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We compare three different types of relativistic two-body equations, namely the Blankenbecler-
Sugar equation, the Gross equation, and an equation derived from relativistic three-body equations.
Regarding the one-boson-exchange, the corresponding potentials coincide on mass shell but differ
off shell. The potential connected with the three-body equation even shows some cuts in the
momentum plane. We analyze the differences for the example of the one-pion-exchange calculating
half-off-shell functions and phase shifts. We also include strong 7NN form factors and discuss the
influence of some of their parametrizations on the phase shifts.

I. INTRODUCTION

Because of the relative large mass of the nucleon a non-
relativistic treatment of the two- and more-nucleon sys-
tem is justified and works with great success. But for in-
creasing energies one should pay attention to relativistic
aspects. The same demand applies when one investigates
systems consisting of nucleons and lighter particles, for
example pions. In the NN system the pion-nucleon sub-
system should be treated relativistically and, in order to be
consistent, one has to handle the nucleon-nucleon system
on the same basis. A correct way to include relativistic
effects is to solve the Bethe-Salpeter equation.! Because
of the complexity of this ansatz just a few attempts have
been made to work with this equation—either in the
ladder approximation? or in full.’ To introduce some
kind of relativity several people derived approximations to
the Bethe-Salpeter equation;*~° these nonunique approxi-
mations were widely used and also extended to more than
two-particle systems.!®!! The differences among these
equations and/or the distinction to the nonrelativistic
equation were investigated for separable'>!3 or local po-
tentials.'* In the latter case especially the one-pion ex-
change (OPE), as the longest-ranged and best-founded
component of the nucleon-nucleon interaction, was the
object of interest.

Also in the context of the OPE Garcilazo showed how
a two-body potential is changed, if one embeds it into a
three-body model satisfying both two- and three-body uni-
tarity.’> This three-body one-pion-exchange potential
(three-body OPEP) has an energy-dependent range and it
becomes complex above the pion-production threshold. In
this paper we want to investigate how this three-body po-
tential with its related equation compares to other relativ-
istic equations. As examples we choose the
Blankenbecler-Sugar equation* and the Gross equation.’
The reason for this choice is that the OPEP’s, which are
derived in these approaches, differ from each other and
also from the three-body OPEP. Other relativistic ap-
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proximations yield one of the above potentials and differ
just in the equations.

In Sec. II we state the different models and compare
them with each other. We will see that the corresponding
OPEP’s are the same on-the-mass shell but differ off-mass
shell. Moreover, the energy-dependent three-body OPEP
shows cuts above the on-shell point and beyond a specific
energy also below the on-shell point. The influence of
these different potentials and equations on half-shell func-
tions and phase shifts is shown in Sec. III. In the follow-
ing section we include strong 7NN form factors in our
calculations investigating two different models. On one
hand the usual 7NN monopole form factor is taken into
account and especially the influence of the—
experimentally and theoretically not very well defined—
cutoff mass is compared to the differences arising from
the relativistic approaches as discussed in Sec. III. But in
the relativistic treatments of the OPE not only is the pion
off its mass shell but—depending on the equation—also at
least one of the nucleons. Therefore we include also a
form factor which allows each one of the three particles in
the #NN vertex to be off-the-mass shell. Final con-
clusions are given in Sec. V.

II. RELATIVISTIC
ONE-PION-EXCHANGE POTENTIALS

A correct way to calculate the two-hadron interaction
in a relativistic formalism is to solve the Bethe-Salpeter
equation.! The kernel or “potential” therein is the sum of
all connected two-particle irreducible diagrams. Because
of the complexity of this four-dimensional equation just a
few numerical calculations exist: a purely phenomenolog-
ical treatment used a separable ansatz for the potential.
The free parameters in the ansatz were adjusted for each
partial wave to reproduce the experimental phase shifts
for the nucleon-nucleon and pion-nucleon interaction.’
Within a meson-theoretical framework the Bethe-Salpeter
equation was solved just in the ladder approximation, i.e.,
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FIG. 1. The kinematics of the interaction of two particles of
mass m via the exchange of a single particle in the c.m. frame
[V's is the total energy and wi =(m?+k?)!/2]. (a) Both parti-
cles are equally off their mass shell; (b) one particle is always on

its mass shell; (c) the particles are alternatively on their mass
shell.

the potential was restricted to the exchange of a single
particle.

In order to circumvent the difficulties of the Bethe-
Salpeter equation while keeping “‘some” relativity, several
people proposed approximations to this equation. They
all have in common reducing the four-dimensional equa-
tion to a three-dimensional one. Such a reduction is not
unique and different choices yield different relativistic
equations.*~® The differences between the various reduc-
tions compared to either the full relativistic Bethe-
Salpeter equation or to the nonrelativistic Schrédinger or
Lippman-Schwinger equations were discussed in several
papers.® 12=14

One can divide these reductions in two families accord-
ing to the prescription for the exchanged particle: If it
bears just a (three-dimensional) momentum, both particles
are equally off their mass shells in intermediate states.
This is illustrated in Fig. 1(a), where two particles with
equal mass m are interacting via the exchange of a parti-
cle with mass . The total energy is given by V’s. The
corresponding potential is given in general by

}\'2

—_—, (1)
(pi—p1)—p?

V(pi,p2sp1,ps)=

)\'2
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where A is the coupling constant (this corresponds, strictly
speaking, to the exchange of a scalar particle but also to
the one-pion exchange in the case of spin-singlet states
after removing the delta function at r=0).

For the case of Fig. 1(a), Eq. (1) gives

2
VAKK's) = — —— (2)
(k—k')?4u?
This prescription is chosen in the reductions by Thomp-
son,® by Woloshyn and Jackson,” and by Blankenbecler
and Sugar.*

A second family is characterized by the constraint that
one particle is restricted to its mass shell. That means
that there is a relative-energy dependence, a retardation, in
the interaction. The kinematics is shown in Fig. 1(b) and
the potential is given in the form

}\2
(k—k')?— (0 —0p)*+pu

VB(k,k';s)=— (3)

2 b
with
a)kz(mz-i—kz)'/2 .

This unsymmetric reduction was chosen by Gross,” by
Erkelenz and Holinde,® and by Kadyshevski.’

A different approach to a relativistic description of a
two-body reaction was followed by Garcilazo.'* He re-
stricted himself—and we will do the same in the
following—to the one-pion exchange between two nu-
cleons [that means that in Egs. (1)—(3) m is the nucleon
mass and u the pion mass]. Garcilazo derived an OPEP
in the framework of a three-body model of nucleon-
nucleon scattering, i.e., the nucleon is treated as a bound
state of a pion and a nucleon. The model chosen was in-
troduced by Aaron, Amado, and Young'® and satisfies
both two- and three-body unitarity. These features lead to
an OPEP which is different from cases 4 and B [Egs. (2)
and (3)], namely,

Clke kg ) — A’
e P Y S T

The kinematics of this potential can be seen in the dia-
gram Fig. 1(c). The basis of this diagram is the fact that
the Aaron, Amado, and Young formalism requires one
particle on its mass shell. The iterations within the Fad-
deev equations generate the on-mass-shell constraint to al-
ternate from one nucleon to the other. The main differ-
ence of the potential C compared to 4 and B is the expli-
cit appearance of the total energy V's. This causes specif-
ic features of V' that we are going to discuss next.
The potential ¥’ can be written in the form

1

Vekk';s)=—
2[(k___kl)2_+_“2]1/2

Vs —(m?+ k)2 —(m?+ k' )24 [u? 4+ (k—K')*]/2

1

Vis —(m> k)2 —(m? k)2 [+ (k—K)?]2
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FIG. 2. Positions of the cuts of the potential V<(p,k;s) at
laboratory energies of (a) 100 MeV, (b) 500 MeV.

If the on-shell momentum is ko [V's =2(m?*+k3)'?] one
can see from Eq. (5) that for k, k' <k the first part of
the sum remains positive, whereas the second part can
give rise (but not necessarily) to some singularities. For k,
k'> kg it can happen that the denominator of the first
part is equal to zero. In order to be able to investigate the
possible singularity structure, we perform a partial wave
decomposition of V. This is shown explicitly in the Ap-
pendix and the results are illustrated in Fig. 2 for two en-
ergies.

One can see that the singularities occur just for full
off-shell values (ko#k, ko#k'). As derived in the Ap-
pendix the singularities for k, k'>k, always exist,
whereas the singularities for k, k' < ko appear only above
the pion-production threshold. These singularities are
typical for the treatment of the three-particle systems
above breakup threshold.!® In our case they are related to
the fact that the potential V' is derived in the framework
of a three-body model of the two-nucleon interaction.

In the next section we will investigate how these singu-
larities affect two-nucleon quantities such as half-shell
functions and phase shifts.

III. PHASE SHIFT CALCULATION

For calculating phase shifts from the potentials of Eqs.
(2)—(4), we first have to decide into which equations to
J

m?q%dg
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embed our potentials. As stated already in Sec. II, the
reduction of the Bethe-Salpeter equation to a specific
three-dimensional one is not unique and depends on the
propagator chosen.

Besides the comparison among the relativistic cases we
want to contrast our results also to the nonrelativistic
case. The nonrelativistic OPEP is the same as the one of
case A, where the exchanged particle bears just three-
momentum; the adequate equation is the Lippman-
Schwinger equation

T(p,k;k?) = VA(p,k)

© 2
- J quk—‘iq—.eV"(P,Q)T(q,k;kz) ®)
—k*—i

written in the half-off-shell form.

Among the relativistic equations with potential V4
(proposed by Thompson,® by Woloshyn and Jackson,’ and
by Blankenbecler and Sugar*) we have chosen the
Blankenbecler-Sugar equation, since it is used most fre-
quently. Aside from the derivation from the Bethe-
Salpeter equation, one can get the Blankenbecler-Sugar
equation also via the minimal-relativity transformation

a gy m g2y m
T(p,k;k%)= (p2+m2)7e T(p.k;k )(k2+m2)1/4 ’
(7)
% 2y — m gm0
Vip,k;k%)= (pitmi)7 Vip.k;k )(k2+m2)”4 )
applied to Eq. (6). The result is
2 Ap k ® mzqqu
T(p,k;k*)=V*p,k)—
p P fo (m2+q2) g —k’—ie)
X V4p,q)T (q,k;k?) . (8)

Also for the potential of case B we have chosen the equa-
tion, which is stated most in the literature, namely the
Gross equation®

T(p,k;k)=Vp,k)— [~

Other possibilities would have been the reductions given
by Kadyshevski’ or by Erkelenz and Holinde.® The
derivation of potential V' by Garcilazo using the three-
body model also ends up with Eq. (9).

For the numerical solution of Egs. (6), (8), and (9) we
used the prescription of Kowalski and Noyes'” and for the
constant A we have taken the value

2 2
A2=§%L2=o.oo3 975, (10
m

which corresponds to a coupling constant of g?=14.5.
The differences among the relativistic potentials [Egs.

0 2(m2+q2)l/2(m2+k2)l/2[(m2+q2)1/2_(m2+k2)1/2__’-6]

VE(p,q)T(q,k;k?) . 9)

[

(2)—(4)] and the associated equations [Eqgs. (8) and (9)] are
shown in Fig. 3 for the phase shifts and in Fig. 4 for the
half-off-shell functions for angular momenta L =0 and 1.
The phase shifts are shown for laboratory energies up to
500 MeV and the Kowalski-Noyes function f(p,k) (Ref.
17) if drawn for a laboratory energy of 300 MeV (k =1.9
fm~").

In comparison to the nonrelativistic result from the
Lippmann-Schwinger equation [Eq. (6)] Fig. 3 shows that
all three relativistic potentials (and equations) give almost
the same relativistic correction. It also shows that the ef-
fect is not negligible (at the order of ten percent at
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FIG. 3. Phase shifts of the one-pion exchange for the (a) S
wave, (b) P wave. The solid line gives the result for the
Lippmann-Schwinger equation, the dashed line for the
Blankenbecler-Sugar equation, the dotted line for the Gross
equation, and the dashed-dotted line for the three-body equa-
tion.

T, =500 MeV) and that the relativistic results are simi-
lar to a nonrelativistic treatment for a potential with re-
duced attraction. Both statements also hold for higher
partial waves (L £5) for the case of the OPEP.

The half-shell functions (Fig. 4) show a different
behavior. There, the results of the Lippman-Schwinger
equation and the Blankenbecler-Sugar equation are almost
identical and the same is true for the Gross and the
three-body equations at an off-shell momentum of p >2
fm~!. Since these functions are divided by their on-shell
values, the differences connected with the different phase

t(pK)
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i (a)

T\ o
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N
[
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»

p(fm) p(m™)

FIG. 4. Kowalski-Noyes half-shell function f(p,k) at a labo-
ratory energy of 300 MeV for the (a) S wave, (b) P wave.
Description as in Fig. 3. The results for the Lippmann-
Schwinger and Blankenbecler-Sugar equations are indistinguish-
able on this scale, likewise the results from the Gross and three-

body equations for momenta p >3 fm~".
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shifts do not show up in such a pronounced way and
features of the potential itself appear: Exactly the same
potential is put into the nonrelativistic and the
Blankenbecler-Sugar equations and the potentials accord-
ing to the Gross and three-body equations are similar due
to the fact that the one nucleon is on its mass shell.

The OPE phase shifts at the lower partial waves are not
realistic in the sense that, e.g., the L =0 shift is too small
by a factor of 5 compared to results of nucleon-nucleon
phase-shift analyses. To allow a comparison of our rela-
tivistic equations also for more realistic phase shifts for
low partial waves, we follow a simple method shown by
Woloshyn and Jackson,” namely multiplying the mass of
the “pion” by a factor of 3 and consequently raising the
constant A2 by a factor of 9 [see Eq. (6)]. The resulting S-
and P-phase shifts can be seen in Fig. 5. There the rela-
tion between the phase shifts is different from the one
seen in Fig. 3. In the S wave the transition from the
Lippmann-Schwinger to the Blankenbecler-Sugar treat-
ment is more or less the same as in the case of the pure
OPE. The difference between these two calculations
comes just from the kinematical factor of the “minimal
relativity” [Eq. (7)]. However, the transition to the Gross
and to the three-body equations leads to a different
behavior, where the phase shift is increased at lower and
decreased at higher energies as compared to the nonrela-
tivistic case. In the P waves the “ordering” among the
phase shifts does not change (that means the relative ef-
fect is the same as for the OPE), but the difference be-
tween the three relativistic equations becomes larger.

In conclusion we can say that the relativistic effect is
not negligible and that for the pure OPE the differences

&;(deg) |

s e s 38 8

5,(deg) 00 200 300 400 500
( T,o0(MeV)
S5r
~ (b)
A0r
A5f X
‘ \\\§
! X

NS
2t NS

25

FIG. 5. Same as Fig. 3 with the mass of the exchanged parti-
cle multiplied by a factor of 3 and the coupling constant A?
raised by a factor of 9.
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among the various relativistic equations are considerably
smaller than the deviation from the nonrelativistic result.
But one cannot generalize this statement, since a variation
of the underlying potential can yield different results in
the various equations.'®

IV. INFLUENCE OF 7NN FORM FACTORS

Strongly connected to the investigation of OPEP’s are
questions concerning the treatment of the NN vertex,
namely, whether one should include strong 7NN form
factors and if so, which parametrization is appropriate.'’
In this section we want to investigate how the uncertainty
related to the strong form factors compares to the results
caused by the different relativistic treatments of the OPE.

Since in the Blankenbecler-Sugar equation the pion
possesses only three-momentum, the commonly used pa-
rametrization of the strong form factor for the 7NN ver-
tex is the monopole fit

2 A’
Fann(q®)= At (1

with q being the three-dimensional momentum of the
pion.

A, the so-called cutoff mass or parameter, is not very
well determined either experimentally or theoretically.
The discrepancy in the Goldberger-Treiman relation leads
to a low value of A ~600—800 MeV, but A ~700 MeV
was also deduced from an analysis of nucleon-nucleon
charge exchange scattering?® and from calculations with
quark bag models.2! On the other hand, studies with real-
istic nucleon-nucleon potentials show a high value for A
(A =1200—1500 MeV) (Ref. 22) and also dispersion rela-
tions indicate A > 1000—1400 MeV.23

In Fig. 6 the OPE S-wave phase shift is shown calculat-

500 T, (MeV)

lab

FIG. 6. S-wave phase shifts for the one-pion exchange with
the Lippmann-Schwinger equation (solid line), the
Blankenbecler-Sugar equation without hadronic form factors
(dashed line), and with strong form factors (dotted lines) with
cutoff masses of 700, 1000, and 1300 MeV, respectively.
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ed with the Lippmann-Schwinger and the Blankenbecler-
Sugar equations with and without inclusion of a form fac-
tor. For the form factor we took the expression (11) with
a cutoff mass of A=700, 1000, and 1300 MeV, respec-
tively. One can see that the addition of a strong form fac-
tor yields an effect larger than the one from the inclusion
of relativistic components. Moreover, the variation due to
the different cutoff masses has more or less the size of the
transition from the nonrelativistic to the relativistic equa-
tion.

The question arises whether the parametrization of Eq.
(11) is the correct one, since just the pion is treated off
mass shell, whereas at least one nucleon is also off the
mass shell in the relativistic equations considered in this
paper (see Fig. 1). Bryan, Dominquez, and VerWest pro-
posed a model for a hadronic form factor, which is based
on features of the dual and Regge models and which al-
lows one, two, or all three particles to be off mass shell.?*
Applied to the OPE of the nucleon-nucleon scattering
their form factor reads

A? A?
F( 2’ 2’ 2)=
P1:P2,9 Az_(qz_‘uz) AZ—(p%—mZ)
2
X, (12
A —(pz—m )

where p,, p,, and g are the four-momenta of the two nu-
cleons and the pion, respectively, and A’=1.25 GeV? is a
universal range, which is the same for all hadrons.

Inserting the kinematics of our interactions 4—C into
Eq. (12) yields OPEP’s with full off-shell form factors.
The potential used in the Blankenbecler-Sugar equation is
then given by

2
VA K';s)= A
Az——i+m2+k2
2
AZ
X
AZ_%+mZ+kIZ

A? :

reronral R

the Gross potential reads

A? A?
Al—s +2Vsw, A’P—s +2Vswy

VEkk';s)=

A2 2
A+’ — (g —op)*+(k—k')?

x VB(k,k';s) , (14)

and the potential derived in the three-body formalism
looks like
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A? A?
VE(k,K';s)=
F Al—s +2Vswr A'—s+2Vs
A2 g
X
A — (Vs —op —op ) +ut+(k—k')?
X VEk,k';s) . (15)

We have calculated OPE phases with these modified po-
tentials and—as a first result—the differences in the
phases due to the various relativistic treatments are even
smaller than for the calculation without form factors.
Therefore, we do not give all of the curves, but just show
bands for the S- and P-wave phase shifts. Each band
consists of the results for the potentials ¥4, V2, and V¢
without a form factor [Egs. (2)—(4)] and with inclusion of
the off-shell form factors [Egs. (13)—(15)]. In addition,
we have switched off the part of the form factors in Egs.
(13)—(15) which led to the nucleons off-mass shell (i.e.,
the first and second term in each expression).

Figure 7 again shows the large effect of the inclusion of
strong form factors for the phase shifts. Switching off
the nucleon off-shell parts in the form factors always
leads to an increase of the phase shifts, as already ex-
plained in Ref. 24. The size of this effect is dependent on
the partial wave—the difference is at least a factor of 2
larger for the P wave than for the S wave (percentage
wise), and may, of course, also depend on the underlying
potential.

5,(deg) 114
113
112
n
110
19
&, (deg)
T+ 18
8t 17
of woft shell g
A0+ full off shell {5
al sl
|
A2F
“full off shell
13t
14 . . N
100 200 300 400 500 T,_, (MeV)

fob

FIG. 7. S- and P-wave phase shifts for the one-pion ex-
change for the Lippmann-Schwinger equation (solid line), for
the relativistic equations discussed in the text without strong
form factors (shadowed area), and with full off-shell and “‘pion-
off-shell” form factors (double lines).
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V. CONCLUSION

We have shown that the one-pion-exchange potential,
which was derived by Garcilazo via a relativistic three-
body model of the two-nucleon interaction, deviates from
other relativistic expressions for the same exchange mech-
anism. In particular, the three-body OPEP is energy
dependent and shows a singular structure for full off-shell
momenta. There can be two closed cuts in the momentum
plane, but one cut just comes in at scattering energies
above the one-pion-production threshold.

We have compared the resulting half-shell functions
and phase shifts of the three-body potential (with its con-
nected equation) to the corresponding results of the
Lippmann-Schwinger, Blankenbecler-Sugar, and Gross
equations. Whereas features of the individual potentials
are reproduced in the half-shell functions, the one-pion-
exchange phase shifts are very similar for all three relativ-
istic equations, but show some deviations from the nonre-
lativistic result. This finding, however, is dependent on
the potential and also on the parameters of a given poten-
tial.

We have also included strong form factors for the 7NN
vertex. Their effect by far exceeds the differences caused
by the various relativistic equations. Even the uncertainty
due to the ill-determined value of the cutoff parameter is
larger than these relativistic deviations. The inclusion of
full off-shell hadronic form factors yields smaller phase
shifts than for the case where just the pion is treated off
the mass shell in the form factor. The size of this effect
can even be larger (depending on the considered partial
wave) than the one caused by the inclusion of the (pion)
form factor usually used.
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APPENDIX

A partial wave decomposition

+1
Vitkk)=2m [ dx V(K )P (x) (A1)

with x =cos( ¢k,k’) and P; the Legendre function of the
first kind, applied to the potential of Eq. (4) gives
’ }Lz
VEk,k') = —2m 4 Qu(xo) -
There Q; is the Legendre function of the second kind and
k2+k’2+,u2—[\/§ _(m2+k2)1/2___(m2_+_k'2)1/2]2
Xo= 2Kk’ '

(A2)

(A3)

The singularities of V{ are based on the Legendre func-
tion, i.e., they appear at xo=*1. Inserting this condition
into Eq. (A3) we get

(kTP +p=[Vs —(m>+k)!*—(m>+k' )2
(A4)
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The solution of this equation for k as a function of k'

gives

_ F4k'UZ[16k'’U —4(4k" > — V2 )(U>—m?V?)]'/?
2(4k'2—V?)

k

(A5)
with
U=s+2m?*—p?>—2Vis (m>+k'?)/?
V=2[Vs —(m?+k'?)'"?] .

The result is shown in Fig. 2 for different values of Vs .
The plus sign indicates that these parts of the curve ori-
ginate from the condition x,= + 1, the minus sign corre-
sponds to xg=—1.

More insight into the structure of these singularities is
obtained calculating the extrema of Eq. (A4) with
xo=+1 (the curve given by x,=—1 has no minimum
for k, k’'>0). Derivation of Eq. (A4) with respect to k'
yields a relation between k and k’

k min - (A6)

kmin =

1+ £
m

Inserting relation (A6) into Eq. (A3) gives the result

kfnm=;1;|s—#zl |s —(2mxp)*| . (A7)

From this equation one can see that not all singularities
exist for arbitrary s. The condition k2, 20 is fulfilled by
the first parenthesis and, if the case with the minus sign is
taken, also by the second parenthesis. Therefore the right
part of the singularities always exists. For the left part
(the case with the plus sign) there exists a threshold ener-
gy, namely

so=02m +pu)?. (A8)

That means that these singularities occur just for energies
above pion production threshold.

*On leave from Escuela Superior de Fisica y Matematicas, Insti-
tuto Politécnico Nacional, México 14 D.F., México.
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