determined so that the b resonance
is well reproduced. %e find that the solution with a CDD pole leads to a softer form factor but is

not as soft as those expected from the nucleon size in the quark model. Using the solutions and
form factors thus determined, we also examine the pionic contributions to the nucleon magnetic mo-

ment and the nucleon mass.

I. INTRODUCTION

In describing scattering processes the Low equation has
some important advantages over the Schrodinger equation
or the Lippmann-Schwinger equation. The Low equation
involves only renormalized mass and coupling constant.
It is essentially a dispersion relation for the scattering am-
plitude, and is independent of the details of the interac-
tion. It is manifestly crossing symmetric. Unlike the
Schrodinger equation, however, the Low equation is non-
linear and there are an infinite number of solutions which
differ from each other with respect to the so-called Castil-
lejo, Dalitz, and Dyson' (CDD) pole in the denominator
of the scattering amplitude. It is believed that solutions
with different numbers of CDD poles correspond to dif-
ferent Hamiltonians, which have different numbers of
"elementary" particles. z

This multiplicity of solutions of the Low equation has
an interesting implication regarding the mechanism of the
5 resonance in the p-wave nN scattering. In the old
Chew-Low (CL) model the b, resonance is interpreted as
due to the iteration of the process of nN~mnN~trN,
and one chooses the solution of the Low equation with no
CDD pole. From the quark model point of view, howev-

er, the b, resonance is due to the presence of the bare b„
which is as elementary as N, both consisting of three
quarks. This leads to the quark version of the CL
model. " Although the underlying Hamiltonians are dif-
ferent, the Low equation for trN scattering remains exact-
ly the same between the old CL model and its quark ver-
sion. In solving the Low equation for the quark CL
model, however, one has to choose a solution with a CDD
pole which corresponds to the bare h.

It is prohibitive to solve the Low equation as such for
the CL model because it involves an infinite number of in-
elastic channels. A.s we will discuss in the following the
equation can be reduced to a manageable form by specify-
ing the inelasticity. The solution depends on the ~NN
vertex form factor U(k} which one has to assume. This
U(k) can be determined by requiring that the solution
reproduces the empirical phase shifts at low and medium

energies, in particular the b resonance in the P33 channel.
By assuming certain simple forms of U(k) containing a
cutoff momentum A, attempts have been made to deter-
mine the optimum value of A in the old CL model (i.e., by
using solutions of the Low equation with no CDD pole).
Bajaj and Nogami assumed a straight cutoff, i.e.,
u (k) =e(A —k), and found A =6.Sm where m is the
pion mass. They emphasized the importance of taking ac-
count of crossing symmetry, inelasticity, and the nucleon
recoil correction. Ernst and Johnson did a more detailed
analysis of the solution of the Low equation. They as-
sumed the Gaussian form for v (k), i.e.,

u(k)=exp( —k2/2A ) (1.1)

and obtained 2Az=30m, or A=~15me. It should be
noted, however, that the calculation of Ref. 7 was done in
the static limit. Bajaj and Nogami showed that when the
nucleon recoil effect is included one needs a larger value
of A. They obtained A=6.8m„and 4.9m„with and
without the recoil correction, respectively. The latter
value, 4.9m, can be compared with v 15m of Ref. 7. If
the recoil correction is incorporated into the calculation of
Ernst and Johnson, A will probably be increased to
5m —6m . If we interpret U(k) of Eq. (1.1} as the
Fourier transform of a density distribution p(r), we obtain

1/2
=v 3/A .(r )'r2= I r p(r)dr (1.2)

If A =5m, for example, we obtain (r ) '~ =0.5 fm.
The main purpose of this paper is to determine the

form factor U(k) for the quark CL model. We solve the
Low equation by specifying the inelasticity, which we take
from experiment, and determine U(k) in the form of Eq.
(1.1) by fitting the b, resonance. The essential difference
from the earlier attempts ' is that the scattering ampli-
tude for P33 contains a CDD pole. The position to, (ener-

gy} of the CDD pole is arbitrary, and we choose it in the
range of 0.5—1.0 GeV, which leads to A =3.3m —4. 1m
and (r )' =0.6—0.8 fm. This rms radius is somewhat
smaller than the nucleon radius based on the quark model,
the latter being typically 0.8—1.0 fm. ' In other words
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the mN interaction form factor is not quite as soft as those
expected from the quark model. Once the interaction
form factor is determined one can calculate various pionic
effects. We will examine the pionic contributions to the
nucleon magnetic moment and nucleon mass.

Throughout this paper we confine ourselves to the P-
wave irN interaction. We briefiy summarize the Low
equation and its solution with no CDD pole in Sec. II,
and the solution with a CDD pole in Sec. III. Expressions
for the pionic contributions to the nucleon magnetic mo-
ment and mass are given in Sec. IV. Results and discus-
sion are given in Sec. V.

Img (co)= —A, k u2/(coil ) . (2.6)

1 1 ~pgA p
g ( —co) A, p gp(co)

'

where

(2.7)

—1 4 (2.8)

The Img ( —co) can be evaluated by means of the crossing
relation

II. SOLUTION %'ITH NO CDD POLE

The Low equation for the CL model is written as

Imh (co') Imh~( —co')
h~(co) = +— dco', . +

CO K ~e CO —N —l 6' N +67

where

(2.1)

More explicitly we use

kj' (co)
g ( —co)=—

with

gp(co)f (co)=+A pk, p
p I gp(~) I

'

(2.9)

(2.10)

3m', —1

2

i) sin5~
h, (co}=, e

k'uz
(2.2)

where u(k) is the mN interaction form factor, for which
we assume Eq. (1.1). In order to include the nucleon
recoil effect approximately we interpret co to be

co=cou+k /(2mN), (2.3)

where k is the pion momentum, mN the nucleon mass,
and coo ——(k +m )'~. As we noted in Sec. I, Eq. (2.1)
applies to the quark CL model as well as to the old CL
model.

In order to make use of the CDD technique' we intro-
duce the denominator function g (co) by

~a ~~k

coh (co) coi) sin5
(2.4)

Equation (2.1) is satisfied if g (co) satisfies

Here f (=0.08) is the renormalized mN coupling con-
stant and m is the pion mass, and ~ the pion energy.
The suffix a (=1,2,3,4) refers to (2I,2J)=(1,1), (1,3),
(3,1), and (3,3), respectively. The h (co) is related to the
real and imaginary parts of the phase shifts, 5, and rl,
bye

Let us now describe how we solve the Low equation.
There are two inputs. One is i)c which is related to the
inelasticity. For this we substitute the imaginary part of
the experimental phase shift. ' The other is the form fac-
tor u (k} of Eq. (1.1). In this way the only free parameter
that we have is the A in u (k), which we determine by re-
quiring that the b,-resonance energy coa ——296 MeV
=2. 12m be fitted.

If we ignore the term with g ( —co), i.e., in the no-
crossing approximation, Eq. (2.5) can be solved immedi-
ately. ' Starting with this no-crossing solution, we solve
Eq. (2.5) by iteration. In each step of the iteration we in-
corporate the crossing contribution by means of Eqs. (2.9)
and (2.10). Once g (co) is determined, the b, -resonance
energy is determined from Reg4(co) =0, and the width I
by6

I = 2 Img4(cog)

Re(g 4(cob) l

where g4(co) =dg4(co)/dco.

(2.11)

III. SOLUTION %ITH A CDD POLE

g4(co)=rhs of Eq. (2.5)—g
co; (co; —co)

For a=4, i.e., for P33 it can easily be shown froin Eqs.
(2.4} and (2.5} that Img4(z) &0 for Im(z) ~0; hence g4(z)
is a generalized R function. " Then, according to CDD,
the same Low equation (2.1) can be satisfied even if we re-
place Eq. (2.5) for a =4 with

- dco' Imga(co')
g (co)=1+-

~m QP Q3 —6)—E E'

Img ( —co')

QP +N

CJ.CO

co&(co&. +co)
(3.1)

(2.5}

The Img~(co) in Eq. (2.5) is determined from Eq. (2.4) as

where c; and co; (&m ) are all arbitrarily positive con-
stants. The poles in the added terms are referred to as
CDD poles. At these poles, h4(co) and hence the elastic
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cross section vanishes. The same prescription does not
apply to the channels other than a=4, because g (co)
with a&4 is not a generalized R function.

The meaning of these solutions with CDD poles has
been clarified for the Lee and Lee-type models in which
the crossing term is absent. Dyson suggested for those
models that for each CDD pole there corresponds a bare
(elementary) particle in the system. The same Low equa-
tion applies to many different physical systems, but there
is a one-to-one correspondence between the solutions and
the physical systems. Kumar and Nogami explicitly
demonstrated this correspondence for the Lee-type
models. No such analysis seems to have been done for
more realistic models with crossing terms, but we assume
that Dyson's interpretation of CDD poles holds in gen-
eral.

Since we are interested only in 5 for which only one
underlying bare baryon is expected, we take only one
CDD pole. That is, we take

e) dco' Img~(co )
g4(co) =1+-

7T' ~m CO CO —CO —l E

Img ( —co')

N +N

CN

co~(co~ —co)
(3.2)

Once g~(co) and u (k}are determined, the CL model en-
ables us to calculate practically any other pionic ef-
fects. ' The pionic contribution to the nucleon magnetic
moment (in nuclear magnetons} is given by I4 ~i where

together with Eq. (2.5) for a= 1, 2, and 3. Equations
(2.6}—(2.11) remain valid as such. In addition to A in the
interaction form factor we now have two new parameters
c and co, . We solve Eqs. (3.2) and (2.5) in the same way as
in Sec. II, i.e., by iteration. For the parameters we arbi-
trarily assume co„and determine c and A by fitting co&

and I.
IV. OTHER PIONIC EFFECTS

8f mN " u k mN ~ u k ~, k'(2co+co') ~lgl
m couco 27'ir couco cooco (co+co )

~ gl

~4g4

Ig4 I'

(4.1)

Here coo ——(k +m }'~ and co is defined by Eq. (2.3). The first term in the right-hand side of Eq. (4.1) is the Born term.
The nucleon self-energy due to the n N interaction is given by

3f ~ u k 1 ~ u k ~, co+ 2co' ~igi 2~age 2~igi 4~4g4

irma o couco 12ir' o coo o co'(co+co')~ /g /' /g /' /g J' fg4 /'

(4.2)

In the static limit there is no distinction between co and
coo, and the above two formulas are reduced to the corre-
sPonding formulas of Ref. 12. The factor coo stems from
(2cou) '~ which is associated with the creation or annihi-
lation operator of the pion, whereas co is from the energy
denominator.

V. RESULTS AND DISCUSSION

For the nNcoupling co.nstant we use f =0.086.' For
we substitute the empirical data. ' In the solution with

no CDD pole there is only one parameter A, which we
determine such that Reg4(coa}=0. The resonance width
I may not be produced because there is no more free pa-
rameter.

%hen a CDD pole is included there are three parame-
ters in the solution, A, c, and co, . Mathematically c and
co, can be any arbitrary positive numbers, but we choose
co, in the range of 0.5—1.0 GeV. Since Ii4(co} and hence
the elastic cross section vanishes at co=~„we cannot
choose co, too low. On the other hand the model that we
are dealing with is meant for low and medium energies,
and hence it would be sensible to limit the range of the pa-

rameters to (1 GeV; hence co, =0.5—1.0 GeV. In our
calculation, we assume a certain value of co, and then
determine A and c by requiring that Reg4(coa)=0 with
~~——2. 12m and I =0.84m . In solving the equation we
iterated about eight times; Reg (co) converged within the
first four digits.

%e present the results in two tables. The crossing con-
tribution, inelasticity, and nucleon recoi1 effect are ig-
nored in Table I, whereas they are all included in Table II.
In both tables, the row with c =0 is for the case with no
CDD pole. In this case, as we noted above, the empirical
width I =0.84m is not reproduced. ' %%en a CDD pole
is included, I' can always be fitted.

In both tables one can see that A is reduced when a
COD pole is included, and this effect is more pronounced
for larger co, . In Table II, A can be as small as -3.3m;
the rms radius defined by Eq. (1.2) can be as large as 0.75
fm. This is still somewhat smaller than the nucleon size
usually expected from the quark model (i.e., 0.8—1.0
fm}. ' The form factor u(k) that we obtained is therefore
not as soft as those used in Refs. 4 and 5. A consequence
of this not very soft form factor is that the pionic contri-
butions to the magnetic moment and nucleon self-energy
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TABLE I. Results without the crossing contribution, inelasticity, and nucleon recoil effect. The first
row with c =0 is for the solution with no CDD pole. The empirical value for the width of the 6 reso-
nance is I =0.84m, which cannot be fitted when c =0. p is in units of nuclear magnetons.

o), (GeV) c (MeV) Born Total Born

—bE /mN
Total

0.5
0.6
0.7
0.8
0.9
1.0

194
472
817

1223
1693
2230

11.46
5.53
3.80
3.12
2.79
2.60
2.49

1.44
0.84
0.84
0.84
0.84
0.84
0.84

3.98
1.51
0.85
0.61
0.49
0.44
0.40

3.99
1.52
0.85
0.61
0.50
0.44
0.40

8.07
0.87
0.27
0.144
0.100
0.080
0.069

8.37
0.90
0.28
0.148
0.103
0.083
0.071

are not very small. This is rather disturbing. In the tables
the Born term and the entire contribution are separately
entered. Note that for the magnetic moment the Born
term constitutes almost the entire effect. This is because
of the cancellation in the last term of Eq. (4.1).

In their cloudy bag model, Theberge et al. examined
the P33 scattering by solving the Lippmann-Schwinger
equation. They included the bare b, contribution via
m N —+h~n N, but not its crossing counterpart
nN~nmb, ~nN. Also they did not take account of the
inelasticity nor the nucleon recoil correction. Hence their
results would correspond to those of our Table I with a
CDD pole. In Table I the cutoff A can be smaller than in
Table II. For example, A can be -2.5m which corre-
sponds to (r )'~ =1.0 fm. It is interesting that this
value of A is close to the value determined in the cloudy
bag model. However, because of the lack of the crossing
contribution, etc. , in Table I, we think that the results of
Table II should be preferred.

There are a few points in our calculation with which we
are rather uncomfortable. We do not know how to
remedy them but it would be useful to note them. In fact
these are the problems inherent in all calculations of this
type including the very early attempt of solving the Low
equation by Salzman and Salzman. ' The solutions that
we obtained describe the P33 channel very well, the Pi3
and P3i channels fairly well, but the P» amplitude is a
failure. The empirical phase 5i for Pii changes its sign
from negative to positive and grows towards the Roper
resonance (1440), but the calculated 5i remains negative
throughout. This is simply because of the repulsive driv-
ing term in the P» channel. Presumably the Roper reso-

nance could be associated with something like a CDD
pole. However gi(c0) within our framework of Eqs. (2.4)
and (2.5) is not a generalized R function and hence we
cannot use the CDD technique as such. One can force 5i
to change its sign at a certain energy by using a subtracted
dispersion relation. We tried that but found that the con-
vergence of the iteration was very slow. We are not sure
that that is the right way of treating the Pii channel, and
hence, we do not present those results in this paper.

Another problem is concerned with crossing symmetry.
Although crossing symmetry is well satisfied for g4, it is
only approximately satisfied for other g's. This may
sound strange because a11 g's are coupled, but this prob-
lem is inherent since Ref. 15. It is possible to improve on
this point by introducing channel dependent form factors
but we feel that we need more physical insight into this
problem. We took i)~ from the empirical data, which
means to assume that the empirical g in all channels are
reproduced by the solution of the Low equation. This
may be too much to demand of the model.

We included only one CDD pole which we assume to
correspond to a bare b, . The quark model, however,
predicts many more baryon excited states. This would
mean that we should choose a solution with correspond-
ingly many CDD poles. If we do so it may turn out that
the form factor becomes even softer. However, this does
not necessarily mean that the pionic contributions to the
magnetic moment, etc., are reduced. To include many
bare baryon excited states means to take account of vari-
ous virtual quark excitations. Such effects tend to
enhance the pionic contributions as one can illustrate for
the nucleon self-energy. '

TABLE II. The same as for Table I except that the crossing contribution, inelasticity, and nucleon
recoil effect are all included.

~, (Gev~ c (MeV) Born Total
—hE /m~

Born Total

0.5
0.6
0.7
O.S

0.9
1.0

0
48

130
266
461
740

1075

4.45
4.13
3.93
3.78
3.61
3.45
3.32

1.05
0.84
0.84
0.84
O.S4
0.84
O.S4

1.35
1.19
1.09
1.02
0.94
0.87
0.82

1.36
1.20
1.11
1.03
0.95
0.88
0.83

0.80
0.61
0.51
0.44
0.38
0.33
0.28

0.83
0.64
0.54
0.46
0.40
0.34
0.30
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Finally, although the Low equation combined with the
CDD technique enables us to obtain various exact, model
insensitive results, it is not very useful in investigating the
details of the interaction. For example, the relation be-
tween the ODD pole parameters and the underlying in-
teraction is not clear. For Lee-type models the relation

has been explicitly worked out by Kumar and Nogami.
It would be interesting if a similar analysis can be done
for more realistic models.
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