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Reaction p+ '~C = "C+p++v„and the weak form factors in the timelike region
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%e present an approximate theoretical calculation of the cross section for the reaction

p+' C ' C+p++v„ for center of mass proton energies from Ep=1060 MeV to Ep =1085 MeV.
%'e make use of data from p+ ' C~' C+m+ and p+ ' C~y+ ' N reactions to obtain approximate

values for the form factors involved via the partially conserved axial current hypothesis and con-

served vector current hypothesis, respectively. %e discuss the utility of this process in studying the

role of anomalous thresholds in the nuclear partially conserved axial vector current.

I. INTRODUCTION

The process, p+ ' C~'3C+p, ++v„, is interesting for
a number of reasons. Unlike most commonly studied
weak nuclear processes„q for this reaction is entirely
timelike, thus enabling the weak nuclear form factors to
be observed in this region. Additionally, low lying
anomalous contributions to nuclear matrix elements in-
volved in the partially conserved axial vector current
could be more easily observed. Near threshold for this re-
action the time component' of the axial current plays an
important role and so may also be readily observed.

In this paper we present an approximate calculation for
the cross section cr(p+' C~ C+1M++v&) for proton
center of mass energies from 1060 to 1085 MeV. The cal-
culation makes use of an elementary particle model treat-
ment whereby the axial current matrix elements are deter-
mined via the partially conserved axial vector current hy-
pothesis (PCAC) from p+ ' C~' C+m+. The vector
current matrix elements are determined from p
+ '2C~y+ '3N data via the conserved vector current hy-

pothesis (CVC). This method complements a more stan-
dard treatment used to perform an earlier approximate
calculation.

In Sec. II of this paper we obtain the matrix elements of
the axial vector and vector currents. In Sec. III we obtain
the cross section o(p+' C~' C+tu++v&). In Sec. IV
we discuss the cross section obtained here, and also the
possibility of calculating an inclusive reaction cross sec-
tion. We also consider the effect on the cross section of
low-lying anomalous threshold states in the nuclear
PCAC relation.

II. CURRENT MATRIX ELEMENTS

We examine the hadronic part of the axial current ma-
trix element for the process

+12C 13C+ ++ (13C
~

AP
~

12C)

We note that ' C, p, and ' C are —, , —, , and 0+ nuclei,

respectively. Making use of Lehman-Symanzik-
Zimmerman (LSZ) notation, the structure of
(' C

~

A"
~ p,

' C) may be given as

( 13C
~
A„(0)

~

12c,p) =—uf(y„F, +q„F2)u, , (3)

although we know that only the timelike part will be im-

portant for our calculation here.
It is perhaps worthwhile to comment on Eq. (3). It

looks very much like an axial vector current for the nu-

cleon case except that it is missing a y5. This is because p
and ' C have opposite parity. As a result the large terms
in both Eqs. (3) and (2) are the time components instead
of the usual case of large space components for the axial
current matrix element. The authors of Ref. 2 noted this
effect but here it is immediately apparent and due to the
spin parity assignments of the participating nuclei.

The simple structure of Eq. (3} is, however, somewhat
misleading because the form factors F1 and F2 are func-
tions of four independent scalars q, d, Q.q, and g,
where g"=0'~p„p;~pf and

(' C
~ A„~ p,

' C) = uf~C"~~(pf', p",p,
"

)u~p, (1)

where pf„, p&, and p;„are the four-rnomenta of the ' C,
p, and &2C nuclei, respectively. The axial current must

satisfy the usual relationships PA(0)P ' = A(0} and

PAD(0)P '= —Ao(0) which then constrains Eq. (1). Be-
cause the initial state is a two-body state, the number of
contributing form factors is eight, taking into account the

possible helicity states and parity. We may write the ma-

trix element of Eq. (1) therefore in terms of eight indepen-

dent form factors as

(' C
~ A~ ~

' C,p) =uf(fpF1+QpF2+dpF3+q„F4

+o~„Q"F5+o'~g "F6+cd~~ "F7

+&1~"Q'd )'5FS»1,

where Q„=pf„+p„,d„=pf„p„,and q„—=d„—p;„.
However, we will be looking at processes for which

q=(qo, q-0}, so that we are mostly concerned with
representing ( ' C

~

Ao(0)
~

' C,p). For this only two form
factors are necessary. ' From Eq. (2) we find that F1y„
and q&F4 are a sufficient choice where we have neglected
terms of the order p~/M, where p is a nuclear momen-
tum and M~ is the nuclear mass. We thus write, relabel-

ing F4 as F2, (' C
~

A"
~

' C, p) as
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ri2=pipf2[(mi+m, 2+2EE~)sin 8+2p ] (4) zero. This leads to the relation

in the center of mass frame. However both d and Q q
are slowly varying in our range of interest and the form
factors here are effectively functions of q and ri . This
dependence on two scalars was also noted by the authors
of Ref. 2 but here it is forced from this type of treatment.

It is thus only n~msary to obtain F& and F2. %e do
this by making use of data available for the related pro-
cess p + ' C~ ' C+1r+. We note that

d„A"=f m 3$

which leads to the relation

(5)

m
("CI8„A"

I

' C,p}= ("CIJ
I

' C,p),
Pl ~ —g

(6)

where we have made use of (CI +m )P =J . The q at
which the pion production takes place is necessarily

q =m». In Eq. (3) the pion contributes only to F2 so
that if we take the limit indicated

we obtain a relation involving only F2,

lim(m —q )(' C
I
BA„ I

' C,p}
=f m ('CIJ I'Cp), q m (7}

Fi(mpf q+mfp q)F
(p.pf+mmf }q

or that

Fi(mpf q+mfp q)F
(p pf+mmf)(q m»)

(9)

(10}

if the pion is allowed to develop a mass. This relationship
is a fairly good one for the nucleon but is not as good for
nuclei because of anomalous thresholds. The question of
the accuracy of Eq. (10}has been examined by Kim and
Primakoff who finds that

F~(q', i~f)
Fp(q2, i~f) = —

3 3 [1+a(q;i~f)], (11)—Nl ~

where Fp, the pseudoscalar form factor, corresponds to
F2, and F„, the axial current form factor, corresponds to
Fi in our notation. The quantity e(q;i~f) represents
the correction to the form of PCAC given by Eq. (10).
These authors estimate

e( —0.74m~, ' B~' C) = —0.15

and find that

iufm+2u=f m (' CI J Ip,
' C), lim e( —m&2, i(A)~f(A)) = —0.29 .

A —+co
(12)

where F2 denotes the coefficient of the pion pole. Howev-
er, we wish to determine F~ because its contribution to
o(p+'3C~' C+p++v&) is a large one. We do this by
using a form of PCAC due originally to Nambu, namely
that (f IB„A Ii)=0 in the limit in which m goes to

Because of the order of approximation in the calculation
presented here, an error even substantially larger than that
indicated in Eq. (12) is acceptable and we therefore shall
assume Eq. (10). We are then able to calculate the dif-
ferential cross section in terms of Fl and obtain

p (mE;E +mEE mm +mfE—E» mfp p») F,—
13

161rf p(E+E;) (E;E +EE» m+mmf)—
Data are available for the reaction ' C(p, lr+)'3C in the range of E& ——1094.7 to 1138.3 MeV where E& is the total rela-
tivistic energy of the proton. We are interested in the lower part of this range. From the data we find that Fi may be
parametrized as follows:

F21 =1.5 X 10-5(1—0. 1018')/(1+6.58'), (14)

where 8 is the angle of the outgoing pion. We can also parametrize F, in terms of our scalars, but Eq. (14) is more con-
venient. Thus Eqs. (10) and (14) completely determine Eq. (3) and it is only necessary to determine the vector current.

The matrix element ( ' C
I V„ I p,

' C) inay be written as in the axial ease in terms of eight independent form factors.

( C
I Vp I p C}—uf(YpY5F 1+qpY5 3+~@ Q Y5F 3+ops F 4Y5++pA F 53 5

+&1 ~"Q'd F'6+&„~Y"Q'd F.'7+&p.poY"q'd F's}up .

If we again ignore p /M terms we obtain

(' C
I V& I P,

' C}=uf(1
HAYS 1+~@, Q 'Y5 3+~@+ Y5 4+o' uq F 5'Y5}u, .

With the help of the relations

uf YpY5u (mf m) =uf (i o—„ud "Y5+Q„Y5)u

ufYpY5u (mf +m) =uf(l le Q Y5+d~Y5}u

we may write Eq. (16) as

C
I Vp I p, C}=uf I [F„l+(m +mf )Fu3+(mf ™)F4]3 p3 5 p u31 5 Qp3 5 u4+ u5 puq I p

(15)

(16)

(17}
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We apply the CVC condition to Eq. ( 18), namely,

(' C
I
(PV„

I p,
' C)=0 (19)

with

F„g———F„3 (2 1 )
Q q

We are thus left with the necessity of determining two
form factors. Ideally with sufficient data for processes
such as p + 'zc» ' N+ e+ +e, the form factors could
be determined. However, no such data exist. There are

This leads to a more complicated situation than in the nu-

cleon case because mf —m is large and q„&pf„—pp .
However, we obtain a set of equations by using specific
helicities in Eq. ( 19). We find that

(13C
I

V
I p 12C)

uf (dpF 375+ Qpl P 4+~@% Y5 5)il (20)

data, however, for the electromagnetic process

p + ' C~ ' N +y, which is a q =0 process. The matrix
element ( ' C

I V„ I

' C,p ) is related to the hadronic part
of the matrix element for the process p+ ' C—+ ' N+ y via
the CVC hypothesis

&
"C

I v, I
"c,p& =& "c

I [I J"']
I

"cp&

=(3NI J''
I

'2cp)
—('CI J''

I
'Cn)(22)

The first and second terms on the right-hand side of Eq.
(22) are simply related by charge symmetry,

(' N
I
J„' '(0)

I

' C p)= —(' C
I
J„' '(0)

I

' C,n), (23)

so that electromagnetic data for the ' C+ p
' N transition

should, in principle, be sufficient to determine the left-
hand side of Eq. (22).

A straightforward calculation for the transition matrix
element for the process '3C+ p» ' N + y yields

e
[d ( —pf p +mf m )F„3+2(mf m pf p)d Q—F 3F„4

mf m

+ Q ( pf 'p+tllfm)F„+2(pf dp q pf qp d)
I
F„—

I
F„3

+2(pf Qq.p pf qp Q) —
I F„, I F,4+ (4pf qp q pf pq + 3—mf mq )

I F, I ] (24)

mmfE
I
I

dfl 4(2')'p(E; +&„)'
(25)

We have no way of determining the two independent
form factors in Eq. (24). However, our ex erience has
shown that when consistently normalized, ' the vector
form factors tend to be of the same magnitude. Because
in any case we find by direct calculation that the vector
current contribution to the process ' C+p» "C+I4+ +v„
is small, so we make the assumption that F„3=-I F„5

I

.
Then we may write Eq. (24) in terms of a single form fac-
tor F recalling from Eq. (21) that F„4 is related to F„3.
The differential cross section may be calculated as

and as we shall see, in any case, the vector current contri-
bution to the total matrix element is relatively small.

III. CALCULATION OF THE CROSS SECTION

We are now ready to obtain the cross section for the
process p+ ' C» '3C+p+ +v„. The matrix element for
the process is given by

(p+v' C
I
H~

I p
' C)

coseu„y ( 1 —y5)U„( ' C
I
Ji I

' C,p ), (27)

w here

From experimental data" we are then able to determine J~ ——V~ —A p (28)

F =3.125 X 10 II [ 1 + 1.869(8—0942 ]rnf I . (26)

This is only for q =0, but there are no additional data
I

and the matrix elements for V& and Az are determined by
Eqs. (3), ( 10), and ( 14) and by Eqs. (20), (2 1), and (26),
respectively. Vhth these choices we obtain

Zmmf m p

( + i3CIH
I

inc

6 cos 8,
2

(2F, (pf pp v+pf vp prnfmp v}+F,—2 m„v p, (pf.p+mfm)

+F„'3(2d vd p v pd')(pf p mfm)+F„'4(2Q—vg p v I4Q')(pf p m—f.m)+
I F„, I

—'
X [ —4(pf 'vp 'vip +pf 'vv'pv'p +pf pp pv'p ) +pf 'pv'pill p

—clif m [4(v p )l+ 3m „v p ] I 2FiF2 m „(mpf v+ l—ilfp 'lilac) +2F.3F~4(pf 'P ™fill)
X [2pf ppf 'v —2p pp v (mf m)v p]— —
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—2F„,
~
F»

~
[(d v —d p)(py vp.p Pq Vp

+8'vie(mf Pf 'P )(P 8+P 'v) (Pf '8+Pf'v)(pf 'P m )1 j

—2F.4I F»
I

)(py'v+p'v py—'V p'—p)(py'vp'p pg
—pp v)

p'v~(pf v+pf 'p)(pf 'p +m (pf 'p +mf )(p'p+p'v)) ]

4F,—F»[(m&+p v)(mp~ v mfp —v)+p v(.myp p,mp—y p)]), (29)

where we have summed and averaged over appropriate
sp1ns.

The cross section is obtained from

f"f
8n. p E;+F.

(30)

by computer numerical integration routines. The quantity
~

M
~

is given by Eq. (24). The results are given in Fig.
1. We find by setting the vox:tor form factors equal to
zero that the vector contribution to Eq. (30) is of the order
of 3% or 4% which is not significant at the order of ap-
proximation used here.

IV. DISCUSSION OF RESULTS

)Q 44

)Q 45

) p-4F)
i

1 06Q 1Q70

E& (MeV)

FIG. 1. Plot of the total cross section
o.(p+' C~"C+p++v„) as a function of center of mass pro-
ton total energy.

As has been mentioned before, a calculation'i of this
process has been previously undertaken. The authors of
that calculation used an impulse approximation based
method and PCAC correction to obtain an order of mag-
nitude result. They noted certain features of the reaction,
particularly the large role played by the time component
of the axial current and the necessity of using a variable in
addition to q to describe the process. As we have noted,
these features appear in a straightforward way in the
treatment given here. They also obtained results for

doldQ„ for several other states besides the results for the
transition considered here.

When their results

dcT
(p+ i2C 13C +~++v)

are integrated over angle one obtains an approximate
o—= 1.16X10 cm for 148 MeV protons (laboratory).
When we compare this with our results after transform-
ing the protons to the c.m. frame we obtain
cr=3.3 X 10 ~ cm, so that our o is approximately three
times as large. The authors of Ref. 2 speculated that the
inclusion of PCAC relations between the nuclear axial
current and nuclear pion field might enhance their results
by an order of magnitude. Our result, which in fact does
relate the nuclear pion field to the nuclear axial current,
has been calculated conservatively and agrees generally
with these speculations. We are unable to make calcula-
tions for the other states considered by Weiss and Walker
at this time due to the absence of necessary experimental
data. However, it may be possible to make an inclusive
calculation of the form p+' C~p++v„+X where X is
limited to excited nuclear states. We shall consider this in
a future calculation.

The observation of the reaction p+' C~' C+p++v„
would provide a way of testing several ideas which require
a timelike four-momentum. In the reaction considered
here because q = —(p&+p, ),

mp+2EpEv 2' pv ~ (31)

which is strictly timelike. Some recent work' has im-
plied that the axial current form factor F„(q ) may be
mirrorlike in the near timelike region, q =—m~, so that
F~(m )=Fq( —m ). In —order to check this result, a
timelike process is needed and so a breakup process of the
type described here may be useful.

Another long-standing problem which should be men-
tioned in connection with the reaction considered here is
that of anomalous threshold contributions to the nuclear
matrix elements (N~ ~

B&A "(0)
~

N~ ). In the nucleon case
one obtains a pion-pole contribution and a cut contribu-
tion starting at q =(3m ) . For the nuclear case the cut
contribution begins at a q less than (3m ) because vir-
tual breakup of the nucleus is possible. For example, in
the case of H~ He the anomalous contribution starts at
approximately (1.7m ) because virtual breakup of the
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nucleus N;, into N/'+n is considered. There is in fact
some speculation that for more exotic breakup processes,
lower anomalous thresholds might be possible. Most
weak processes which are observed are processes for
spacelike q . The anomalous contributions for these pro-
cesses affect F~ and are relatively small' and hard to ob-
serve. Experiments in the timelike region should enhance
the effects of the anomalous thresholds. In particular if

the cut region is reached, virtual processes in the spacelike
region become allowed breakups in the timelike region
and should be observable in cross-section measurements.

For all of these reasons additional theoretical estimates
for this and related processes are very desirable and, if
feasible, experimental searches for these processes might
yield interesting results.

~We note that the time components for the axial currents are the
large components because of the spin and parity assignments
for '~C, p, and ' C. This effect is accentuated because all of
the momentum vectors Q„, d„, and q„ in the hadronic ma-
trix element are timelike. This is true for Q„and d„by their
construction and q because q„=—(I'„+P„) which near
threshold is (m„, -0) and is always timelike.
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