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Relativistic effects on spin observables in quasielastic proton scattering
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The spin observables in quasielastic proton scattering are calculated in a simple relativistic model
where the NN interaction is assumed to depend on the enhancement of the lo~er components of nu-

cleon wave functions (because of strong nuclear potentials). This enhancement is characterized by
an average effective mass M of {0.8—0.9)M which is calculated in an eikonal model. The M*
dependence of the NN interaction is taken from relativistic impulse approximation calculations.
The polarization is found to decrease by 40 percent compared to the free NN value at 500 MeV.
Next, simple formulas are provided to estimate the effects of spin-orbit potential distortions on spin
observables. At 500 MeV and 18.5' in Pb, the polarization is decreased by 5 percent while DI~
and 8, , are decreased by 15 percent and D„„ is almost unchanged.

I. INTRODUCTION

Most of the relativistic approaches to nuclear physics
suggest that the optical potential or self-energy for a nu-
cleon in the nucleus involves large attractive Lorentz sca-
lar and repulsive vector contributions. Relativistic mean
field calculations' relate these potentials to large sigma
(scalar) and omega (vector) meson fields and provide a
good description of ground state charge densities. Dirac
optical model fits to elastic proton scattering also use
strong potentials to reproduce analyzing power data. Fi-
nally, relativistic impulse approximation (RIA) calcula-
tions find strong potentials coming from large scalar and
vector pieces of a Lorentz invariant representation of the
NN amplitudes. These RIA calculations provide an ex-
cellent description of elastic scattering at 500 MeV and
above.

However, most of these scattering calculations have in-
volved relativistic effects on the projectile in an elastic
scattering. One would like to look for characteristic sig-
natures of the strong potentials as seen through inelastic
reactions. In this paper, we examine spin observables in
quasielastic proton scattering. %e consider quasielastic
scattering to the continuum in order to minimize the un-
certainties in the nuclear structure of discrete final states.
Quasielastic scattering is modeled in a distorted wave im-
pulse approximation (DWIA). Here, a single hard scatter-
ing, described by the NN interaction in the medium, takes
place between distorted incoming and outgoing waves
(treated in an eikonal approximation).

There have been some relativistic calculations for
quasielastic electron scattering, for example, Refs. 10, 20
and 21. However, for electrons there are no spin observ-
ables with clear relativistic signatures. To our knowledge,
no previous relativistic calculations for quasielastic proton
scattering have been done.

To mimmize corrections from multiple hard scattering

(where two or more nucleons are knocked out) and distor-
tion effects, we look near the maximum in the quasielastic
peak (energy transfer near q /2M). In addition, we look
at spin observables rather than cross sections since the
latter are greatly reduced by the distortions. In contrast,
the spin dependence of the distortions is not expected to
be strong (although we examine the effect of the spin-
orbit optical potential in Sec. III). The NN interaction in
the medium could differ from the free interaction for a
number of reasons. First, Pauli blocking and binding en-

ergy corrections should be incorporated. However, these
corrections are not expected to be large at the relatively
low densities (about —,

' to —,
' of nuclear matter density) of

surfaced peaked quasifree scattering.
In a relativistic approach the NN interaction depends

on the four-component Dirac wave functions. The lower
components of these wave functions are enhanced in the
medium due to strong potentials. This enhancement is
characterized by an effective mass M' which is smaller
than the free mass M of a nucleon. The lower com-
ponents for a nucleon of momentum p are now of order
p/M' which is increased from the free value of p/M. If
one thinks of the NN interaction F as a 4X4 matrix in
the spinor space of the two nucleons, then the NN ampli-
tudes K will change as one changes the Dirac spinors U
used to take matrix elements of F.

K(M*)=2ik, U(1',M') U(2', M')FU(1, M') U(2,M') .

Here, 1 (1') describes the spin and moinentum of the in-
coming (outgoing) first particle and k, is the momentum
in the two-body center of mass frame.

If single scattering dominates the reaction mechanism
then the spin observables in quasielastic scattering will
simply be equal to those calculated from the amplitudes K
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evaluated at some average M' (see Sec. II). These spin

observables may be sensitive to even small changes in M'
since the RIA uses a representation for F which involves

sensitive cancellations between strong Lorentz scalar and
vector contributions. As M' decreases the importance of
the vector repulsion will grow with respect to the scalar
attraction.

In the original RIA (Ref. 3) free spinor matrix elements
of Eq. (1) with M*=M where equated to the experimen-
tal NN amplitudes to obtain the five functions F; in the

following model for F.

1/2 i

0"P
E+M+5 —V

eik.xe is —(x)y (3)

+ V„(b,z')(o"b x k —ikz')] . (4)

where k is the projectile momentum, X, a Pauli spinor,
and the phase factor S (z) is

S'-(.) = —f '
d'[V, (b,')

E

F= g Fi (E,q)1,'.A,; . (2a)
Here the effective central V, and spin-orbit V„potentials
are

Here, li, ,' are a set of Dirac matrices for the first particle
and the dot signifies contraction over all Lorentz indices.
The Lorentz invariant amplitudes Fi are functions of en-

ergy E and momentum transfer q. The set of Dirac ma-
trices used in this model is

V„=—
(S

r
2Mr E+M+5 —V

s (scalar)
u (vector)

p (pseudoscalar)
a (axial vector)
t (tensor)

1

yP

y5
VSF

We shall omit V as a first approximation (and consider
its effects in Sec. III).

The transmission probability for going through the nu-

cleus at an impact parameter b is

T(b)=
~

e' '"'~ =exp
™f dz ImV,

(2b)

Since all that the two-nucleon data determines is the
matrix element of Eq. (1) with M'=M, there must be a
model dependence in Eq. (2) for M' not equal to M. In
general, there are an infinite number of operators F with
identical matrix elements for M'=M but different ones
for M'&M. The special form adopted in Eq. (2) assumes
that the NN interaction (in the Dirac representation) is
reasonably local, i.e., there are no factors of momentum
dotted into a gamma matrix in Eq. (2). This appears to be
a good approximation at energies of 500 MeV and above
where the original RIA [which assumes Eq. (2)] works
very well. In the future one may be able to use the spin
obseruables in qttasielastic proton scattering to examine ex

perimentally the form of F and see if Eq. (2) is a good ap-
proximation.

In Sec. II we describe our eikonal model for the projec-
tile wave function and use it to calculate the average den-

sity, effective mass, and impact parameters appropriate
for each nucleus and energy. We consider incident labora-
tory kinetic energies of 200, 400, 500, 800, and 1000 MeV.
In Sec. III, we calculate how the spin observables depend
on M'. Next, Sec. IV examines the effect of the distor-
tions from the spin-orbit optical potentials on spin observ-
ables. %'e sum up results in Sec. V and discuss further
applications of the model in Sec. VI. Nuclei considered

o7r, and 2osPb.

II. EIKONAL FORMALISM

M'=M+X,
(M') yM =1.0—0.44(p),

(10)

where (p) is measured in units of the nuclear matter sa-
turation density and the 0.44 results from the mean field
theory which gives

We chose to define an average density for given impact
parameter as

fii dz[p[(b'+z')'"ll'
2 in (&)

Zp $ +&2 1/2

Then the average density for forward angle scattering
from the nucleus is

fo b dbT(b)p(b)
(p) =— (9)f b dbT(b)p(b)

Clearly, this expression weighs more trajectories with
large impact parameters where T(b) is near one. There-
fore, the reaction is surfaced peaked and (p) is less than
half normal density. For quasielastic electron scattering
we define an average density by setting T(b) =1 in Eq.
(9). This leads to significantly higher values of (p).

Given an average density for the reaction, one can esti-
mate an average scalar field strength S and from S calcu-
late an effective mass. We assuine the scalar field is pro-
portional to the density and use

An eikonal approximation to the incoming (+ ) or out-
going ( —) distorted wave of the projectile in scalar S and
vector V optical potentials is

at nuclear rnatter saturation density.
Table I gives average densities and effective masses for

various nuclei. Here Mood-Saxon optical parameters are
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TABLE I. Average density effective masses &M ) and impact parameters &b) for various nuclei.
The average density (p) is given by Eq. (9) while (M ) is from Eq. (10) and &b) from Eq. (47). The
electron scattering &M ) ~ is from Eq. (9) with T(b) =1. The optica1 potentials used are from Ref. 7
(for ' C, Ca potentials mere used with R scaled by A ' ), while the densities used are in Table II.

12C

Tlab

{MeV)
&p)
po

0.36
0.37
0.29
0.23

0.84
0.84
0.87
0.90

&M')„.
M

0.80

Optical Potential
see Ref. 7

{ Ca)4
7
9

12

2.14
2.12
2.41
2.66

0.42
0.43
0.32
0.28

0.81
0.81
0.86
0.89

0.74 3.38
3.33
3.82
4.14

90Zr 0.42
0.27
0.30

0.82
0.88
0.87

0.70 4.76
5.40
5.24

0.38
0.35
0.31
0.25

0.83
0.85
0.86
0.89

0.68 6.66
6.80
6.95

taken from Ref. 7 and crude Wood-Saxon fits to the rela-
tivistic Hartree densities of Ref. 1 are used. These densi-
ties are given in Table II. The average density varies from
0.25 to OA. The density is higher at the lower energies
where the nucleus is more transparent. It is important to
emphasize that there is very little A dependence. The
average density is almost the same in ' C, Ca, and Pb
because the reaction is surfaced peaked, i.e., T(b) is very
small for trajectories which pass near the center of Pb.

Therefore, if one is locking for medium effects, going
to a heavy nucleus does not gain one anything. In fact, a
heavy nucleus will have larger spin-orbit distortions (see
Sec. III) and presumably more background from multiple
scatterings. Thus, it may be simpler to interpret spin ob-
servables in light nuclei.

We now calculate the position of the quasielastic peak.
The single particle spectrum E(k) as a function of
momentum k is given by

Nucleus

12C

Ca
~Zr
208pb

(fm)

2.08
3.57
4.96
6.69

a
(fm)

0.477
0.514
0.486
0.530

TABLE II. Baryon density parameters (crudely) fitted
to the relativistic Hartree calculations of Ref. 1,
p(r)/pp [1+exp(r —R}/a]——

E (q) —E (0)= (q + (M' )2) '/2 —(M' ) . (13)

This energy loss is increased from that for free scattering
off of a mass M. This gives a "binding energy shift" of

aE =(q'+ (M')')'" (q'+M')—'" (M')+M—. (14)

However, this binding energy shift is substantially smaller
than that for electron scattering because (M') is much
larger for the surfaced peaked proton reaction. The posi-
tion of the quasielastic peak in ' C at 1000 MeV is shown
in Fig. 1 using Eq. (13) and the 800 MeV (M') value
from Table I. The agreement with experiment is very
good. If instead the lower electron scattering value of
(M') is used the binding energy shift is too large. A
nonrelativistic shell model with typical binding energies
for the s and p states wi11 also substantially overestimate
the binding energy shift.

Note that this description of the binding energy shift is
oversimplified. For heavier nuclei, one needs to consider
Coulomb corrections. Since the Coulomb potential slows
the projectile down, it will transfer less momentum to the
struck nucleon and the binding energy shift will be signifi-
cantly reduced. This effect could be 5 MeV or more in Pb
and thus eliminate much of the shift due to M', leaving a

E(k)=(V&+(k'+(M')')' '.
This is for nuclear matter with an average vector potential
( V) at an effective mass (M'). The maximum in the
quasielastic peak (for a momentum transfer q) occurs at
an energy loss E(q) —E(0). If we assume ( V) and (M' )
to be independent of k then the energy loss is independent
of (V&.
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C )014 MeV
TABLE III. Spin rotation angles [R in Eq. {29)]and real and

imaginary central potentials, Eq. (5), evaluated at the average
impact parameters (b ), Eq. (47), in Table I. Densities and opti-
cal potentials are as per Table I.

900-
CP

X
4J

Tlab

(MeV}

200
400
500
800

0.175—0.053 i
0.147—0.036i
0.098—0.033i
0.067—0.021 i

~df
(MeV)

—30
—13

0.5
0.7

jeff
(MeV)

—14
—20
—31

0.218—0.067 i
0, 189—0.045 i
0.110—0.037i
0.064—0.018i

—26
—12
—1

1.3

—15
—22
—26
—31

800
5 )0

lab

(5 20 160
500
800

0.244 —0.146i
0.130—0,081 i
0.070—0.049 i

—14
—20
—36

FIG. 1. Position of the quasielastic peak (energy of scattered

proton) versus laboratory scattering angle for 1014 MeV scatter-

ing from ' C. The dashed curve is for free NN scattering while

the solid curve is Eq. (3) for an (M ) of 0.89M. Finally the
dotted curve is shifted from the dashed curve by DE=25 MeV
which is the much larger binding energy shift found in electron

scattering (Ref. 10). The experimental data is from Ref. 8.

208Pb 200
400
500

0.253 —0. 103i
0.183—0.062 i
0.134—0.044i

—15
—20
—21

' 1/2
E +(M )

2&M')
X, , (16)

peak near the free NN position. One should also consider
the nuclear potential. However, in relativistic models the
"wine bottle bottom" shape of V, is crossing zero in the
surface regions of interest. Therefore, the average nuclear
potential may be small (see Table III).

It remains to examine the effects of multiple hard
scattering on the position of the peak. These could be siz-
able since multiple scattering greatly increases the width
of the peak in heavy nuclei at large scattering angles. In a
latter publication we will consider the position of the
quasielastic peak in more detail.

For electron scattering, Rosenfelder' found that a
value of (M') =0.71M provided a good description of
500 MeV quasielastic electron scattering from Ca. His
value is very close to our value of 0.74M predicted by
Eqs. (9) and (10) with T(b) =1.0. Thus, our simple model
of (M') provides a good description of the binding ener-

gy shifts in electron scattering.

III. EFFECTIVE MASS DEPENDENCE
OF NN OBSERVABLES

%'e now calculate the M' dependent observables im-
plied by Eq. (1). One representation of the NN amplitude
X(&M')) is"

K((M'))= —,[a+b+(a b)oi„oz„+(c+—d)oi oz

+(c —d)olio2i+e (oi&+o2„)] . (15)

Equating this to the positive energy spinor U [of mass
(M'), E' =(k'+ (M')')'"],

E'+(M')
matrix elements of F [Eqs. (1) and (2)], one can derive a
5y, 5 matrix relating the a, . . . , e to the five F;. Note,
E' is just a parameter, the energy is given by Eq. (12).
(This matrix is easy to derive by using a helicity basis as
an intermediate step, see also Ref. 12.)

p
M(k„(M') ) F„

see F
Appendix A

(17)

This matrix is a function of the center of mass momen-
tum k, and the center of mass scattering angle 8, . It
also depends on the nucleon's inass as a parameter. If Eq.
(2) is a good model for F in the medium then one can ex-
amine the effects of changes in the wave functions
U((M')) by simply evaluating Eq. (17) at (M') not
equal to M. Therefore, we will consider Eq. (17) to also
be a function of (M').

The procedures involve t~o steps. First, a, . . . , e am-
plitudes from the Amdt phase shifts' are used with the
inverse of Eq. (17) in free space with (M') =M to calcu-
late Lorentz invariants I';. The F; are then assumed un-
changed in the medium. Next, Eq. (17) is used in the
medium at (M' ) to calculate new a, . . . , e. These differ
from the Amdt phase shift values because the spinors
U((M') ) are different.

It is no~ a simple matter to calculate spin observables
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P =Re(a'e)/(deidQ}

or one of the spin rotation parameters Dio~0

Dio 0 Im——{b'e)/(da/dQ),

where the total intensity or cross section is

dcridQ= —,
' (a'a +b'b +c'c +d'd +e'e) .

(18)

(20}

(See also Appendix B.)
To gain an insight into the M' dependence of the ob-

servables, we evaluate Eq. (17) in the 8, =0 limit. The
differential "cross section" for forward scattering is

da/dQ(8=0)=4k, '( )E, +RE„('+ (2F,

+2[2~t —F,
(

), (21)

where the kinematic factor

a =1+2k,'/(M')' (22)

grows with decreasing (M').
The cross section in Eq. (21) involves a sensitive cancel-

lation between large attractive scalar I, and repulsive vec-
tor F„amplitudes. As M' decreases, the contribution
from F, is Lorentz contracted with respect to F„. There-
fore, the cross section will rise dramatically with decreas-
ing M* and this rise may "dilute" some of the spin ob-

for quasielastic proton scattering (in a plane wave impulse

approximation) from the new a, . . . , e. For example, the

polarization I' is given by

servables. However, the "in medium" NN cross section
may not be directly observable since the total quasielastic
scattering is dominated by distortion effects.

This Lorentz contraction of the F, contributions corn-
pared to I'„ is important in many theoretical models. A
number of relativistic mean field' and Brueckner' cal-
culations all find that this change with M' makes the in-
teraction substantially more repulsive in the medium. As
a result, relativistic calculations find nuclear matter satu-
rates at a lower density and binding energy than in similar
nonrelativistic calculations. It would be extremely useful
to have experimental information on this {possible) change
of the NN interaction in the medium.

The slope of the polarization with respect to q at for-
ward angles is given by (P itself vanishes at 8=0}

dP/dq ~s

Sk,E, Im(F„'+2F,')(F, +F,+2F, F }

(M'&' aa/M(8=0)

(23)

Here, there are two competing effects as M» decreases.
First, the leading factor grows like 1/2M'2. However,
near E=800 MeU the cross section in Eq. (21) grows even
faster (because of the sensitive cancellations between F,
and F„). Therefore, near 800 MeV, P decreases with M'.
Below 400 MeV the two effects nearly cancel and P will
be insensitive to M'.

The spin rotation parameter DID o also vanishes at
8=0 and its slope is given by

dDio Oidq ~e 0
——— ~E, +LE„+E,—2AEt

~

+Re(E,'+RE„'+E; 2AF,')—
der/d Q

X 4AE, 2F,—,—(F,+F„+2E, F,)— (24)

This Eq. (24) involves cancellations between two terms.
At low energies 200—400 MeV and forward angles Dio 0
is very sensitive to M'. It grows substantially more nega-
tive as M' decreases. This is the same energy and angu-
lar region where the spin rotation parameter Q in N-

nucleus elastic scattering changes rapidly with energy. At
higher energies D~o o is insensitive to M .

IV. SPIN-ORBIT DISTORTIONS

Before comparing the calculations in Sec. III to data,
we examine the effects of spin dependent distortions on
the spin observables in quasielastic scattering. This dis-
cussion is completely general and applies to any relativis-
tic or nonrelativistic description independent of our model
forM .

In a distorted wave impulse approximation, the transi-
tion amplitude for the projectile scattering from

~
i ) to

~f) is

M~, =(f (X„,[i& . (25)

Here E~,b is the NN amplitude in the laboratory frame
and

~

i ) is an incoming distorted wave. In this section we
will only be interested in the spin dependence of

~
i ) so

we write

~

i )=exp[iS+ (x)],
/ f ) =exp[ —iS (x}].

(26)

Here, S~+ {S~} will be approximately evaluated at z=O
and some impact parameter b.

S (b)= —J dz'-V o"bXk .
+~

(28)

Note, we neglect the Darwin term [—ikz' in Eq. (4)] in
the eikonal wave function. This term does not destroy
fiux but moves it to regions of lower density. The Darwin
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term remains to be investigated but its effect may largely
cancel against the density dependence of the cross section,
Eq. (21).

The spin-orbit potential rotates the spin through a com-
plex angle R.

S+ =R(Xn+Ss) o

R = —Mb dz'V~ b +z'

N =(b)&k).n,

A)
S
~II++

A
8

S=(beak) s,
n=kxk'/i kXk' i,
s=n~k .

Here, X is the component of R in the direction normal to
the reaction plane (it only depends on the initial angle of b
with respect to n ). Next, S is the component of R in the
"sideways" direction. The final state factor S is given

by Eq. (29) with R replaced by —R and the direction k
replaced by the scattered projectile direction O'. Note,
there is no component of R along the beam axis. The
coordinate system is shown in Fig. 2(a).

Polarization transfer observables D„~ can now be calcu-
lated

(b}

D„» ——,' tr(cr„Mf;c—rsMf;)/I . (30)

Here, x is the index for the scattered particle and y, the
initial particle index, can take on any of four values

0(oo——1), n, s (s'), and k (k'). The total intensity is
given by

I = —,
'

tr(Mg;Mf; ) . (31)

X, =exp( —i R" o)a„exp(i R o )

and o~ is replaced by

(32a)

For completeness we have collected in Appendix 8 ex-
pressions for D,„ in the laboratory frame in terms of the
a, . . . , e amplitudes. " Equation (30) is related to the free
expression without spin-orbit distortions by replacing cr„
with the rotated expression

FIG. 2. (a) Incident and scattered projectile coordinate sys-

tems. The projectile scatters from k to k ' and n ~ k)& k ' is the
normal to the reaction plane. The incident polarization can be

resolved along n, k (or I=. longitudinal) and s=k Xn (sideways)

directions. For the outgoing particle s ' =k ' Xn is the new side-

ways direction. (b) Path length differences for scattering from k

to k' through an angle O~,b. Here, the initial direction k is
parallel to the z axis. The favored trajectory (shorter path
length for given b) scatters from the near side of the nucleus
(right-hand side or —x). The path length is shorter by an
amount b sin(8q, b)sin(A), Eq. (34), compared to the trajectory
with A=O.

X» exp(i R o——)o~exp( i R'.o)— (32b)

[i.e., Eq. (30) with Mf; calculated with distorted waves is
equal to a plane wave calculation with o„~X„and
os ~Xy].

We expand to first order in the small angle R and as-
sume that 5 averaged over the angle between b and n will
give zero.

Observable
M =M

Free with L -S
M* =0.86M

Free with L.S
I'

D„„
DI'I

D, ,
D, I

TABLE IV. Spin observables for 500 MeV p- Pb scattering
at 18.5 (deg) in the laboratory. The free M =M numbers are
isospin averages of pp and pn observables from Amdt weighted
by Z/A and X/A (Ref. 13). Those with I. S use Eqs.
(40)—(46) to include spin-orbit distortions.

(33)

We will consider different path lengths for finite but
small scattering angles in order to calculate a nonzero
(X}.There will be an extra path length L for a straight
line trajectory of impact parameter b which scatters at

0.41
0.82
0.40
0.47
0.46

—0.49

0.38
0.82
0.36
0.43
0.51

—0.54

0.28
0.83
0.52
0.63
0.50

—0.54

0.25
0.83
0.47
0.58
0.54

—0.60
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z=O through an angle 8],b (compared to the trajectory
which goes through b=0).

L = b—sin(8]»)sin(A) . (34)

Here dI is the angle of b with respect to n [see Fig. 2(b}].
The different path lengths will contribute relative

amounts depending on the phase factor from the central
potential e'~

~

e'
~

'=exp[ —2Mb~, ff»n(8]»)»n(A)/k], (35)

where jeff is the imaginary part of V, calculated approx-
imately at z=O and impact parameter b [see Eqs. (4) and
(5)]. It is now easy to average N over the angle A

2K 2n'

(N ) = f dA sin(A)exp[ —F sin(A)] f dA exp[ —F sin(A)] . (36)

Here, the parameter I is

F = 2Mb—sin(8]») jeff/k . (37)

Equation (36) is a simple integral given by modified bessel
functions

( N ) = I](F)/—Io(F) = F/2 . — (38)

This has limits of —1 for strong absorption (large F) and
averages to zero just like Eq. (33) as F goes to zero. Equa-
tion (38) describes the extent to which near side scattering
[Fig. 2(b)] is favored over far side.

The observables to first order in R are now easy to cal-
culate. The normalization is given by

I =1—4(N)ImRP (39)

Here, P is the polarization in the absence of L S distor-
tions. This equation shows that the imaginary L 5 poten-
tial polarizes an initially unpolarized beam by preferen-
tially absorbing different spin states.

The polarization P =D„o is given by

P =ZPO 2(N) ImR—(1+D„„), (40)

Z =1+4(N )lmRP'. (41)

D„„=ZD„'„—4(N )I~P'. (42)

Here, the superscript zero refers to an undistorted NN ob-
servable. When measuring P we see that the imaginary
L S potential may destroy some of the initial polarization
(the one in the second term). Alternatively, one can start
with a polarized beam and use the imaginary L.S outgo-
ing distortion to analyze the normal polarization to obtain
the D„„ term.

Here if the imaginary L.S potential destroys either the in-

coming or outgoing polarization you wind up measuring
P . Since D« is often near one the plus term in Z can-

cels most of the minus term leaving very small distortion
corrections to D„„. The other spin observables are given

by

Dss ZD, s+——2(N)ReR(D, ] D]s), —

Dn =ZDI ]+2(N )ReR (Ds'I Dl's )

Drs =ZDis+2(N )ReR (D, , +D»),
Ds] ZDs i —2——(N)ReR (D,', +D& &) .

(43)

(44)

(45)

(46)

(b]= f bdbbT(b)pIb) I bdb T(btp(b) . (47)

We note that p((b)} is about (P). As an example, we
consider 500 MeV proton scattering from Pb at a
scattering angle of 18.5 deg in the laboratory. These are

Here a spin initially in the s direction can be rotated

about the n axis into the I direction. These distortions de-

pend on the real part of R which will be bigger than ImR
given that the imaginary L S potential [see Eqs. (29) and

(6)] is often smaller than the real potential.
Equations (40)—(46) form the main results of this sec-

tion. The angle R depends on the L S optical potential
through Eqs. (29) and (6) while (N ) depends on the labo-
ratory scattering angle and the imaginary part of the cen-
tral potential W, rr through Eqs. (37), (38},and (5). All of
these quantities depend on the impact parameter b To.
obtain an estimate of spin-orbit effects we will simply use
an average impact parameter (b ) defined in analogy with
the average density [see Eq. (9)].

TABLE V. Spin observables (average of pp and pn) at 500 MeV without I. S distortions.

10
30'
50

4.5
13.4
22.5'

0.21
0.46
0.35

M =M
0.73 0.45
0.81 0.43
0.82 0.50

0.00
0.22
0.51

0.01
—0.22
—0.54

0.55
0.41
0.42

10'
30
50

4.5'

13.4'
22.5'

0.19
0.33
0.25

M* =0.86M
0.79 0.55
0.80 0.62
0.82 0.65

0.10
0.35
0.52

—0.09
—0.37
—0.57

0.66
0.52
0.53
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FIG. 3. Polarization (average of pp and pn) versus scattering

angle at the quasielastic peak. The solid lines are predictions
without L S distortions awhile the dotted lines include L S dis-

tortions for 20SPb.

the conditions of the Carey et ar. "experiment. Using the
Pb density from Table II (and the optical potentials from
Ref. 7, case 7}we have

)0

lab

20

FIG. 4. Analyzing power in "C at the quasielastic peak at
800 MeV versus laboratory scattering angle. The dashed curve
is the free NN prediction (average of pp and pn) while the solid
curve is for an M of 0.89M and the dots include the very small
L S distortion corrections to the solid curve, Eq. (40). The data
are from Ref. 19.

(b) =6.95 fm.

At this impact parameter

R =0.134—0.043i,

(N) = —0.20.
(49)

These spin-orbit distortion formulas Eqs. (40)—(46) are
valid to order R(N). If the average (N) is very small
(as it is at very forward scattering angles) then there will
be terms of order R (N } (which is about 8 /2) which
could be important.

These numbers lead to the following changes in observ-
ables (see Table IV):

P about 5% less than P

D„„almost unchanged,

Di'i D, , decrease by about 150004 .

(51}

(52)

(53)

If one is interested in the longitudinal Sl or transverse

S, spin fhp probabilities"

SI = ~ [ I —D„„(Dpl Dg g)/—cos(8)ab)], (54)

St = 4 [I—D~n+(Drr Ds, )/cos(8l, b)], (55)

then the L S distortions for DI l and D;, will almost can-
cel. We also note that the distortions (or M' effects) do
not change the relation among the D,

&
(which is always

satlsflled).

Dsv+DI'~ =(Dl'l —D '~)tan(8l b) .

V. RESULTS

In this section we summarize the results of Secs. III and
IV for the spin observables in quasielastic scattering. In
Table IV (see also Table U) we consider 500 MeU proton
scattering from Pb at 18.5 deg. The polarization P is seen
to decrease by 40% from the free value of 0.41 down to
0.25 (see Fig. 3). The vast majority of this reduction is
due to the change in M' rather than the L.S distortions
(although they go in the same direction). The parameters
D, „DI&

increase by 30% as M' decreases but then the
L S distortions act in the opposite direction to cancel
some of this increase. In fact, the measured D, , and Dl l
(Ref. 15) are close to the free values. This null result
could be understood if our estimate of the L S distortions
are somewhat too sma11. Finally, D„„ is not sensitive to
either M' or L S effects.

The parameters D, I and DI, are both increased in ab-

TABLE VI. Spin observables (average of pp and pn) at 800 MeV without L.S distortions.

). b

10'
30'
50'

4.2'
12.6
21.3'

0.18
0.42
0.37

M =M
0.92 0.78
0.90 0.77
0.87 0.69

0.07
0.30
0.41

—0.07
—0.31
—0.45

0.83
0.70
0.60

10
30'
50

20

12.6
21.3'

0.15
0.33
0.30

M =0.89M
0.94 0.83
0.90 0.82
0.86 0.73

0.10
0.32
0.41

—0.10
—0.34
—0.44

0.87
0.74
0.63



33 RELATIVISTIC EFFECTS ON SPIN OSSERVABLES IN. . .

T) b
=200MIV

I I I l I I I 1 l I I l 1
0.8 0.5

I I I I I I I

p
I

I

lab 400 MeV

0 ~ a
I 1 ~ ~ I

0.5

—O.l
4
1

—0.3
~ I I ~0

r-- -03

0.5

0.2

0.3

~ I ~ I j ~
I ~ 5 1 '

~ I 0 ~

0.5

Dnn

0.6

Dnn

I ~ I ~ I I ~
~ I 0 I

Ds&

0
01

Ds's SS

~la W~~vV

-Ol I I l & I I I

0 l5 300
el b

r

r f I I » I -02
l5 30
0
lab

0.2-
0 I5

Iob

I I

30 0 I5

elb

-0.5

FIG. 5. Spin observables (average of pp and pn) at 200 MeV
without L.S distortions versus laboratory scattering angle. The
free M =M results are dotted while the solid curves are for an
M» of 0.81M.

FIG. 6. Spin observable (average of pp and pn) at 400 MeV
without L S distortion versus laboratory scattering angle. The
free M =M results are dotted while the solid curves are for an
M of 0.81M.

solute value as M' decreases. In addition, the L S distor-
tions act to further increase their magnitudes (in contrast
to D~~, D;, ). Therefore, these parameters should be no-
ticeably above the free values.

At 800 MeV (Table VI) the M' effects are somewhat
smaller with P decreasing by about 20%. The analyzing
power has been measured in ' 'Ta at 19.3 deg to be 0.29.'

This is in good agreement with the predicted M' effect
where the free value of 0.37 is reduced to 0.30. Figure 4
shows the analyzing power in ' C which agrees well with
the reduced M' value. The change in the other spin ob-
servables is less than 10%.

At low energies, 200 MeV (Table VII and Fig. 5), the
polarization does not change much with M'. However,
the D;J are very sensitive to M'. %ith decreasing M',
D, &

is much more positive (and DI, more negative). (At
this low energy one should also consider corrections to the
simple reaction mechanism from exchange and Pauli
blocking. )

At 400 MeV (Table VIII and Fig. 6) the polarization is
reduced by 40% as M' decreases while D„„ is almost un-
changed. Both D, , and DII are significantly enhanced
while Dp, and D, I are also changed at forward angles.

It remains to evaluate corrections from multiple hard
scattering (where two nucleons are ejected). Double
scattering in light nuclei at the top of the quasielastic
peak may be down by a factor of 10.' However, in heavy
nuclei, multiple scattering is believed to substantially
broaden the quasielastic peak at large angles. Even a
crude estimate of the effects of multiple scattering on spin
observables in heavy nuclei would be very useful.

VI. CONCLUSIONS

In this paper, we have considered the spin observables
in quasielastic proton scattering. Given the success of
many relativistic descriptions of elastic spin observables
one should also examine inelastic scattering with its much

TABLE VII. Spin observables (average of pp and pn) at 200 MeV without I..S distortions.

10'
30'
50'

4.8'

14.3'
23.9'

0.13
0.37
0.40

0.34
0.51
0.56

M =M
0.17

—0.02
—0.02

—0.09
—0.13

0.06

0.12
0.22

—0.05

0.51
0.32
0.00

10
30
50'

4.8'
14.3
23.9'

0.17
0.37
0.31

M =0.81M
0.24 0.02
0.46 0.17
0.53 0.30

0.07
0.27
0.41

—0.02
—0.25
—0.50

0.56
0.28
0.09
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TABLE VIII. Spin observables {average of pp and pn) at 400 MeV without I. S distortions.

D, , D, I DI, DI I

10'
30'
50'

4.5'

13.7'

23.0'

0.21
0.46
0.35

0.56
0.71
0.75

0.26
0.21
0.35

—0.03
0.16
0.46

0.05
—0.13
—0.48

0.48
0.30
0.27

10'
30'
50'

4.5'
13.7'
23.0'

0.17
0.29
0.20

M* =0.81M
0.69 0.44
0.73 0.55
0.76 0.61

0.13
0.38
0.51

—0.12
—0.40
—0.57

0.66
0.48
0.46

richer choice of spin observables. Furthermore, quasielas-
tic scattering to the continuum may minimize one s sensi-
tivity to the unknown nuclear structure of the excited
states.

The lower components of a nucleon's wave function
may be substantially enhanced in the strong nuclear po-
tential. Furthermore, successful RIA descriptions of elas-
tic scattering make definite and easily calculated assump-
tions about how the NN interaction will change with the
enhanced lower components. We find that due to this
M' effect the polarization is decreased by almost 40% at
500 MeV. We emphasize that spin observables may allow
one to test the assumed relativistic form of the NN in-
teraction.

For these calculations we have used an eikonal model
which yields an average effective mass M' of 0.8 to
0.9M. This value is higher than the M& l' value of 0.56M
because the reaction is surface peaked. However, the NN
interaction was found to be sensitive to even small
changes in M' because of strong cancellations between
very large Lorentz components.

We have also provided simple estimates of how distor-
tions from the spin-orbit optical potential change spin ob-
servables. At 500 MeV and 18.5 deg in Pb the polariza-
tion is decreased by less than 5% while DI I and D, , are
decreased by 15%%uo. The simple formula, Eqs. (40)—(46),
may be useful in other nonrelativistic models.

Much remains to be done. First, more measurements of
quasielastic spin observables would help. One should
measure the DI at both higher (800 MeV) and lower (200,
400 MeV) energies than the existing 500 MeV LAMPF
data. Note, even if it is not possible to measure sideways
(or longitudinal) polarization, an incomplete set of D;~
would still be useful. Data for a range of A might allow
one to separate M* effects (which may be approximately

constant with A) from multiple scattering corrections
which should grow with A.

Second, one should try and estimate the effects of mul-

tiple scattering on spin observables in heavy nuclei. In ad-
dition, it is important to examine other forms for the rela-
tivistic NN interaction besides the simple local Eq. (2).
For example, one can replace the pseudoscalar y5 in Eq.
(2b) with a pseudovector gy5 term or use the more com-
plicated interaction in Ref. 18. The quasielastic data
should then provide useful constraints on the relativistic
form of the NN interaction.
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APPENDIX A

[M]=ik, [A][8) . (A 1)

The matrix [A] is given in Table IX while [8] is listed in
Table X using the symbols defined in Table XI. The
momentum k, and scattering angle 8 are in the center of
mass frame.

Here we give the relation between a, . . . , e and Lorentz
invariants F„.. . , F„ in Eq. (17). The matrix [M] is

written as a product of two matrices

TABLE IX. The matrix [A J in Eq. (Al).
TABLE X. The matrix [BJ in Eq. (Al). The matrix ele-

ments are listed in Table XI.

cosO
1

—1

1

—i sinO

cosO
—1

1

1

—i sinO

cosO
1

1

—1

—i sinO

—cosO
1

1

1

i sinO

—4sinO
0
0
0

—4l cosO

—ey
a

ea+pP
y

C p+e)o.
y pl'

0

pa+eP
—6

( —p+e)a
y

—2P
2(p +e)5

2'
2y
—26
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TABLE XI. Matrix elements for Table X.

cos O/2
1+ sin O/2

sin O/2
1+ cos O/2

E, /M sinO/2cosO/2
( k2+M 42)1/2

E,* /M"
k /M*'

APPENDIX 8

8 0
A =D, I

———A sin(a)cos — B—cos a+—
2 2

8—C cos(a)sin
2

~

'0 0R'=D~, =A cos(a)sin —+Bcos a+—
2 2

8+C sin(a }cos
2

8 . 8A'=DI
~
=A cos(a)cos ——B sin a+—

2 2

In this appendix we give the expressions for different
polarization transfer observables in the terms of a, b, c, d,
and e amplitudes. These expressions are given in Ref. 11.
We collect them here for completeness. Consider
nucleon-nucleon scattering. Let 8 be the scattering angle
in the two-body center-of-mass and e~,b the angle in the
laboratory system. Define

6I
lab .

Then the various polarization transfer observables and the
corresponding Wolfenstein parameters are given by the
following formulas.

D=D..=(l~ I'+ Ib I' —lc I' —ld I'+ Ie I'}«

8—C sin(a)sin
2

Here

&= 2( I& I'+ Ib I'+ lc I'+ ld I'+ le I')

A =Re(a "b —c'd)/a,
B =Im(b' e)/cr,

C =Re(a 'b +c "d) /g .
(B4)

0 . 8
R =D, , =A sin(a )sin — Bsin a+ ——

2 2

8+C cos(a)cos
2

The corresponding nonrelativistic formulas can be ob-
tained by putting a=0 in the above relations. The sub-
scripts n, I, and s on the D observables denote the com-
ponents along the normal, longitudinal (direction of the
beam), and the sideways directions [see Fig. 2(a}].
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