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To investigate the role of final state interactions in knockout reactions, we study the transition
form factor corresponding to the absorption of a scalar probe in a single particle model description
of the nucleus. The numerical aspects of an approximation which treats at the same level initial and
final state interactions are discussed. It provides fair agreement with the corresponding exact calcu-
lations for momenta of the ejected nucleon larger than 2 fm . Comparisons with various other ap-
proximations show that a careful treatment of the final state interaction is new+sary to obtain a
realistic estimate of the form factor.

I. INTRODUCTION

It is well known that the study of nuclear momentum
distributions by knockout reactions requires an accurate
calculation of final state interaction (FSI) effects between
the ejected nucleon and the residual nucleus. At the
present moment, however, there is still a rather unbal-
anced treatment between the rather sophisticated initial
state interaction (introduction of short-range correlations,
tensor correlations, etc.) and the rather crude treatment of
the final state distortion. In fact, the optical potential
describing the FSI requires for consistency the same mi-

croscopic ingredients as the initial state interaction. It
should contain the same dynamics as the ground state in
order to respect the unitarity of the theory 'In a re.alistic
calculation the short-range correlations are related to n

particle —n-hole excitations in the ground state. Taking
into account the corresponding nuclear states in the final
state interaction requires one to consider the coupling of
the various channels for the residual nucleus. In a one-

channel model this can be described by a complex energy
dependent optical potential. Phenomenologically this op-
tical potential generates globally not only a reduction of
strength due to excitations of other channels but also an
enhancement of the large momentum transfer region (rela-
tive to a plane-wave approximation) since large momen-
tum transfers can be generated by successive scatterings
with relatively low momentum transfer, thereby not prob-
ing the high Fourier components of the bound state wave
function. While the effects due to the coupling of the
charmels have btum studied by Haider and Londergan, we
explore, here, essentially the second aspect.

%that has been found in general from phenomenological

calculations is an increase of high momentum Fourier
components due to short-range correlations. We show
here in a rather schematic model where the dynamics is,
however, treated consistently (i.e., we have the same po-
tential responsible for the binding and for the FSI), that
equivalent effects, i.e., deviations from a shell model
plane-wave result, can be due to FSI effects and not neces-
sarily to short-range correlations. In order to show the
sensitivity of the results to a good treatment of FSI, we
display also various approximate results which show how
delicate it is to make approximations on FSI.

Recently ' a high energy approximation for the nu-
cleon knockout transition form factor has been proposed.
The nucleon was considered to be ejected by the scalar
projectile and its interaction in the final state with the
residual nucleus was described by the same potential re-
sponsible for the binding. In the calculation of the ap-
proximate transition matrix element only the initial single
particle bound state wave function and the potential enter
but not the final state continuum wave function.

The approximate form factor respects orthogonality in
the sense that for q~O it vanishes (orthogonality of ini-
tial bound state and final continuum state). The high nu-
cleon momentum

~
k

~

and small momentum transfer lim-
it

~ q ~
have been discussed in Ref. 4. (See Fig. 1.)

In realistic cases like (e,e'p) reactions most nucleons
are ejected with momentum k close to q. Moreover, the
data are taken at intermediate energies which limit both

( q (
and

(
k

(
values to a few hundred M V/eIcn order

to test the accuracy of the approximation in this new re-
gime we present the results for the 1s and lp form factors
calculated exactly and in the approximate way for the
Woods-Saxon and the square well potentials; a compar-
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FIG. 1. Representation of the knockout form factor. The
momentum of the ejected nucleon is represented by k., vrhile q
denotes the momentum transfer to the nucleus.

ison is also made with the plane-wave approximation.
Section II is devoted to the presentation of various ap-
proximations for the treatment af the final state interac-
tion. In Sec. III, we present detailed numerical compar-
isons of the transition form factors. Finally in Sec. IV we
summarize and discuss the present study.

II. APPROXIMATIONS FOR THE TRANSITION
FORM FACTOR

H= — + V(r)
2mN

(3)

of the nucleon having a mass m N and the final kinetic en-

ergy Ek ——k /2mN. In the absence of the final state in-
teraction the scattering wave reduces to the plane wave

X),(r)=e'"'

The plane-wave approximation for the form factor

PLM(k —q)= fd re " 'i ~(p(r)

The transitian nuclear farm factor for the nucleon
knockout from an initial state (pLsr(r) with angular
momentum J. and projection M reads:

Seer()r, q)= fd r P'} "(r)e'e'prrr(r) . (1)

The scattering wave function gq '(r) is the solution of
the Schrodinger equation

(2)

where H is the single particle Hamiltonian

2

In Eq. (8), the transition operator is

0

iver

and the interacting Green's function reads

G+ (Ek )=(Ek+i 5 H)— (10)

The approximation we intend to investigate in the fol-
lowing has been developed in Refs. 3 and 4. It consists of
replacing the matrix element of the Green's operator in
Eq. (8) by an approximate one which takes into accaunt
the effective energy of the nucleon once the probe has
been absorbed. This approximation makes the Green's
operator entering (8) diagonal in mamentum space and the
correction term ALsr(k, q) becomes

d'p V(p —k}PLsr(p —q)
ALI (k,q) =

(2ir) E . (p —q) —pk+1 + eLM
2tll N

where

V(p}=fd re 'e'V(r} . (12)

By shifting the integration variable p in (11)we obtain:

d p V(p+q —k)/Lsd(p)
AL,I'(k, q) =

(2n }i . q~
Eh+i

2mN
LM

mN

(13)

Since the bound state wave function /Lsd(p) [Eq. (5}]cau
be written as the product af a radial wave function XL (p)
and a spherical harmonic I'L, (p),

where e~ are the binding (negative} energies.
The transitian form factor can always be decomposed

as the sum of the plane-wave form factor (5) and a correc-
tion ALsr(k, q) which embodies the final state distortion
and ensures the orthoganality property

~L,sr«q} =NLsr« —q}+AL,sr«q},
@&here

A~~«q)= f,&&.
I Vlp&&p I

G (Ek)os les~&
d p

(2n )

is the Fourier transform of the initial bound state. This
function satisfies the Schrodinger equation with the same
Hamiltonian:

dtl.sr(p}=&1.(p}I'1.(p} (14)

Hq I M (r) =eisidpl sr(r),
with p=p/p, we arrive, upon using Eq. (12), at the fol-
lowing expression, for a central potential V(r) = V(r):

ym(~)IvM(e )

Fk+i 5—
2EFl N

—ELM
Pl N

AL,%'(k q)= g~P (k —q) J p'dp&L, (p)Gi(p Ik —ql }Jdp
Em

(15)
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In Eq. (15) the function Gi(p,
~
k —q ~

) is given by the ra-
dial integral

I L A, = [(21+1)(2L + 1)(2A, + 1)]'

Gi(p Ilt —ql }=f, r'«ji(pr}ji( Il —qlr)v(r»
I L A, I L Ii,

m M p 0 0 0 (17)

where ji(x) denotes the Ith-order spherical Bessel func-
tion. We introduce the notation

where the 3-j are defined as in Ref. 7. Choosing the
quantization axis along the q direction, the angular in-
tegration in Eq. (15}is performed and yields

Ym(~ )YM(~ )

~k+i5 eLM
o'q

2pFt N PlN

~N I L A,

pq m M 0g(21+1) I Qk(z) —i—8(1—
~
z

~
)&k(z)

The step function is represented by the symbol 8 while Pk(z) and Q&(z) are, respectively, the Legendre polynomials and
the second ging of Legendre functions. Finally, the variable z introduced in Eq. (18) is defined as

k' —q'+'2iiiN
I eL~ I

&PC

Then the correction term (15) is expressed as

ALM (k q)= g(2k+1) I ~ 0 Yi (lt q)

X I, pdpX&(p)Gi(p, [lt —q~ ) Qk(z) —i —()(1—Iz
~

)pk(z} (19)

For comparison, we now write the partial wave expan-
sion of the exact transition form factor given in Eq. (1).
The ingoing scattering state reads

g~~ '(r)=4ngiie 'ui(k, r)Yp(r)Fp (lt), (20)
jm

where the phase shifts are denoted by 5i. The (real)
scattering waves ui(k, r) are the regular solutions of the
Schrodinger equation which are asymptotically equal to
sin[kr I(n/2)+—5i]/.kr Hence .the form factor (1) is
given by

I L I,
SLsr(lt, q)=(4ir) ~ g i 'e

lm, Ap

XKirk(k, q)Yp (lt)Y( (g) (21)

with the radial integral:

Kirk(k, q)= J r dr ui(k, r)XL (r)jk(qr) .

We note that the structure of the exact form factor (21)
obviously respects Watson's theorem on final state interac-
tions. '

At this point, we recall that the approximate form (13)
which leads to (19}has been derived in Ref. 3 assuming k
and q large compared to the Fermi momentum and, in
principle, for small ~k —q~. The comparison with the
exact calculation in Sec. III will show that the restriction
on

~
It —q ~

is not severe and the approximation still yields
fair agreement for values of

~
It —q ~

as large as 4 fm

I

In Ref. 4, it has been shown that Eq. (13) should also hold
in the high energy approximation for small momentum
transfers, i.e., small q and large k. Indeed, as such the ap-
proximation is all right for q less than 1/c where c is a
measure of the nuclear radius. We now see, however,
from Eq. (19) that the imaginary part of the correction
ALII' arises from values of the intermediate momentum p
in Eq. (15}larger than a minimal value

q +2iiiN ( &LM
~

dmin =

which goes to infinity as q goes to zero, independently of
k. This is in contradiction with Watson's theorem and
with the exact result. In fact the phase shift 5& goes to
zero in the large k limit independently of q. The approxi-
mation (19) can thus be used in the very small q region
only when k is very large. The approximation can be im-
proved by studying higher order corrections which would
regenerate the missing imaginary part.

Returning now to the exact expression (21) for the tran-
sition form factor, we have chosen, as before, the direction
of the momentum transfer, q, as the angular momentum
quantization axis. The plane-wave contribution is calcu-
lated directly via the SchrMinger equation and, in the nu-
merical studies, the exact expression (21) is evaluated via a
partial wave expansion of the difference between the exact
form factor and the plane-wave contribution which im-
proves the convergence.

The partial wave expansions (21) and (19) (which have
to be added to the plane-wave contribution) are somehow
different in nature. If (21) depends explicitly on both lt
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and Q, (19) only depends on the direction k —q. In the
limit

I
k —q I

small as catnpared to k and q, very few
terms contribute in the expansion (19), as is exemplified
by the limit k=q where one single term suivives. In any
case, the number of terms needed to evaluate (21) is at
least twice as large as that used in calculating (19). Before
we discuss in detail the results of the approximation (19}
and, so as ta display the sensitivity of the knockout form
factors to the treatment of FSI, we briefiy discuss some
other commonly used approximations.

The on shell approximation is mainly used in cascade
calculations. ' It can be introduced by reexpressing Eq.
(8) in terms of the elastic nucleon-nucleon scattering am
plitude which fulfills the equation

t(Ek }=V+ VG+(Ek)V,

and using the formal identity

t(Ek)GO+(Ek) = VG+(&k),

where Gz+(Ek) is the free Green's operator. Hence the
correction term (8) reeds

d'p &&) I
t(~k)

I p&
&t.st(k, q) =f 3 2 (}}L,st(p —q), (22)

(2ir) E '5 p-
2Bg ~

where (k
I t(&k )

I p) reprcecaits the half-shell scattering
matrix element. Now, in the on shell approximation one
only retains the 5 contribution of the Green's operator

1 lit N fdk'&&~
I «&k }

I
k'&4~«' —q}

(23)

(where Ik.'I = IkI } so that the fully on shell elastic
scattering matrix element enters. Upon performing a par-
tial wave expansion of the plane wave, we obtain (we con-
sider an s wave bound state for simplicity)

(k —q) =41rg (21 + 1)ft(k, q)Pt(k. q)

where

ft(k, q)= f r drjt(kr)jt(qr)q&00(r) . (25)

Introducing then the partial wave expansion of the
scattering amplitude, Eq. (23) is transformed to

00

3 00'""'(k,q) =4im g (2l +1)e 'sin5t ft(k, q)Pt(k q),
1=0

(26)

and the on shell transition form factor correspondingly
reads

Soo'""'(k,q)=4m g(2l+1)e 'cos51ft(k, q}P1(k cj) .
1=0

For the sake of completeness" and in view of the ener-

gies and momenta involved in the knockout reactions, one
could think of introducing the eikonal approximation far
the ingoing scattering state in Eq. (1). The correction to
the plane-wave contribution would then read

k (g q) fd2) ~ '(t q) b g (b )(
('/h I f V(b id

00 ') (28)

where v denotes the velocity af the ejected nucleon. In
Eq. (28} we have assumed the quantization axis to be
along the ejected momentum direction, k, and the vector
k —q ta be approximately orthogonal to this direction
which is reasonable in the high energy limit. One could
easily take into account the longitudinal part of the vector
k —q and this may lead to appreciable modifications of
the correction (28). We do not investigate here this contri-
bution.

III. DISCUSSION OF THE RESULTS

The main aim of this section is to study the accuracy of
the approximation (19) for the transition form factor
given by Eq. (7) at intermediate energies when the ejected
nucleon momenta are of the order of 2 to 4 fm '. We
therefore compute numerically the exact transition form
factor gl) and compare the results with those obtained
with Eqs. (7) and (19) as well as with those arising from
Eqs. (27) and (28).

and for the Woods-Saxon potential

V(r) V (1+e1r—c/P)) —1 (30)

This allows one to study the infiuence of the diffuseness
of the nuclear surface since the sq1mre well (29) may be
considered as the limit of the potential (30) when the pa-
rameter p (fixed in the following calculations at the value
p=0. 5 fm} goes to zero. We have indeed checked numer-
ically that the results obtained for the Woods-Saxan po-
tential (29) go smoothly to the sq11are well results with p
decreasing to zero.

The depth, V0, was fixed in both cases to the value
Vo ——46.06 MeV and the radius to c =3 fm. These pa-
rameters are relevant for the scattering on a light nucleus
like carbon. Two single-particle bound states have hen
studied: 1 =0 (1s) and 1 = 1 (1P) states. '

The calculations have been performed far the spherical
square well potential

V(r)= —Vo r(c,
V(r)=0 r&c,



F. CANNATA, J. P. DEDONDER, AND L LESNIAK

Let us first discuss the quasifree kinematical limit when
the outgoing nucleon momentum k is equal to the
momentum transfer q. We allow, however, the vector
w=k —q to be different from zero. We study both small
values of m &1.5 fm ' and rather large values of w up
to about 4 fm ' which corresponds to about 800 MeV/c.

In Fig. 2 we show the moduli of the transition form
factors for the s-wave bound state in the square well po-
tential. Two cases, k =q =2 and 4 fm ', are shown. As
expected the plane-wave form factor (5} falls down quick-
ly with w (power law decrease4). Both the exact and ap-
proximate form factors display a much slower falloff for
large values of w (see also Fig. 3). The on shell approxi-
mation (27), which underestimates the form factor, espe-
cially for small values of w, and displays a too diffractive
pattern, sems rather inappropriate, at least in the
momentum range considered here. We shall not comment
further on this approximation. As far as the eikonal ap-
proximation (28) is concerned we observe (Figs. 2 and 3)
that it underestimates the transition form factor in the re-
gion to ( I fm '. In the region ic &1 fm ' one notes a
large increase as compared to the plane-wave result.
Comparing, however, to the exact calculation, the FSI is
obviously underestimated and the (too) diffractive pattern
is shifted towards larger values of ru. As expected, we
have checked that for larger values of k (i.e., k=4 fm '),
the eikonal results get closer to the exact ones and have
the correct qualitative behavior.

We now come to the comparison of the exact form fac-
tor (21) and the approximate one as given by Eqs. (7) and
(19). We note a qualitative agreement which becomes

sqIJare w ell

k=q=3 fm

s wave

/0

/0

I( (g X exact
f'I( 1

xa

plane
wave ( t

li

1/
lt

/0 I L

2 3 & kqfm'

FIG. 3. Same as Fig. 2 but for k =q =3 fm '. The on shell
approximation has been omitted {27).
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iI
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/0
/ 2 3 40 1 2„3
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FIG. 2. Absolute value of the s-wave transition form factor
for the square well potential for k =q =2 fm ' and k =q =4
fm '. The sohd lines correspond to the exact calculation (21)
while the dashed-dotted lines correspond to the approximate re-
sults {7)and {19),the dashed line to the plane-wave contribution
{5). The dotted line shows the results of the on shell approxima-
tion {27) and the crosses represent the eikonal approximation
{28).

quantitative (k =q =4 fm '} as the energy of the ejected
nucleon increases. At small values of ic (1 fm ' the fi-
nal state interaction reduces the plane-wave form factor
by about 30'flo at k =q =2 fm ' and about 8% at 4
fm . This situation is completely reversed for w &1.5
fm ' where the distortion of the nucleon wave leads to
the remarkable increase of the transition amplitude. This
behavior has to be related to multiple scattering contribu-
tions in this region. Indeed it does not require high
Fourier components of the bound state wave function to
realize a momentum transfer, w, of the order of 3 to 4
fm '

by successive collisions at small momentum
transfers, whereas a direct knockout at such large w, is
strongly suppressed as indicated by the plane-pvave calcu-
lation. Rescattering must at the same time lead to a
suppression in the small iU region. The reduction of FSI
as the energy increases is easily understood in terms of a
perturbative expansion.

The region k of the order of 3 to 4 fm ' is therefore
suitable for exploring the nuclear structure properties'
over a wide range of nucleon momenta (Fermi motion). It
is sensitive not only to the nuclear radius but also to the
diffuseness of the potential well. This effect is shown in
Fig. 4 where similar curves are plotted for the Woods-
Saxon potential. The influence of the potential diffuse-
ness is most effective for w & 1.5 fm ' where the transi-
tion form factor decreases much faster (exponentially, as
shown in Ref. 3) than the corresponding square well form
factor. On the other hand for the small ic values its
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FIG. 4. Same as Fig. 2 but for the %'oods-Saxon potential
(30).

FIG. 6. Same as Fig. 5 but for the M = 1 projection.

Is„i
( 3y&)

10- k q=4fm

%=0 pwave square well

k=q=2fm' .

behavior is dominated by the plane-wave contribution and
it is not changed very much in comparison with the
square well case.

For the p-wave bound state, the transition form factors
corresponding to the three eigenstates of the spin projec-
tion qu;mtum number M =0 or +1 have a completely dif-
ferent pattern. In Fig. 5 we see the remarkable difference
between the plane-wave curve going to zero in the
k —q=0 limit and the fimte values of the exact and ap-
proximate form factors which for M =0 have a max-
imum there. This maximum exists also for higher

&p'= 3( I~io I'+ 1~ii I'+ I&i i I') (31)

for the square well (Fig. 7) and for the Woods-Saxon case
(Fig. 8). A.s a general remark concerning the p-wave
bound state case, since the plane wave has a zero for

Ifm

p wave, square well

k q=4 fm' -k=q=2

momentum k =4 fm ' although its value is decreased in
comparison with the smaller momentum case. Figure 6
shows the results for the M =1 projection on the q axis.
Now all the curves tend to zero for vanishing w. The
M = —1 case leads to the same figure as the M =1 case.
We also calculate the overall p transition form factor
sqQsf ccrc

tj
I

II l)
I

I

gapr
r

I ~exact
I I

1 I
I A

l wave
I

II w'ave
II

0 1 2 3 40 1 2 3 4
'q1fm'-

10

10

1
-3

I I l I g~ I I I I
e ~

0 1 2 3 40 1 2 3, 4
IX'q Ifm'-

FIG. 5. Spin projection M =0 p-wave transition forxn factor
for the square well potential {the quantization axis is chosen
along the momentum transfer, q, direction). The exact (solid
line), approximate (dashed-dotted line), and plane-wave (dashed
line) results are displayed.

FIG. 7. Same as Fig. 5 but for the averaged p-wave transi-

tion form factor (31).
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FIG. 8. Same as Fig. 7 but for the %'oods-Saxon potential
(30).

FIG. 9. Same as Fig. 2 but for k =2 fm ', q =3 fm ' and
k=3 AD

&
q=2fm

w =0, the plane-wave approximation necessarily fails in
the small w region (i.e., w &0.5 fm '). We stress that
Figs. 2—8 correspond to the quasifree kinematics regime
k =q.

The approximation (19) to the transition form factors
yields a good agreement with the exact calculation at the
higher energies. Even for large values of w the difference
between the exact and approximate form factors remain at
the level of 25%. The effective Green's function intro-
duced in evaluating the correction (8) (see Refs. 3 and 4)
therefore provides a reasonable approximation which
takes into account at the satne time binding corrections
and rescattering contributions. At lower energies (i.e.,
k=2 fm } it still gives a Mnniquantitative agramnent
with the exact calculation. As expected, the results for a
smooth potential (30) are in closer agreement with the ex-
act calculation than for the sharp cutoff potential (29).

Other cases namely k &q or k & q are also interesting.
In Fig. 9 the two sets of curves k =2, q =3 fm ' and
k =3, q =2 fm ' refer to the knockout from a s-wave
bound state in a square well potential. In the first case
(k &q) the plane-wave curve lies below the exact one,
while in the second case it lies above, indicating a destruc-
tive interference between the plane-wave amplitude and
rescattering contribution, at least for not too large values
of w. Since the plane-wave results are identical in both
cases, it is the attractive nature of the potential which
binds the nucleon in the initial state and is also respon-
sible for the FSI which lewds to the enhancement of the
transition probabihty for the case k &q. The same holds
true for the p wave as illustrated in Figs. 10 and 11. For
the s wave, also noticeable is the good agraxnent of ap-
proximation (19) with the exact calculation (particularly
for k &q), even for relatively large values of w (i.e., away
from the quasifree kinematics} and in the presence of

IO-

(f "2)

s wave Woods-Saxon

k=3 q=4 fm' k=4 q=3 fm'

exacf

~~~"~r)appr 'i
gCQYe

) g

IO t a ~ l j w sa.

3 c 5 I 2 Z 4)k-p[frf
'

FIG. 10. Same as Fig. 9 but for k =3 fm ', q=4 fm ' and

k =4 fm ', q =3 fm ' and for the %'oods-Saxon potential {30).

strong FSI (e.g., k =2 fm '). Although we do not illus-

trate the results for large k's, it is clear that the agrimnent
is even better.

Figure 10 is similar to Fig. 9 but for the Woods-Saxon
potential. The main effect of the diffuseness is to
suppress the large iv contributions revealing less high
momentum components in the ground state wave function
due to the absence of a sharp edge.
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FIG. 11. Same as Fig. 7 but for k =2 fm ', q =3 fm ' and
k=3 fm-', q =2 fm-'.

IV. SUMMARY AND DISCUSSION

V( r) = — tanh
V

2 2P
—tanh (32)

with Vo, c, and P defined as before. Such a form is simi-
lar to those used in Refs. 14. This form leads to an ex-

We have investigated the FSI effects for the transition
form factor for a nucleon knockout reaction. This form
factor may be represented as a function of

~
k —q ( for a

given momentum transfer of the probe, q, and a given
asymptotic momentum, k, of the ejected nucleon. Clearly
the small

~
k —q ~

region is a little sensiti~e to FSI effects;
at the same time, however, it is barely sensitive to the de-
tails of the nucleon bound state wave function. In that re-

gime,
~

k —q ~

( 1 fm ', the plane-wave approximation to
the form factor provides an almost quantitative agreement
with the exact calculation. It is only in a region starting
around

~
k —q ~

=2 fm ' that the form factor becomes
sensitive to the shape of the nuclear potential. The infiu-
ence of the diffuseness of the nuclear surface is quite im-
portant as the comparison between the sqssssre well and
Woods-Saxon potentials shows (about ane order of magni-
tude between the two calculations for

~
k —q ~

around 2.5
fm '). In that region, however, the role of the final state
interaction is already impartant (except for unduly large
values of the asymptotic energy of the ejected nucleon for
which relativistic effects would have to be incorporated).

We have also, at that stage, studied the rale of the un-
physical discontinuity of the first derivative of the
Waods-Saxon potential at the origin; it leads to an asymp-
totic power falloff of the momentum space wave function
following an intermediate exponential falloff regime. We
have therefore redone calculations using the symmetric
form

ponential asymptotic behavior in momentum space. In
the range of momenta studied here, there are no differ-
ences whatsoever between the two calculations. The onset
of the power falloff regime starts at larger values of

~
k —q ~

. This could be expected since the differences be-
tween (30) and (32) are only significant in the extreme in-

terior region.
One of the main conclusions of the present study,

within the framework of a very simple model, is that a
very careful treatment of FSI is necessary if one wants
indeed to extract information on nuclear structure, such
as on momentum distributions, from knockout reactions.
The appropriate regime in which one may hope to investi-
gate nuclear structure information seems to be araund

~
k —q ~

)2 fm ' for ejected nucleon momenta, k, be-
tween 2 and 4 fm '. Larger k, within this regime, have
the advantage of minimizing the role of FSI.

We have compared various treatments of FSI which
yield answers quickly far off the results af an exact calcu-
lation. It is only within the approximation (19), proposed
in Ref. 3, that we could abtain a good agreement with the
corresponding exact calculations. This approximation can
therefore provide a meaningful starting point for this sort
of investigation. Let us remind ane, at this stage, that in
the context, the approximate transition form factar is
evaluated from the knowledge of the bound state wave
function and of the potential only. It can be conveniently
evaluated numerically through a partial wave expansion.
We remark that the plane-wave approximation can, in no
case, bring a satisfactory evaluation of the form factor,
even if renarmalized, if one considers a mamentum range
larger than 2 fm

As a result of the numerical calculation discussed in
Sec. III we note that approximation (19) is particularly
good when the energy of the ejected nucleon is large. This
has to be expected since (19}has been developed as a high
energy approximation. ' This approximation is best
when the ejected nucleon momentum, k, matches the
mamentum, q, brought in by the probe. We have
remarked that, away from the quasifree kinematics re-

gime, the approximation (19}provides a fairly good agree-
ment with the exact calculation, particularly for k less
than q. This is explained by the fact that the role of the
high momentum components of the bound state wave
function is less relevant then that in the opposite situa-
tion, i.e., k ~ q. On the ather hand we know that, in the
extreme limit when q is very much smaller than k, where
the role of the high Fourier components of the wave func-
tion is maximized, the approximation (19) has been shown
to fulfill the orthogonality requirement.

One should remember that our results here have been
derived within a naive one-body picture for the descrip-
tion of the initiaBy bound nuc1eon. Yet it is we11 known
that short-range correlations, even in a plane-wave treat-
ment of the final state, would yield deviations from the
plane-wave shell model calculation because of the
enhancement of the high Fourier components of the
bound state wave function. Such deviations would be
similar to those arising froin FSI (see, for instance, Ref.
6); the falloff at large

~
k —q ~

becomes much less pro-
nounced than in a plane-wave calculation. It is not at all
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clear whether there is a kinematical region where the ef-
fects of short-range correlations and those due to FSI
could be separated. The most likely answer to such a
question is probably negative. Yet, it would be interesting
to explore experilnentaHy the region suggested above. At
this time, to our knowledge, no systematic (e,e'p) data ex-
ist in this domain. Specific (i.e., perpendicular, for in-
stance) kinematical configurations should facilitate the
qualitative understanding of asymmetries of the nucleon
momentum distributions which are sensitive to the de-
tails of the nucleon-nucleus interaction like the spin orbit
contribution. For sufficiently large energies of the ejected
nucleon, high energy approximations similar to that stud-
ied here [see Eq. (19)] or, even, the eikonal approximation
should be useful in such studies. "

A realistic treatment of such reactions requires a
many-body approach. It is not clear how a practical cal-
culation starting from similar approximations to those
leading to Eqs. (8) and (19) could be performed for the
real many-body problem. The standard approach would
be to generate FSI via an energy d&qxmdent complex opti-
cal potential in the context of a DWIA analysis. In such
a framework, one could think of deriving an approach
similar to that developed in the present work by assuming
that the optical potential has the same radial dependence
as the bound state potential. However the effective
Green's function which enters Eqs. (11)or (13) will also be

modified. The real part of the optical potential would be
weaker than the binding potential and less attraction will
result but part of the strength will be redistributed via the
imaginary part. Moreover the consistency requirement
provided by the orthogonality constraint is then lost and it
is very difficult to judge how the present results would be
modified in such an analysis. In our opinion a theoretical
calculation using a coupled channel formalism, as in Ref.
2, could be performed using approximations similar to
those developed here.
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