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I present a macroscopic model for the energy of rotating nuclei which has several refinements rel-

ative to the rotating-liquid-drop model. Of most importance are the inclusion of finite-range effects

in the nuclear surface energy by means of a Yukawa-plus-exponential potential, finite surface dif-

fuseness effects in the Coulomb energy and in the rotational moments of inertia, and an improved

specification of nuclear shapes. %ith this model I calculate the properties of points of equilibrium

corresponding to nuclear ground states and fission saddle points. The results are qualitatively simi-

lar to those of the rotating-liquid-drop model, but there are significant quantitative differences in

fission-barrier heights and moments of inertia. Fission barriers for nonrotating nuclei are calculated

for nuclei with atomic numbers varying from 14 to 117. For rotating nuclei, detailed results are

given for the entire range of angular momentum for which a fission barrier exists, for nuclei with

atomic numbers from 20 to 100, and for mass numbers which exceed the range of known nuclei.

The calculated barriers are lower than liquid-drop-model barriers for lighter nuclei and are con-

sistent with those deduced from experimental fission-fusion data over a wide range of nuclear

species. The present calculations indicate that super-deformed rotating ground states, which are

predicted in the liquid-drop model, would not survive fission long enough to undergo electromagnet-

ic decay. Multiparameter functions which approximately reproduce the calculated results for bar-

rier heights and moments of inertia are described.

I. INTRODUCTION

When heavy nuclei are colhded at sufficiently high en-

ergies, composite systems are formed which may have an-

gular momenta in excess of 100iri, where A' is Planck's con-
stant divided by 2m. When considering systems with such
large angular momenta, it is important to know whether a
locally stable equilibrium configuration of the fused nu-

clei exists, because an equilibrated compound nucleus will

not be formed if such a configuration does not exist.
After formation of a compound nucleus, the height of the
fission barrier strongly affects the probability of fission
decay relative to other decay channels. In addition, the
moments of inertia of the saddle-point configuration may
determine the angular distribution of fission fragments.

The rotating-liquid-drop model has provided a simpli-
fied model of the potential energies and equilibrium con-
figurations of rotating nuclei. However, when the liquid-

drop model, with the best available constants and a sta-
tistical deexcitation model, is used to reproduce experi-
mental data on heavy-ion-induced fission and evap-
oration-residue formation, the fission-barrier heights used
must be reduced from liquid-drop values' by a factor
~»ch has been reported to be betvreen about 0.5 and 0.9,
for nuclei with mass numbers less than about 200.

Since the last determination of parameters in the
liquid-drop model, an im roved semiempirical mass for-
mula has been developed, ' in which the surface energy of
the liquid-drop model is replaced by the Yukavra-plus-
exponential nuclear energy, ' the effect of the diffuseness
of the surface of the nuclear charge distribution on the
Coulomb energy is included, ' and various other physical

effects are modeled. ' In addition to the effects men-
tioned, the diffuseness of the surface of the nuclear matter
distribution changes the rotational moments of inertia
from their liquid-drop-model values. '9 Finally, the exist-
ing calculations using the rotating-liquid-drop model have
only approximately included the effects of triaxiality. '

Nuclear systems with large amounts of angular momen-
tum which are formed in heavy-ion collisions will general-
ly also have high internal excitation energy. For suffi-
ciently high internal energies, shell and pairing effects
vanish, and a macroscopic model may be reasonable. For
systems with small amounts of internal energy and also
low macroscopic fission barriers (for example, actinide
nuclei), single-particle effects do play an important role.
However, a macroscopic model with the correct global
behavior should provide both a good representation of the
fission properties of highly excited lighter nuclei and a
baseline model against which to compare experimental re-
sults in order to determine when single-particle effects are
important.

In this paper I present a macroscopic model of rotating
nuclei which incorporates the following changes relative
to the liquid-drop model:

(1) The surface energy of the liquid-drop model is re-
placed by the Yuka~a-plus-exponential nuclear energy,
which models effects of the finite range of the nuclear
force, nuclear saturation, and the finite surface thickness
of real nuclei s

(2) The Coulomb energy is calculated for a charge dis-
tribution with a realistic surface diffuseness

(3) The rotational moments of inertia are calculated for

33 2039 1986 The American Physical Society



ARNOLD J. SIERK

rigidly rotating nuclei with realistic surface density pro-
files;"

(4} The parameters of the model for the various contri-
butions to the energy of the nucleus provide a better fit
than do those of the liquid-drop model to nuclear
ground-state masses and fission barriers of nonrotating
nuclei '"

(S) A flexible shape parametrization is used which al-

lows accurate estimation of the convergence of results as a
function of the number of degrees of freedom of the nu-

clear shapes considered; 0

(6) Accurate modeling of the triaxial nuclear shapes
occurs; and

(7) A precise calculation is made of the value, slope,
and curvature of the potential-energy surface by means of
numerical quadrature.

Of the above items, those numbered (1)—(4) and (6)
have been included in a previous calculation. ' However,
due to the restricted shape parametrization, and to ap-
proximations used to locate the saddle point in Ref. 21,
those results have significant quantitative differences
from those reported here, in some cases. '

In Sec. II, I present the ingredients of the model, in Sec.
III, I give a description of the qualitative results of calcu-
lations in the model, and in Sec. IV, I discuss detailed re-
sults for specific nuclei and a method for reliably approxi-
mating all results in order to have a practical way of
determining fission barrier heights and moments of inertia
for any nucleus as a function of angular momentum. Sec-
tion V is a discussion and summary of the calculations.
In several Appendices, I discuss some details of the calcu-
lations and their accuracy.

II. INGREDIENTS OF THE MODEL

A. The rotating-1iquid-drop model

Because of its simplicity, and in order to facilitate later
comparisons, I will first review the properties of the
rotating-liquid-drop model. ' There are three important
contributions to the potential energy of deformation: a
surface tension energy (arising from saturating, short-
range nuclear forces) which tends to minimize the surface
area of the nucleus, a repulsive Coulomb energy (arising
from mutual repulsion of protons) which tends to distort
or disrupt the nucleus, and angular momentum, which
also favors disruption because large moments of inertia
are energetically favored. The nucleus is assumed to be
formed of an incompressible fiuid with a constant charge
density and a sharp surface, which rotates as a rigid body.
Energies are often expressed in units of the surface energy
of the nonrotating spherical ground state,

R =r" W'"
0 ~0

while the mass unit is

Mp ——mp A,LD

(2)

(3)

mLDc2=939. 15 Me@ (4)

where c is the speed of light in a vacuum.
If I denote by L the magnitude of angular momentum

in units of A, the rotational energy of the sphere is

E„"'=4&,2/21, ,

where Io ——',MORO—is the moment of inertia of a rigid
sphere. The electrostatic energy of the sphere is

3 Z 8
C 5 Rp

(6)

where e is the magnitude of the charge of an electron. It
is possible to consider all results as functions of two pa-
rameters the fissility parameter

Z'/~X=
2E' ' 50.88(1—x" I )

(7)

and the rotational energy parameter

(8)
1.9249 L2

E"' (1—~LD12) ~'"
The fissility parameter varies from 0 to 1 for beta-stable
nuclei whose charge numbers vary from 0 to about 120
(where the macroscopic fission barrier vanishes). For a
nucleus with Z =80, A =200, 1. =80%, y is approximate-
ly 0.057.

The deformation energy may be expressed as

ELD g LDE(0)+g LDE{0)+g LDE {0) (9)

where 8, , BL, and Ba are the dimensionless surface,
Coulomb, and rotational energy functionals, respectively.
Usually, the energy is expressed relative to that of the
spherical, nonrotating ground state

OLD/E{0) OLD 1+2 (OLD 1)+OLD (10)

and rp and mp are the hquid-drop radius and the
nuclear-mass constants, respectively. The best existing
liquid-drop-model fit to nuclear masses and fission bar-
riers gives:

a, =17.9439 MeV,

a'LD = 1.7&26,

ro ——1.2249 fm,

and

E(0) g LDg 2/3( 1 ~LD12)

where a, and z," are the hquid-drop-model surface-
energy and surface-asymmetry constants, respectively,
I=—(X—Z}/A is the neutron-proton asymmetry, and N,
Z, and A are the neutron, proton, and nucleon numbers of
the nucleus, respectively. The unit of distance is

The energy functionals have the form

OLD=, gdS,
0'

3Zvr'acLD

15

f dS f dS, dS crdS cr
0' (12)
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and

By=ID f d rpi (13)

All integrals are taken over the entire nuclear surface or
volume. dS and dS' are the vector surface elements of
the nuclear surface, o =r—r', n=

~

cr ~, and ri is the per-

pendicular distance from the point described by the vector
r to the rotation axis of the nucleus. The second form of
Eq. (12) is derived from the first by twice applying
Gauss's divergence theorem.

B. Yukaea-plus-exponential nuclear energy

The surface energy of the liquid-drop model suffers
from several deficiencies in attempting to describe real nu-

clei. Perhaps the most important of these is the neglect of
proximity effects; that is, there is in the liquid-drop model
an unrealistically high surface energy for strongly de-
formed shapes, and an absence of attraction between
separated nuclei. One method for improved modeling of
the macroscopic nuclear energy is the Yukawa-plus-
exponential double-folding potential. 's The generalized
nuclear energy is a double volume integral of an empirical
Yukawa-plus-exponential folding function. With this
technique, using one additional parameter relative to the
liquid-drop model (the range of the potential), one can
describe heavy-ion scattering potentials, fusion barriers
for light and medium-mass nuclei, the lower (than liquid
drop) fission barriers observed in nuclei with A 200, and
also satisfy the condition of nuclear saturation. ' 's

If the constants ro, a„and a, are defined analogously
to those in the liquid-drop model, and in addition I intro-
duce

The units of energy and length are defined by equations
analogous to Eqs. (1) and (2}.

The integrals in Eq. (15) can be performed analytically
for a sphere to lead to a form which makes clearer the re-

lationship to the liquid-drop model'

1 3
a+1 2+3 +3

a 0 0

2

—280/a (0)Xe &s

Note that the lowest-order modification to the liquid-drop
model is to reduce the nuclear enerp, which is the princi-

pal reason why a, is larger than a, . Equation (15) may
also be transformed to a double surface integral by twice
applying Gauss's divergence theorem. ' ' For axially
symmetric shapes, one of the resulting angular integra-
tions may be performed trivially, leading to a three-
dimensional integral, while for triaxial shapes a four-
dimensional integral remains. These integrals are approx-
imated by use of Gaussian-Legendre quadrature formulas.
When calculating equilibrium configurations, it is also
necessary to know the first and second derivatives of the
energy with respect to the shape coordinates. These
derivatives are calculated by first differentiating the
surface-integral expressions for the energy (with the
derivatives of the end points being properly taken into ac-
count), and then making Gaussian quadrature approxima-
tions to the resulting integrals ' (see Appendix A).

c, :—a, (1—a;I ), (14)
C. Coulomb energy

the Yukawa-plus-exponential nuclear energy may be writ-
ten as

For a charge distribution made diffuse by folding a Yu-
kawa function with range a, over a liquid-drop distribu-
tion, the Coulomb energy functional may be written as

E~ = — P 7' —2
87r r(p

(15)

where Bcs"'~ is given by Eq. (12), and'

(18)

ro 1.16 fm, ——
a =0.68 fm,

a, =21.13 MeV,

Kg =2.3

M c =931.50163 —0.511004Z MeV . (16)

Just as in Eqs. (11)—(13), the integrals are over the volume
of a sharp-surfaced nucleus. The range a is the one addi-
tional parameter of this modification of the liquid-drop
model. The value of ro is determined from average
charge radii of nuclei found in electron-scattering experi-
ments, ' ' a is determined from heavy-ion scattering ex-
periments, 's while a, and a; are determined from fitting
the macroscopic fission barriers of nuclei with mass num-
bers from 109 to 252 at low angular momentum. ' The
values of the constants used here are

15 2a,
rhSc = —f d3r f d r' 1+

—o/a
C

(19)

Equation (19) has the same form as Eq. (15), except for a
different relative sign between the two terms in
parentheses. The leading order term in Mc is of the or-
der a, /R 0 and is shape independent, while the term of or-
der a, /Ro has the same shape dependence as 8, . ' In ef-
fect, ignoring effects of Mc results in a renormalization
of the constants ro and a„which is one of the reasons
why the liquid-drop model has such a large value for ro
[Eq. (4)].

The surface-integral form for Bc"'~ may be expressed
for axially symmetric shapes as a t~o-dimensional in-
tegral whose integrand contains complete elliptic in-
tegrals. For triaxial shapes, a four-dimensional integral
remains. First and second derivatives of the Coulomb en-

ergy with respect to shape coordinates are calculated in a
similar manner to those for the Yukawa-plus-exponential
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a, =0.704 fm . (20)

energy (see Appendix A). The range parameter a, is

chosen to reproduce a surface-width parameter, as defined

by Myers and Siissmann, of 0.99 fm, which gives

taking a very large value for N, . However, this is not
usually a serious deficiency when using finite-range ener-

gy functionals, as I do here.
En order to describe triaxial shapes, I use a generaliza-

tion of Eq. (24),

by

D. Rotational energy

For m isolat& nucleus, the rotations mergy is give
pg(z, P) =p, (z)0

A, z
(25)

L 2

2I
(21)

asr ——a, =0.704 fm . (23)

The volume integral in Eq. (13) may be transformed to
a surface integral, which leads to a one-dimensional in-

tegral for axially symmetric shapes, or to a two-
dimensional integral for triaxial shapes. First and second
derivatives of the rotational energy are calculated in a
similar manner to those for the nuclear and Coulomb en-

ergies (see Appendix A).

E. Shape paxametxization

For the majority of the results presented here, I use a
triaxial generalization of the Legendre-polynomial param-
etrization of Ref. 20. First consider shapes which are axi-
ally symmetric, reflection symmetric about a plane per-
pendicular to the symmetry axis, and whose surface may
be spix;ified in cylindrical coordinates (p, P,z) as

(p ) —y & 2kP2k (z /zo ) ~ (24a}
k=0

z is the coordinate along the symmetry axis, 2zo is the
length of the nucleus along the z axis, p, is the radial
coordinate of the nuclear surface, and Pzk is an ordinary
Legendre polynomial. Definin~ x —=z/zo and imposition
of volume conservation leads to

(p,')'= g uzk[Pzk(x) —1] (24b)

and to a specification of zo in terms of the a2k's. I will
N

subsequently use the notation gk to mean gk', . There
are N, independent parameters to descrjbe an axially sym-
metrjc shape, Ia2,a4, . . . , a2~ I. This form of shape pa-

rametrization allows an accurate description of nearly
spherical shapes, as well as elongated shapes, and shapes
with one or more necks. Shapes with cusps, for example
tangent spheroids, cannot be accurately described without

where I is the largest of the principal-axis moments of in-
ertia. For a matter distribution made diffuse by folding a
Yukawa function over a sharp-surfaced one, as discussed
in the preceding subsection, the moment of inertia has a
particularly simple form'9

(22)

where I'"~ is defined by the denominator of Eq. (13),
and as' is the range parameter of the folding function. I
use the same diffuseness parameter for both the charge
and matter distribution, or

aild

rl(((),z)=1+[a,——,ai(1 —x )]P2(cosp)

+[a2——,a&(1 —xi))P4(cosg) (26a)

and

l(rg, z) =1+a&P (czoo)+a P2(c4oPs) = i)((() ) (26b)

A, = 1+ai/4+9a2/64 . (27b)

I will use the notation q; to denote the vector whose com-
ponents are

u2 u4 . u2x &i &2I
Z

and N, to denote the number of independent coordinates:

N, =N, for axial symmetry,

N, =N, +2 for triaxiality .
(28)

Nearly all of the results in this paper are for N, =5, so
triaxial shapes have seven degrees of freedom.

In addition to the previously mentioned difficulty in
describing shapes with cusps, the Legendre-polynomial
parametrization suffers, in common with many other
highly flexible parametrizations, another difficulty when
used with finite-range forces. For very light nuclei, small
protuberances may appear on equilibrium shapes. The
physical mechanism is that distortions of the surface on a
scale smaller than a/Ro (which varies as A '~

) will
lower the Coulomb energy, but not appreciably raise the
nuclear energy. ' This difficulty is manifested in the
present calculations by the appearance of two saddle
points for nuclei with Z &50. One saddle has pointed
ends, and lies -0.2 MeV lower in energy than the true
saddle point, while the other has excessively flattened ends
and lies -0.5 MeV too high in energy. For these lighter
nuclei, and for those with very small necks, I employ the
three-quadratic-surface shape parametrization, in which
nuclear shapes are described by smoothly joined portions
of three concoids of revolution. This parametrization has
three independent coordinates for mass-symmetric shapes.

A(z}=1+—,
' [ai ——,ai(1 —x )]+ ~ [a2——', a4(1 —x )] .

(27a)

The four parameters Iai, . . . ,a41 define the amount of
deviation from axial symmetry. By allowing them to vary
freely in a number of ground-state and saddle-point calcu-
lations, I find that a& and a4 are not needed to describe
the equilibrium shapes of rotating nuclei, so they are set
to zero for all results presented in this paper. This simpli-
ficatio leads to



33 MACROSCOPIC MODEL OF ROTATING NUCLEI 2043

It is less accurate than the Legendre-polynomial parame-
trization for shapes that are close to a single sphe«id or
sphere, ' but the discrepancy in energy for saddle points
in the Yukawa-plus-exponential model is no more than
0.1 MeV for nuclei throughout the Periodic Table. This
discrepancy may be as large as 0.7 MeV for liquid-drop
nuclei. Also, the three-quadratic-surface shape parame-
trization may only be used for axially symmetric shapes.

B,{q)=(E„+1—Z„"')/Z,"',
Bc{q)=Bc'~+ ~"c

Ba(q)= d r J ri+10
8m 0

ac Z
2c, A

'2 —1

(30)

(18)

(31)

(32)

F. Solution of the eqnibbrium condition

I write the potential energy of an arbitrary rotating nu-

cleus with respect to the nonrotating sphere as

V(q) =E,' 'IB,(q) —1+2x [Bc(q) 1]+y—Bg(q)), , (29)

where

A,;)0 (i =1, . . . , N, ),
while a saddle point is defined by

Ai &0 (i &v),

A,;)0 (i )v) .

(41)

(42)

The ordinary Bohr-Wheeler symmetric fission saddle-
point shapes have v= 1 for nuclei heavier than the
Businero-Gallone transition point, ' ' s which is predict-
ed to occur between A =100 and A =140. For the
remainder of this paper, I will only consider mass-
symmetric distortions, and saddle points with v= 1.
Mass-symmetric saddle points with v) 1 do exist, but are
of no physical relevance to binary fission. 2O 29

In order to solve Eq. (39},I perform a Taylor-series ex-
pansion of V(q) in the vicinity of the equilibrium point,
which has coordinates Q;

The character of the equilibrium point is determined by
the signs of the eigenvalues of the curvature tensor

a'V(q}
(40)

Bq;Bqj.

If I denote the ordered eigenvalues of K;J by A,;, a local
minimum (e.g., a ground state) is defined by

and V(q)- V(g)+ —,
'

QK~J(g)(q; —g;)(qj —
QJ } (43)

5 L R

4 ~ E(0)g 2

The units Ro, Mo, and E,' ' are defined by Eqs. (1), (2),
and (16). The diffuseness-corrected Coulomb-energy con-
stant is

8 V(q)
=Ki/{q)hqi+O(hq ),2

Bq;
(44)

[since (BV/Bq;) ~-=0]. Differentiating with respect to
the coordinates leads to

3 8'

g(a, /&0),
5 I'

(34)
where

hq;=—q —g; .

Equation (44) may be rewritten as

(45}

gi(w)=1 ——", w+ —", w

(35)

(36)
g; =q; [K (q—)];i +O(bq) .BV(q)

qj.
(46)

A 043
2

'
A+2M

(38)

The condition of equilibrium is

8 V(q} =0 {i=1, . . . , N, ) .
Bqi

{39)

g2(w)=1+ ', w+7w + —', w—

In contrast to the liquid-drop model, where results can
be expressed entirely in terms of the two parameters x "D

and y, the results here depend explicitly on Z, A, and
L. This is because of the occurrence in this model of the
fixed ranges a, a„and a~ which introduce nonanalytic
behavior (as a function of A) into B„Bc,and Bii. It is
sometimes convenient to present results as a function of A

only; for this purpose, when I refer to beta-stable nuclei, I
shall mean nuclei ~hose charge and mass are related by
Green's approximation to the line of beta stability

With this vector version of Newton's root-finding
method, a starting set of coordinates q, in the neighbor-
hood of q, when used to calculate BV/Bq and K~J, will
lead to a sequence of values q",q i', . . . , which will con-
verge to Q as the number of iterations goes to infinity.
Without attempting to make a mathematically precise
definition of the extent of the neighborhood in which con-
vergence occurs, I merely observe that convergence (to the
intrinsic accuracy of BV/Bq;) usually occurs after about
four or five iterations for an "average" case. For exam-
ple, if the coordinates of an equilibrium-point shape for a
certain nucleus with A, Z, and I. are used as the starting
guess for a nucleus with A +hA, Z+bZ, and L+&&,
convergence will usually occur if

~

hA
(

&20,
(
~&

~

&5,
and

~

~~-
~

&10—20. Of course, in certain regions, such
as near the maximum L for which a minimum or a saddle
point exists, shapes change more rapidly with A, Z, and
I., and smaller increments must be used.

This technique for solving Eq. (39) allows a much more
precise location of equilibrium points than many other
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techniques, such as st+pest-gradient methods. In addi-

tion, the calculation of the derivatives of V(q) by quadra-

ture, as is done here, leads to a much more accurate solu-

tion than is the case when these derivatives are calculated

by numerical difference techniques. In Appendix 8, I dis-

cuss in more detail the accuracy of the calculations and
the convergence of the results with N, and quadrature or-
der.

III. QUALITATIVE RESULTS

The qualitative characteristics of the rotating ground
states and saddle points in this work are similar to those
of the rotating-liquid-drop model, which have been dis-
cussed in Ref. l. I will briefly review these characteristics
below.

400

300—

250—

E
m 200—

~ 150—

100—

50—

Saddle-point shapes
for beta-stable nuclei

C)
( 3

A. Nonrotating nuclei

For all nonrotating beta-stable nuclei with mass num-
bers less than about 300, the macroscopic ground state is a
sphere. As one distorts the sphere with axially symmetric
prolate distortions, the energy increases, until the fission
saddle point is reached. Inside this saddle point, the net
forces due to Coulomb repulsion and nuclear attraction
tend to push the nucleus back to a spherical shape, while
outside it, the forces tend to cause the nucleus to separate
into fragments. For very heavy nuclei, the saddle point
occurs at a very slight, almost spheroidal distortion, while
the degree of distortion increases as one considers lighter
and lighter nuclei. Somewhere in the vicinity of A =240,
the saddle point shape makes a smooth transition from a
cylinderlike shape to a necked-in dumbbell-like shape.
For very light nuclei, the saddle-point shape corresponds
to two almost-spherical nuclei attached by a small neck.
All these saddle-point shapes are symmetric about their
respective axes of maximum elongation. In Fig. 1, I show
the shapes of selected nonrotating fission saddle points for
beta-stable nuclei as a function of A in the liquid-drop
model, and in the present finite-range model. The shapes
are scaled so that Ro is the same for each nucleus. The
primary noticeable differences between the shapes for the
two models are smaller neck radii and slightly more
elongation in the liquid-drop model. 's

In Fig. 2, I show the calculated energies of the saddle
points as a function of A for beta-stable nuclei. The
liquid-drop results in this figure are calculated using the
same parametrizations and methods as those in the finite-
range model, but using Eqs. (1)—(13) instead of Eqs.
(15)—(19). The finite-range results are significantly lower
in energy than those of the liquid drop model for A & 200,
while very similar for A &200. ' Also, the maximum in
the barrier height occurs at a larger value of A in the
finite-range model than in the liquid-drop model. The
present results are qualitatively similar to those of Ref.
21, which used the same physical ingredients as the
present work, but a different mathematical description of
nuclear shapes. Figures 3 and 4 show the overall behavior
of the barrier heights as a function of Z and A for nonro-
tating nuclei.

FIG. 1. Shapes of saddle points in the liquid-drop model and
in the Yukawa-plus-exponential finite-range model for mass
numbers A from 60 to 300 in steps of 40. The value of the
charge for each nucleus is determined from Green's approxima-
tion to the line of beta stability (Ref. 26). The closed curves are
the intersections of the nuclear surface functions with planes
through the axes of symmetry. The shapes are drawn with Ro
scaled to be the same for each nucleus.

60

50

40
Cb
iLi

30
I

~ 20
O

—10

/

I
l

i

I

Beta-stable nuclei
L= 0

0
0

I

50 100 150 200 250 300 350
Mass Number A

FIG. 2. Calculated fission barrier heights as a function of
mass number for beta-stable nuclei in the liquid-drop and
finite-range models {dashed and solid lines, respectively). The
arrows show the predicted points at which the barriers com-
pletely disappear. The open circles are results from Ref. 21,
which used the same finite-range energy functionals as in this
work, but with a more restricted shape parametrization.

B. Rotating nuclei

If one considers a particular nucleus and the changes
that occur as one increases the total angular momentum
I.R from zero, the ground state, which is initially spheri-
cal, becomes deformed into a nearly spheroidal oblate
shape which is symmetric about the axis of rotation. As
L increases further, the stable ground state deforms fur-
ther until, at a critical value I.i, the shape loses stability
against a triaxial deformation mode. For nuclei with
A &200 (see Appendix C), there exists a stable triaxial
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50
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ch 306
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Axially symmetric
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ground-state family for L y Li, which quickly goes from
an oblate symmetric shape at Li to a prolate shape whose
two larger moments of inertia are not greatly different
from each other. As L is increased further, the prolate
shape continues to elongate until at Lii it loses stability to
fission. For L ~Ln, no equilibrium shape exists, and a
system with this much angular momentum cannot exist
quasistatically in an undisintegrated configuration. For
nuclei with A ~200, the transition at Li is to a loss of
stability to the same triaxial mode, but in this case no tri-
axial ground state exists and the triaxial deformation leads
inexorably to fission for L ~Lt.

For saddle points, increasing L has approximately the
same effect as increasing x; that is, the maximum elonga-
tion decreases, while the neck radius increases. In addi-
tion, a slight triaxiality occurs for nonzero L; this triaxial-
ity never becomes very large except for very heavy nuclei
for L values near Li. For A &200, as L increases the
elongation decreases until the neck is nearly cylindrical.
At L =Lii, the shape becomes identical to the prolate tri-
axial ground-state shape described above, and the fission
barrier disappears. Nuclei with A &200, which have
cylinderlike or spheroidlike saddle-point shapes at L =0,
have a symmetry axis perpendicular to the incipient axis
of rotation. As L increases, the major axis length shor-
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FIG. 4. Same as Fig. 3 for Z =86 to 110.

FIG. 3. Calculated fission-barrier heights as a function of
mass number for atomic numbers Z =20 to 90. The points are
barriers for beta-stable nuclei from Z =14 to Z = 117.9 in steps
of 2 (except for the last step). The points are the same as the

solid curve in Fig. 2.

t00 200 300
Mass Number A

400

FIG. 5. Ground-state and saddle-point shapes as a function
of mass number and angular momentum for beta-stable nuclei.
The dashed shapes are axially symmetric ground states. The
solid shapes are saddle points; those at L =0 are axially sym-

metric, while those at Li are slightly triaxial. The dotted shapes
are those at the points where the ground-state family and the
saddle-point family coalesce and the barrier vanishes. The
shapes for Li at Z =80 and 100 are shown dashed to show that
the fission barrier disappears at a symmetric shape. The right-
hand dotted shape indicates the spherical nucleus with

Z =117.88, A =311.71 whose macroscopic barrier vanishes at
L =0.

tens, while the minor axis length perpendicular to the ro-
tation axis lengthens until the two become exactly equal at
L =Li, where the barrier and the ground-state family
again disappear. In Fig. 5, I show the values of Li and

Lii as a function of A for beta-stable nuclei. There are
also several representative shapes shown. The shapes with
solid outlines are saddle-point shapes at L =0 and
L =Li. The dashed shapes are the axially symmetric
ground-state shapes at Li when the triaxial instability just
sets in, while the dotted shapes are the shapes where the
ground-state family and the saddle-point faniily coalesce.
For all shapes with nonzero L, the axis of rotation is vert-
ical. The shapes at Li for Z =80 and Z =100 are drawn
dashed to emphasize that the barrier vanishes at an axially
symmetric oblate configuration for heavy nuclei.

The values of Li and L» are also shown in Fig. 6,
where they are compared to results from Ref. 1. Again
the results of the two models are qualitatively similar to
each other, with the value of Li being almost identical for
a & &5O.

The dashed curves and the open diamond in Fig. 6 are
taken directly from Ref. 1, while the open circle is an im-
proved value calculated for the point of the disappearance
of the triaxial ground state in the liquid-drop model {see
Appendix C). In Fig. 7, I show the height of the fission
barrier at L =L,, where the triaxial ground state first ap-
pears. The difference of almost a factor of 2 between the
two models indicates that formation and subsequent
quasistability of superdeformed ground states, as predict-
ed in Ref. 1 is very unlikely. This is an example of how
the improved quantitative predictions of the finite-range-
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FIG. 6. Li and Lii as a function of A for beta-stable nuclei
in the liquid-drop (Ref. 1) and finite-range-energy models. The
open diamond is the previously reported point where

Li(A) =Lii(A) (Ref. 1},while the open circle is the point calcu-
lated here for the liquid-drop model. The solid circle is the cor-
responding point for the finite-range model (see Appendix C}.

FIG. 8. Angular momentum at which the saddle point disap-
pears and the barrier height goes to zero as a function of A for
Z =20 to 100. The curves for Z =20 to '70 are Lii(A), while
those for Z=90 and 100 are Li(A). The curve for Z=SO is
for either L&i or Li, depending on the value of A. The solid
points indicate beta-stable nuclei.

IV. DETAILED RESULTS

A. Results for selected nuclei

Calculated fission barriers as a function of an ular
momentum are shown for the nuclei 9 Rh, ' ~Tb, ' Os,
and i29Np in Figs. 11 and 12. These particular nuclei are
chosen to demonstrate the variation in behavior across the
Periodic Table and because of previous experimen-
tal" " and theoretical ' investigations of the first
three of these nuclei. The present calculations are similar
to those of Ref. 21 for 9 Rh, but can differ by almost 3
MeV for 's Tb and ' Os. Differences of this magmtude
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200 250

FIG. 7. Calculated height of the fission barrier at L =Li(A ),
where the triaxial instabihty of the ground state first appears,
for beta-stable nuclei.

energy model can lead to significant differences in quali-
tative predictions.

In Fig. 8, I show the maximum angular momentum as
a function of Z and A. The points refer to beta-stable nu-
clei, and lie on the upper solid curve of Fig. 6.

Calculated fission-barrier heights as a function of angu-
lar momentum are shown in Figs. 9 and 10 for selected
beta-stable nuclei with atomic numbers from 20 to 100.

Ip —,'MpRp . —— (47)

This ratio is larger than 1.0 for the nonrotating spheri-
cal ground states due to the effect of the finite diffuseness
of the matter distribution. Two striking results seen in
these figures are that the triaxiality of the saddle-point
shape is so slight that it is not discernable, except in the
case of 2 9Np (Fig. 16) and the very rapid approach of the
triaxial ground state to a prolate shape with I =—I;d
for L &Li (Figs. 13 and 14).

50 .

Macroscopic Fission Barriers
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cu 4Q

Z ~ 20 A = 43.050---- Z =30 A 66.667——Z ~ 40 A = 91.485——Z = 50 A ~ 117.360
—Z = 60 A = 144.152
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g 2Q:

in ground state
CD
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100

FIG. 9. Fission barrier heights as a function of angular
momentum for beta-stable nuclei of atomic numbers Z =20 to
60. The solid circles represent the points at which the ground
state changes from axially symmetric at lower values of L to tri-
axial for higher values of L.

affect the degree to which experimental data on fission
and evaporation-residue cross sections can be reproduced
by statistical evaporation models. '~ In Figs. 13—16, I
show the calculated moments of inertia for the ground
states and for the saddle points as a function of L for the
same four nuclei. The moments of inertia are all ex-
pressed as ratios to that of a rigidly rotating, sharp-
surfaced sphere
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solid points for Z=90 and Z=100 since no triaxial ground
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FIG. 12. Same as Fig. 11 for "Os and Np. The results
for 2~~Np were not tabulated in Ref. 21.

8. Global approximation to barrier heights

Because the present results depend on the three vari-
ables A, Z, and L and because experiments are becoming
sensitive to predicted variations of the order of 1

MeV, '7 9'Q'4's it is necessary to find a simple represen-
tation of the results which may be useful in statistical eva-
poration models. Such models need to use fission barriers
of many different nuclei at many different values of
L. ' ' ' ' I use the following form to represent the fis-
sion barrier heights

where p represents
)tt=Z/100; Pk is an

Nz and Nz are the

xz —i

g~(~m)p (~)p ( (50)
j=0

By L2Q LsQ or L», ran=A/400;
ordinary Legendre polynomial; and
number of terms in the resulting A

(the barrier for L =0), and L,„ is the value of L for
which the barrier disappears. The four quantities By,
L2Q Lso and L,„are approximated by fitting to calcu-
lated values functions of the form

By(A, Z,L) =By(A, Z)h (Z, A,L),
where

k(Z, A, L)=1+52L +53L (L &L2Q) ~

(48)

=1+y21 +y31'+y41 +ysl' (L &L2Q), (49)

l =L/L, „, the quantities By, Lm,„, Lqo, Lso, 5;, and y;
are functions of Z and A, Lzz (Lso) is the value of L
where the calculated barrier height is 20%o (80%) of By
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FIG. 11. Calculated fission barriers as a function of angular
momentum for 97Rh and '~ Tb. The solid lines are the present
results„ the dotted lines are from a global approximation to these
calculations (see Sec. IV 8), and the open circles are from the
tabulated results of Ref. 21. The arrows and the right-most
open circles correspond to the value of L at which the barrier
vaQlshes.

FIG. 13. Calculated rigid-body rotational moments of inertia
for the ground-state and saddle-point families as a function of
angular rnomenturn for Rh. The solid lines give the moments
of inertia for the saddle-point family, while the dotted lines are
a global approximation to the calculated ones (see Sec. IVC).
The dashed lines give the moments of inertia for the ground
state family. The solid circles indicate ~here the triaxial
ground-state transition occurs, while the open circles indicate
where the barrier to fission vanishes.
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and Z series for fixed Z and A, respectively (Nz is not
the same as the qtumtity in Sec. II). The values of 5; and
y; are expressible in terms of the last three of these p 's
(see Appendix D).

The accuracy with which calculated barriers are ap-
proximated by this method may be inferred from the dot-
ted lines in Figs. 10 and 11; these four nuclei were NOT
included in the fits of any of the coefficients.

Because of the large number of coefficients C,'J ' and
the number of significant digits needed to accomplish this
global fit, they are not given here. I have written a For-
tran 77 computer subroutine called aARPIT which will

calculate the height of the barrier and the energy of the
ground state for given values of Z, A, and I. using the ap-
proximate methods discussed above and in Appendix D.
Copies of this code are available from the National Ener-

gy Software Center. 34

C. Global approximations to saddle-point
moments of inertia

Just as fission-barrier heights are necessary for the cal-
culation of fission and evaporation-residue cross sections,
so are moments of inertia necessary for calculations of
fission-fragment angular distributions. I approxi-
mate the calculated moments of inertia with the functions
of the form

Io+al +bl =Ii(l) 1&0.7

I(Z 2 I.)= Ii cos a+Izsin a 0.7&1 &0.95

Ii cos p+Ii sin p 0.95&i &1

where Io =I (I =0),

I2 Io+ [I(I =1——) —Io]er" (52)
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FIG. 15. Same as Fig. 13 for '76os. This nucleus is near the
critical point where I.i ——I.g and has no triaxial ground state.

a=a(l —0.7), and .p=5n. (l —0.95). The coefficients a
and b are chosen so that I& equals the calculated mo-
ments for l =0, 0.7, ad 0.95. Expressions for y, a, and b
are given in Appendix D. These quantities are defined in
terms of Io, I70, I», and Im, „, the calculated values of
the moments at I =0, 0.7, 0.95, and 1.0, respectively.

These four moments are approximated by functions of
Z and A of the same form as Eq. (50) with X,=6 and
N„=5. An additional complication is necessary in fitting
Im,„ for Z & 80, since the shape at I = 1 is an axially sym-
metric oblate shape. This additional modification is dis-
cussed in Appendix D. A computer subroutine named
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MOMFIT is also available from the National Energy
Software Center. MOMENT will calculate L and the
three principal-axis moments of inertia of the saddle-point

shape of a nucleus with given values of Z, A, and L T. he

degree of reproduction of the calculated moments of iner-

tia by this method inay be seen by referring to the dotted
curves in Figs. 13—16. As in the preceding subsection,
these four nuclei were NOT used in the fit of the coeffi-
cients C'J. ' (see Appendix D).

V. DISCUSSION AND SUMMARY

I have presented a macroscopic model for the free ener-

gy of rotating nuclei which has four major improvements
relative to the rotating-liquid-drop model:

(1) replacement of surface tension energy with the dou-
ble volume integral of an empirical finite-range Yukawa-
plus-exponential two-body potential, 's

(2) calculation of Coulomb energies for nuclei with
charge distributions with diffuse surfaces, '

(3) calculation of rigid-body rotational moments of in-
ertia for nuclear matter distributions with diffuse sur-
faces, '9 and

(4) the constants of the model are taken from a semi-
empirical nuclear mass formula with a superior fit to nu-

clear ground-state masses and to fission barriers of nonro-
tating nuclei. '

In addition to these physical ingredients, which have
been used previously, ' this study utilizes a new triaxial
shape parametrization and highly accurate numerical
techniques for the calculation of details of the macroscop-
ic potential-energy surface.

The barriers calculated in this model have been found
to be within about 1 MeV (for the L values which are
sampled in such experiments) of those which optimally
reproduce fission and evaporation-residue cross sec-
tions '0' ' ' for a variety of nuclei with masses of 150
to 200+. The experimental data' ' are better repro-
duced with the results of this model than with those of
the liquid-drop model' or with those of Ref. 21. An ex-
tension of the present model to the barriers to mass-
asymmetric fission predicts values which are within about
2 MeV of experimentally deduced ones for In nuclei. ii

Also, the moments of inertia calculated in this model,
when included in a statistical transition-state model,
reproduce observed fission-fragment angular distributions
for a variety of nuclei with masses of 160—250, for all
cases where the transition-state picture predicts that the
angular distributions are determined by the moments of
inertia of the saddle-point shapes.

Several effects which have not been included may possi-
bly be detectable (or ruled out) by experiments which are
sensitive to fission barriers at different nuclear tempera-
tures and values of L. These neglected effects include a
temperature dependence of the nuclear-radius and
surface-diffuseness constants and an angular-momentum
dependence of the diffuseness. Similarly, single-particle
effects as a function of angular momentum may be detect-

able by comparisons to the present model.
The results of calculations involving many hundreds of

nuclei have been approximated in a useable form in two
computer subroutines which will give accurate values forL, Bf(L), and the saddle-point moments of inertia of
any measurable nucleus with 20 &Z & 100.
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APPENDIX A: ENERGIES AND DERIVATIVES

ri(p) = 1+aiP2(cog)+a2P4(cog),

A, = 1+ai/4+9a2/64,

x =z/zo, and the vector

1i ta2& ' ' ' &a2Jv al~a2I
Z

(26b)

(27b)

A. Rotational energy

The rotational energy functional is

Io 15
d rpi+I Sm g,' (A 1)

where ri is the perpendicular distance from a point in the
nucleus to the axis of rotation. I will denote the first term
in the parentheses of Eq. (Al) as —,'I'" where I'" is the
moment of inertia of a sharp-surfaced nucleus.

1
I,' =z, —, + (1—5;,)+

2X2

»0 ~Zk —1
4 i, 2k+1

(A2)

where i refers to one of the three Cartesian principal axes,
5;J = 1 if i =j, and 5;J.——0 if i &j,

8~ ——1 —ai/4 —a2/32+5ai/32 —43aia2/512

+727','18192

The surface of a triaxial nucleus is defined in cylindri-
cal coordinates by

(25)

where
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Bc
~ ~c = -~ ' ~g

/g (0)

(A3)

Hs ——1+5a i /4+ 19az/32+ 17a i /32+ 3SSa ia2/S 12

+2847az/8192 .
The first and second derivatives of Ba with respect to

q; are found by straightforward differentiation of Eqs.
(A 1) and (A2).

B. Coulomb and nuclear energies

The Coulomb energy of a sharp-surfaced drop, the dif-
fuseness correction to the Coulomb energy, and the
Yukawa-plus-exponential nuclear energy are all double
surface integrals of the form

where the symbols dS, dS', and cr are defined after Eq.
(13),

5gi(a)=—
64~ o.

(A4)

gz(o)= 4 [2y, —5+e '(y,~/2+3y, +5)],
32 Qq JIq

where y, =o/a„and

(A5}

"4'+2&.+2}],Sea Roy„
(A6)

where y„=o/a. The other factors in Eq. (A3) may be
written as

and

dS o=zo f dx f dip p —p' cosh&+ — sink&
2~ 1 Bp Bp

—1 0 p BP az
L

(A7}

1 2e 1 Bp BpdS a —z'o J= dx' J dP p p' —p co's'AP ——, , sink& +de—1 0 p' BP' az'

where x =z/zo, bz =z —z', and hP=P —P'. The quanti-
ties (Bp/Bz}, (Bp/BP), etc. , are calculated by differentiat-
ing Eq. (25) and using Eqs. (24b), (26b), and (27b). The
integrals are approximated by use of Gaussian-Legendre
quadrature. In subsequent discussions I will use the nota-
tion Ns=(N~, Nz~) to indicate a quadrature with N~
points on the x interval [—1,1] and Ns~ points on the P
interval [O,ir]. Due to the symmetries of the shapes, the
x integral is actually performed only over the interval
[0,1], and the P integral over [O,n /2], while the x' and P'
integrals cover the entire ranges specified in Eq. (A8).

First and second derivatives of the energy functionals
with respect to the coordinates q; may be straightforward-
ly calculated by appropriately differentiating Eqs.
(A3)—(A8), utilizing Eqs. (24)—(27b), and

~Zk=-
3zo

(A9)

Derivatives calculated by this method of applying numeri-
cal quadrature to the appropriate integral expressions
have a much higher accuracy than achievable by use of
numerical difference techniques.

APPENDIX B: ACCURACY AND CONVERGENCE
OF RESULTS

I discuss below results calculated by two different
methods: the calculation for triaxial shapes detailed in
Appendix A, and a calculation for axially symmetric
shapes for which, because only two- and three-
dimensional quadratures are done, ' ' I may use a larger

I

number of quadrature points than is practical for triaxial
shapes. I have chosen to make detailed comparisons for
the saddle point of the beta-stable nucleus Z =60,
A =144.152, which has a typical well-deformed saddle-
point shape characteristic of nuclei with A 180. In Fig.
17, I show the relative error (compared to N, =6) in the
saddle-point energy, the maximum elongation and the
neck diameter for the I. =0 saddle point using the axially
symmetric calculation, as a function of the number of
shape coordinates employed, and in the three-quadrature-
surface shape parametrization. 5

The energy calculation is accurate to five parts in 10
(-0.0002 MeV) for N, & 5. I have chosen to compare the
results to those for N, =6 because in the finite-range
model when N, & 7 the saddle-point shape has extra un-
stable normal modes in addition to the one corresponding
to fission. This is because the nuclear restoring force van-
ishes in the limit of small wavelength perturbations of the
nuclear surface, 's while the Coulomb force is always nega-
tive. The relative errors in all three plotted quantities for
N, =7—12 vary in sign, with a maximum value of
5)&10 for the barrier height and a maximum of 10
for the geometrical quantities. The geometrical quantities
plotted have the largest deviations; the rotational mo-
ments of inertia have relative errors more than an order of
magnitude smaller than those shown. In Fig. 18, I show
relative errors [with respect to Ns =(256,64)] as a func-
tion of quadrature order in both the axisymmetric and tri-
axial codes for a fixed number of degrees of freedom
(N, =5). The axisymmetric calculation of the fission bar-
rier has an accuracy which increases by about two orders
of inagnitude for each doubling of the number of integra-
tion points, while the accuracy of the triaxial calculations



MACROSCOPIC MODEI. OF ROTATING NUCLEI

10' I-

Z = 60 A = 144.152 L = 0
Ne

= {128,32)

Fission barrier height

improves by about one and a half orders of magnitude
when doubling Ns. The calculations in the body of this
paper for triaxial shapes use N, =7, N, =5, and

Nz ——(32,24). Similar comparisons indicate that the error
in the calculated value of I.i due to finite N, and Nz is
less than 0.02ttl, and the error in L» is less than 0.2tti.

O
UJ
CQ

CD
cQ

10 g

to. 2

10-8

10 I-

Maximom length

I
1-e= Neck diameter

N, =2 3 4 5 6 7 3QS
Axially symmetric coordinates
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saddle-point shape of Z =60, A =144.152 as a function of the
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V —V(x„y, )=—&@~at—&@~at—Ca t, (Cl)

where A, 8, and C are positive constants. This equation
is verified by noting that V is symmetric about at ——0, has
a local minimum at ai ——0 and a local maximum at finite
ai for e„&0, a local maximum at ai ——0 for e„&0, a local
maximum and a local minimum at finite at for e &0,
e„&0, [for y &y»(x)], and no maxima or minima for fi-
nite ai for e &0, e„&0. In terms of these coefficients,
when e, & 0 the triaxial ground state is located at

&&a AC &y
Q'( =— 1 — 1 —3

3C g2 P

' 1/2

(C2)

while the saddle point is located at

AC ey
at ——— 1+ 1 —3 g2 (C3)

For e, & 0, e~ & 0, the saddle point is located by Eq. (C2),
and there is no triaxial ground state. The function y«(x)
in the neighborhood of x, is defined by the vanishing of
the quantity in parentheses;

82@
yii(x)=yi(x)+, x &x, . (C4)

APPENDIX C: DISAPPEARANCE OF Lrr

In the region around A =200 for beta-stable nuclei, the
potential-energy surface is relatively slowly varying for
large changes in shape. This is the region where a rela-
tively rapid transition occurs from spheroidlike saddle-
point shapes for heavier nuclei to dumbbell-like shapes for
lighter nuclei. This region is also where the existence of a
triaxial ground state ceases as A increases. Because of the
"flatness" of the potential-energy surface, the fission bar-
riers in the vicinity of this transition point are quite low,
so the exact location of the point is not important with
respect to observable properties of nuclei. However, the
location of this transition point is of some mathematical
interest and as the previously reported value for the
liquid-drop model is significantly in error, I present this
appendix to describe the calculation of the point where
the triaxial ground state vanishes as A is increased.

First considering the liquid-drop model and following
the notation of Ref. 1, I will let yi(x) denote the value of
y at which the ground state loses stability to an axially
asymmetric distortion. yii(x) is the value of y at which
the triaxial ground state and the saddle point become
identical and the fission barrier vanishes, while y, (x, ) is
the point at which the yii function equals the yi function.
I will let e, =x —x, and e„—=y —yi(x). To lowest order
in these quantities, the potential energy as a function of
axial asymmetry at must have the form
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A similar calculation using the finite-range model is
shown in Fig. 20. In this model, the critical point occurs
for A =208.4, Z =83.0.

I would like to point out a possible reason why the ear-
lier calculation gave a different result. As discussed
above, the potential energy is extremely fiat in the vicinity
of x, . A very small systematic error in the curvature Kz
would cause a large displacement of the apparent location
of x, . The present calculations, with their careful evalua-
tion of K;J are only practical with modern computers.

Fissility x

FIG. 19. Axial asymmetry parameter ( —o, ~) as a function of
fissility for triaxial ground states (solid symbols) and saddle

points (open symbols) in the rotating-liquid-drop model. The
lines are arbitrarily normalized to the points in the vicinity of
at ———0. 1.

where Q =(A/28)
i e~ f

.
For x &x„a similar calculation is done, but here the

saddle point for e~= —10 is calculated. In Fig. 19, I
compare the values of a, calculated for triaxial ground
states and saddle points to curves of the form (C5). The
calculations are performed with a rather coarse Gaussian
quadrature mesh to locate the neighborhood of x„with
more accurate calculations used to pinpoint x, . The
inverse-square-root dependence gives a reasonably good
representation of the calculated points, when one realizes

that the preceding discussion only considered lowest-order
effects. The curves are arbitrarily normalized to give the

correct magnitude in the neighborhood of ai = —0. 1. The
value of x, extracted in this manner is

x, =0.7315+0.0010, to be compared to the value

x, -0.81 reported in Ref. 1. For a beta-stable nucleus,

this new value corresponds to A =219.53, Z=86.79,
while the old result was A -248, Z-97.
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FIG. 20. Similar to Fig. 19 for the finite-range model, as a
function of mass number A.

For the present calculation, I first locate, using the
methods of Sec. II, yi(x} in the vicinity of x, ; then I cal-
culate the triaxial ground state for a fixed e„=10 as a
function of x. Assuming with this choice that the last
term in Eq. (C2) is much smaller than 1, the equation may
be approximated by

APPENDIX D: GLOBAL APPROXIMATIONS
TO BARRIERS AND MOMENTS OF INERTIA

A. Fission barrier heights

The functional form of the global fit is defined by Eqs.
(48)—(50). The functions p are the following: p i ——Bf,
Pz =L~&x P3 =Lzo and P4 ——Lso. The quantities 5; and

y; in Eqs. (48) and (49) are related to the p s by the fol-
lowing:

&z =e(4p4 —p3)

53= —e(4P4 P3), —2 2

e= 5[P3Pf(P3 —P4)] ',
yz

——R (21+1)(Vlso —W/zo)

7 3
———R [(2lso + 1 ) V —(21zo + 1 ) W] —2yz

r4= 5r2-X3-5

y5 =y3+2y2+4,
V =1so(iso —1 }(—201 +251 —4)

W =!20(tzo—1)(—20180+251so —4) ~

(Dl)

(D2)

(D3)

(D5)

(D6}

(D7)

}[1o1 o(1 —1 )(1—1 o)]'i ', (D10)

1zo:p3/pz ~

8. Moments of inertia

The three principal-axis moments of inertia are
separately approximated by expressions of the form of
Eqs. (51)—(52). For each of three Cartesian axes, I define
the four quantities p5= I (1=0), p6= I (1—=0.7), p7=—I
(1=0.95), and ps

—=I (1 =1). In terms of these functions
of Z and A, which each have 30 coefficients (Nz ——6 and
Ng ——5},

and iso =p4/pz.
p~ is fit to 652 calculated barriers using Nz N„=7—

(49 coefficients CJ". pz is fit to 61 calculated values of
,„using Nz 7, Nz ——5 (35 c——oefficients C'J. '). p3 and

pq are fit to 36 calculated points using Nz —5, N„=4 (20
coefficients each in CJ and C&' '). The range of the Z fit
is from 20 to 110 for pi, and from 20 to 100 for pz —p4.
The range of A values included for each Z extends well
beyond the range which could be of experimental interest.



33 MACROSCOPIC MODEL OF ROTATING NUCLEI 2053

b =2.26129ps —4.94743pt, +2.686 14p7, (D12)

a = —3.148 85ps+4. 46506ps —1.31621p7, (Dl 1) of inertia I„and I» are approximated in this Z region for
all l by functions of the form of Ii(I) [see Eq. (51)j with
the coefficients

y = —201n
Ps —P7

ps —ps
and

a =4.001 60pt-, —0.960 78ps —3.040 82ps (D14)

For the moment of inertia I„y=60.
because the shape at I. ,„(/ = 1) is a symmetric oblate

one foi heavier nuclei (see Appendix C), the quantities ps
for each of the three Cartesian axes are separately fit with
16 coefficients each for Z & 80. The two larger moments

b = —4.00160ps+1 96078ps+2 04082ps (D15)

The smallest moment of inertia I, uses the complete form
of Eq. (51) with the appropriate value of ps (Z g80 or
Z &80).
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