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In this paper, an asymmetric, antisymmetrized optical potential formalism is used to derive the
low-order terms in multiple-scattering-type expansions for nonrelativistic proton-nucleus and
deuteron-nucleus elastic scattering. In particular, the extended Faddeev theory of N-particle col-
lisions is used to obtain the properly symmetrized, two-particle and three-particle contributions in

these two cases, where it has been assumed that all potentials are pair interactions. The main pur-

pose underlying the research reported herein has been to prove that standard results can be obtained
from an asymmetric formalism. For the two-particle contributions, the usual t p-type expression is
obtained, where t is an antisymmetrized, two-particle transition operator. At this level of approxi-
mation, the results for the (d,d) case are the same as for the usual folding model. The three-particle
contributions in the nucleon-nucleus case are identical to those of Picklesimer and Thaler, thus fur-

ther demonstrating that standard results are contained in the asymmetric approach. The antisym-

metrized, three-particle contributions to the (d,d) optical potential do not seem to have been previ-

ously derived; they are the obvious analog of the nucleon-nucleus results, and are physically reason-

able in form. However, at this level of approximation, the {d,d} description is no longer found to be
that of a folding model.

I. INTRODUCTION

This paper extends previously published research' on
the properties of a new class of two-fragment, antisym-
metrized, elastic scattering optical potentials by deriving
multiple scattering expansions for nucleon-nucleus and
deuteron-nucleus collisions. It also provides an introduc-
tion to and a partial basis for the analysis of the following
paper on direct nuclear reaction models. i

The feature distinguishing the members of the new
class of optical potentials from the standard, Feshbach-
type is their asymmetry, i.e., they are non-Hermitian.
This feature persists for energies below all inelastic
thresholds, although for such energies, the new optical po-
tentials are nonabsorptive, ' i.e., they are real, as required
by flux conservation. The fact that this asymmetry/non-
Hermiticity is not a practical problem is attested to by the
set of all numerical results which have been obtained by
solving the three-body Faddeev equations: this formal-
ism is also asymmetric and therefore non-Hermitian.
Furthermore, it was noted in Ref. l that the members of
the new class of optical potentials are as amenable as is
the standard, Feshbach-type to approximation by means
of a potential containing adjustable parameters and which
is local in coordinate space.

The ability of a new approach to elastic scattering to
yield the conventional (local potential) description is clear-
ly a necessity. A further requirement is that it should also
yield other standard descriptions and/or approximations
in the appropriate limits. In particular, it should lead to a
"tp" type of approximation via a multiple scattering ex-
pansion. Our purpose in this first paper of two is to
derive such expansions for the cases of nucleon-nucleus
and deuteron-nucleus scattering, using that member of the
new class previously denoted the extended Faddeev (EF)
theory. ' The reason for choosing this particular formal-
ism is that it leads not only to a multiple scattering repre-
sentation but it and its time-reversal partner, the Bencze,
Redish, and Sloan (BRS) theory, s also lead to a solution of
the old problem of the role of Pauli principle exchange ef-
fects in the distorted wave Born approximation for parti-
cle transfer reactions. Furthermore, the BRS form of the
theory provides a justification of the standard three-body,
deuteron-nucleus collision model. ' The first of these to-
pics is discussed in detail in the following article; the
second is treated in a forthcoming paper.

The nucleon-nucleus multiple-scattering type of expan-
sions obtained herein are not new: we find the same re-
sults as obtained earlier by Picklesimer and Thaler. That
is, we are able to show, despite its asymmetric character,
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that the non-Hermitian EF collision formalism leads to
precisely those multiple scattering expressions expected on
physical grounds and previously obtained via a more stan-
dard approach. On the other hand, our deuteron-nucleus
results seem to be new.

Multichannel collision formalisms are in general nota-
tionally complex and the extended Faddeev theory em-

ployed herein is no exception. The symbology is discussed
in several recent publications, ' ' '" but in order to make
this pair of papers reasonably self-contained, a brief re-
view of the notation and symmetrization procedure is
given in Sec. II. Our main results are given in Secs. III,
IV, and V.

II. NOTATION AND ANTISYMMETRIZATION

To establish notation, we first assume that the j(i parti-
cles forming the scattering system are distinguishable.
They are labeled 1,2. . .N. General partitions of these par-
ticles into distinct clusters are denoted b(j), where b
specifies the number of clusters (nb) as well as the num-
ber of particles in each cluster, while j, 0&j &Nb, refers
to the labeling of particles in the clusters. Two-cluster
partitions are denoted by lower case Greek letters, e.g.,
a(i), p(j). The permutation operator Pb(j)b(k) transforms
partition b(k) to partition b(j) via bj()=Pb(j)b(k)b(k);
b(j) and b(k) are members of the same equivalence class.
The standard or canonical labeling for a partition is
denoted by j=0; I b (0)I,)i b is the set of canonical labels, 'r

and they are the only ones needed as generic labels for the
equations used in the identical particle case. As a simple
illustration for the four-particle (%=4) case, we could use
a(0) =(12)(34), P(1)=(2)(134), b(3) =(1)(2)(34), with
~a 5p 2and nb 3

For each b (j), the Hamiltonian H of the system can be
partitioned as H =Hb(j)+ V (j), where Vb(j' is the set of
intercluster interactions and Hb(j) governs the internal as
well as the relative plane wave motion of the clusters.
Only those "plane wave" eigenstates of Hb(j) are needed
whose energy equals the total incident energy E; they are
denoted 4b(j), where m labels all bound state quantum
numbers, m=0 denoting ground states. The outgoing
wave Green's function in partition b (j}is

Gb(+j))(E)=(E+i0 Hb(j))—
the E dependence will usually be suppressed in the follow-
ing, so that Gb(+, )'(E)~Gb(j)', similar to the plane wave
state 4b(j). Finally, the Benoist-Gueutal, I 'Huillier, Red-
ish, and Tandy distribution of V ' ' over all partitions
b(j) is

Vd(k) y ( Vd(k) (2.1)
b,j

where Cb ——( —1) (nb —1)!and Vb('j)' is the set of interac-
tions both external to the clusters in partition d(k} and
internal to (binding) the clusters of partition b (j). Equa-
tion (2.1) is used to derive the basic EF theory and BRS
precursor equations. '

Consider now a collision initiated in partition a(i), i.e.,
via @a(;)0, where the relative momentum of the colliding
pairs is k . The solution to the Schrodinger equation gen-

all b(j},where

&& g Vb(j)d(k) A(k){a(&))'
d, k

(2.3)

~b(j)d(k) Cb Vb(j )
EF d(k) (2.4)

Equation (2.3} is of the connected-kernel-type, thus im-
plying unique solutions as iong as the interactions Vbd((Jk))

are suitably behaved, ' which we assume here. Use of an
integral equation form ensures that the proper boundary
conditions are obeyed. It is shown in Ref. 7 that the
ij'ib(j){a(i)) defined by (2.3) enjoy the property of being
"true" components. That is, the amplitude describing
transitions from a(i) to a two-body final state in two-
cluster partition p(j) is wholly contained in it)@j)(a(i)}: no
other gd(k)(a(i)},d(k)+p(j), contribute (asymptotically)
to such a(i)~p(j) amplitudes. In addition, as a true
component pb(j){a(i)) will only contribute to final states
in an arbitrary partition d(k) if d (k) =b (j) or if it can be
obtained by breaking one or more clusters in b(j) into a
larger number of clusters, i.e., if d (k) i:b (j).

We now assume that the N particles are identical fer-
mions: an isospin notation is to be employed in specifying
nuclear states. The internal, bound states in Cb(j) are now
taken to be antisymmetric. Hence, if Rb(j) is the anti-
symmetrizer within the clusters of b (j), then

Rb(j)C)b(j) ——4b(j) . A properly antisymmetrized
Schrodinger solution %'"(a) is obtained from the %(a(i))
by applying to %(a(0)) the antisymmetrizer A (0).

N

'P"(a)=A (0)(I)(a(0))=N ' y P (;) (())(Ii(a(0)),
i=a

where'

+a(i}
Pa(i)a(0) ( ) Pa(i)a(0)

with o a(;) the proper fermion phase factor, and

N =N + 1 (and similarly, Xb j)ib + 1, etc.). —
Unlike %{a(i}},the components gb(j){a(i)) refer to two

(distinguishable-particle) partitions, and application of
A (0) to fb(j)(a(0)} does not produce a fully antisym-
metrized component. As discussed in Ref. 1, the pro-
cedure that leads via summation to the properly normal-
ized, antisymmetrized components pb(a) and to that
canonically labeled component gb(0)(a) which yields the
properly normalized and antisymmetrized transition am-
plitudes or portions thereof, is to define itib(j)(a) via

tj)b(j)(a) —=X b A (0)1(b(j)(a(0}) .

Then the following relations hold

Rb(jx'b(j)(a) 'i'b(j)(a)

(2.5)

(2.6)

crated by (I) (;)0 is denoted %{a(i)}. In the EF theory
which we employ here, %{a(i)}is expanded into com-
ponents pb(J)(a(i)), defined for all partitions b (j), via

(p(a(i))= grab(, )(a(i)}, (2.2)
b,j

where the gb(J)(a(i)) obey

0b(j){a(&}} + a(i)A(j) a(i)+G b(j)
(+)
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6(j)(&)=Pb(j)b(OR4(0)(ct) ~

4b«)=&b '"g A(j)(~)
j=o

=~b(0)kb(0)«»

(2.7)

(2.8) (Po')bd=4d4& (o)o

with

(2.16}

operators. Let I p be the l»I, XI»I, unit matrix, and Pp
and Q 0

——I0—P 0 be two N, XE, projection operators. If
is the product of the bound states in kb(0), then

in the case of elastic scattering, P 0~P p', where

»Ild( ) y g —) /2yA( )
b

(2.9)

The effect of relation (2.7) is that fb(j)(a) and ttb(0)(a)
asymptotically yield amphtudes differing only by the fer-
mion hase factor ( —1) "' so that it is unnecessary to
use 11»b (a) to obtain (partial) amplitudes for a~b process-
es: it is sufficient to consider only the canonically labeled
components ()(b(0)(a). These obey'

Pa(0)0 I '4(0)0 ) ~ '4(0)0 I
(2.17)

and

L ofo=+'0+P OG oU oL orat)0 (2.18)

In general, P 0 will consist of 1's and/or projectors such
as P {0)0 along a few of the main diagonal entries and will
be zero otherwise. It is straightforward to show that'

Pb(0)(+) =~ha@a(0)0+ Gb(0) g Vb(0)d(0)kd(0)(tx) ~

d
(2.10)

L OT Q~P 0 P OU OL 0+P 0U 0P 0G 0Z 0T Q~P 0

where

(2.11)

where the exchange effect potential Vb(0)d(0) ls given by

~b(0)d{0) (Nb ~+d ) g ~b(0) ~b(0)d(k) d(k)d(0) ~
1/2 EF

k

UO=EO+E'OQO(Go ' —QOVOQO} 'Qok'0

is the formal solution to

(2.20)

and I'b(o)d(k) is defined by Eq. (2 4).
The set of equations (2.10) has i»l, members, where N,

is the number of equivalence classes the size of (2.10) is
much smaller than that of (2.3}. Just as in the unsym-
metrized case, the fb(j)(a) are true components, so that,
for example, only Pt){0)((z) yields amplitudes for transi-
tions to bound states in the two-cluster partition P(0}. In
the general case, these amplitudes are the plane wave ma-
trix elements (4b(0)~ ( Tb{0)a{0)~4'a{0)0} of the ProPer,
fully antisymmetrized transition operators Tb"{0) {0), de-
fined by'

Tb(0)a(0) I ~'a(0)0& = g I b{0)d(0)fd(0)((z) ~
A

d

Substituting (2.10) into (2.12) leads to

Tb(0)a(0) = ~b{0)a(0)+~ ~b(0)d(0)Gd(0)Td(0)a(0) ~

A (+) A

d

(2.12)

It is shown in Ref. 1 that these Tb"{0)a{0)are identical to
the (symmetrized) class operators introduced by Bencze
and Redish. '2

Equations (2.10) and (2.13) are much easier to deal with
when expressed in the following matrix form:

40=@'0+6 0 Vot)(0 (2.14)

To"=~o+ Voao~o (2.15)

where comparison with (2.10) and (2.13) should render the
notation obvious (see Ref. 1 for details}. The subscript 0
serves as a reminder that only canonically-labeled parti-
tions are used as the index set in (2.14) and (2.15).

%e treat elastic scattering in this paper and the distort-
ed wave Born approximation for direct nuclear reactions
in the next, so that among all the components and transi-
tion operators contained in (2.14) and (2.15) only a few
need be considered. We do this by means of projection

D o=F0+ I'oQ 06 OU o .

As discussed in Ref. 1,

~a ((t a(0)0 ~ Ua(0)a(0) I |)}a(0)0)

(2.21)

(2.22)

is the two-fragment, antisymmetrized, elastic scattering,
asymmetric optical potential for the EF theory when
~o=~ o'

III. MULTIPLE-SCA I l ERING TYPE
OP EXPANSIONS

To =Uo+U0POGOTo ~ (3.1)

which is abstracted from (2.19). The ground state matrix
element of Ta(0) (0» is related to P"a by Eq. (2.19).

We shall apply a cluster decomposition to (3.1). In

Our primary goal in this article is to show that an an-
tisymmetrized tp-type approximation can be obtained for
the nucleon and deuteron asymmetric optical potentials.
These will form the lowest-order, two-body contributions,
where t is a nucleon-nucleus transition operator and p is
the nucleon density in the target. A secondary objective is
to determine the lowest-order corrections involving three-
body contributions, again taking account of the Pauli
principle. Our results will be seen to be either analogous
or identical to those of similar analyses based on starting
points' ' other than the EF asymmetric co11ision
theory. Our analysis is based on two procedures: the use
of a connectivity expansion' or cluster decomposition'
and the identification in such a decomposition of the
two-body and three-body contributions, terms we shall de-
fine shortly. Since the results are analogous to those of a
multiple-scattering series, we refer to this approach as a
multiple-scattering type of expansion.

Instead of working with the incident channel optical
potential &, we employ the optical potential operators
Up of Eq. (2.20) or equivalently, the transition operators
To. They are related by
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such a decomposition, an iV-particle operator 8 is ex-
pressed's as a sum of terms [8]„each having the connec-
tivity of partition {2:

&= g[&]. (3.2}

Probably the simplest realization of such a decomposition
is in terms of interactions. If, for example, an interaction
V is given by a sum of two-particle potentials, viz. ,
V= g, VJ, then this sum is equivalent to Eq. (3.2)

with the index a running over the partitions
(ij)(1)(2).. (i —. 1)(i+1).. .(j —1)(j+1).. .(X). We note
that the presence of the free, N-particle Green's function
go+' as a multiplicative factor in an (integral) equation
defining a quantity does not affect the connectivity prop-
erties of that quantity.

In view of the fact that the operator product
UQPQ=UQPQ' in (3.1) has the connectivity of the unique
one-cluster partition a =1, then it follows that

A
( Ta(0)a(0) )a ( Ua(0)a(0) )a& (3.3)

Eq. (3.3) shows that a solution of (2.19), e.g., by iteration,
only changes the a= 1, connected term. Hence, if it is
reasonable to approximate T"(0) (0) by one or several
terms ( T"(0) (0) ), with (2&1, then in such an approxima-
tion, (3.3) would yield the relevant contribution to

Ta{Q) {Q), Conversely, contributions to U (0)a(p) from par-
titions (2+I can be obtained from (3.3} by assuming
( Ta(p) (0) ), to be known. We shall follow this latter Pro-
cedure. In particular, we shall determine the two-body
and three-body contributions to Ua(0)a(0) by examining
the N —1 and N —2 cluster partition [(N-1CP) and (S-
2 CP}] terms in (3.3}, uiz. ,

A A
Ua(0)a(0) = ( Ta(0)a(0) ))V-)CP+ ( Ta{0)a(0)))V-2CP

A A~(Ta(0)a(0) )2-BC+ ( Ta(0)a(0) )3-BC .

(3.4)

(3.5)

Of course, one could extend the sum to include more com-
plex terms, but (3.5) is sufficient for our purposes. The
meaning of two- and three-body contributions [(2-BC) and
(3-BC)] will be made clear in Secs. IV and V.

The use of (3.5) to obtain the two-body and three-body
parts of Ua{0)a(0) may appear cumbersome when contrast-
ed with their seemingly simple and direct extraction using
Eqs. (2.20) or (2.21}with Q 0'=I Pp. In fact—, however,
the latter procedure is far from straightforward. First, it
is necessary to use an on-shell transformation to put the
terms appearing in U ({)) {0) in a form more suited to a
multiple-scattering type of analysis. Second, unless rather
complicated manipulations on U (0) (0) are carried out,
the combination of Qa(0) and the combinatoric coeffi-
cients Cb ——( —1) (nb —1)! lead to the appearance of
strange numerical factors in a Neumann expansion of
U (p) (0) usillg Eq. (2.21). Why such factors appear and
how they may be eliminated, leading to correct expres-
sions, are discussed in Ref. 19, which may be consulted
for further information.

Working from (3.5) not only avoids the latter problem,
it also enables us to apply the on-shell transformation
directly to T"(0) (0). We first note that from (2.18}, the
elastic scattering amplitude is proportional to

A
Ta(0)a(0) ~ ~a(0) Ta(0)a(i) ~a(i)a(0) ~

i=0
(3.6)

where T (p)a( ) is a transition operator of the EF theory.
But, from Ref. 7, the following relation holds:

I ~( ~a(0)0 I Ta(0)a(il = ( ~a(0)0 I
~ a(0)a(i) &

(3.7)

where U' (0') (,
~

is the prior form of the a(i)~a(0} transi-
tion operator. Furthermore, Ua(p') (;) can be expressed
in terms of the full Green's function g '+ '

=(E+i0—H} ' uia

U( ) g(pl g(+)Va( ) (3.8)

Now, keeping in mind that U (0) {p) will always act to
the left on (4' {pe I, then straightforward substitution of
(3.8) into (3.7) into (3.6) into (3.5) yields

3

Ua(0)a(0) = g g ( g a(0) g V )n -BCPa( i)a(0)
8=2

where the factor Ra(0) has been dropped due to our as-
suming that Ra(0) I @a(oe&= I @a(oe& We emphasize
that the = sign in (3.9) means that the optical potential
operator is being approximated by its two- and three-body
parts. [(n-BC} stands for n-body contribution. ]

Use of (3.8) to obtain (3.9) [and also (3.10) below] is
reminiscent of the work of Picklesimer and Thaler, who
employ the post form of the transition operator in place
of Ua(p)a(i) and whose antisymmetrization procedure is
slightly different than ours. Given this close relationship,
it will come as no surprise that our final results are identi-
cal to theirs for the nucleon-nucleon case. We intend this
as a reassuring comment on the basic validity of an asym-
metric approach to scattering for any readers who may
still question whether an asymmetric collision theory can
be either correct or practical or both.

The relation which forms the basis of our analysis re-
sults from substituting the resolvent relation

g(+) g(p) (1+Va(0)g(+))

into the rhs of (3.9):
3

Ua(o)a{o) = g g ( V '"+V "'g'+'V "}nBCPa({)a(o) ~

(3.10)

For each i, 0&i (i((t'a, the two- and three-body parts of
the term in parentheses will depend on both the nature of

(@a(0)0 I Ua(0)a(0) I I 4a(oe& (Pa(oe I I I Pa(0) & ~

where (@'(0)p
I
= (P (())() I

(k' I, with k' =k . Substitu-
tion of (3.4) [or even (3.3)] into this expression shows that
the combination (@a(0)0 I

( Ta(0)a(p) ), occurs, i.e., that
T (0)a(p) is always left-half-on-shell when the elastic
scattering amplitude is evaluated. Hence, we may evalu-
ate the right-hand side (rhs) of (3.5) by assuming that the
individual terms act to the left on (4' {oe I

. It is this step
that lies at the basis of the on-shell transformations which
we shall apply.

We next note that Ref. 1 implies that Ta(0)a(0) can be
expressed as
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the clusters forming partition a(i) and the type of interac-
tion. For simplicity, we shall assume that only two-

particle interactions are important; the analyses of the
next two sections will be for the cases of protons and then
deuterons as the projectiles. Introduction of additional
three-particle forces is straightforward to treat: such
forces will not affect the two-body results. Similarly, n

particle forces, n)4, will not affect the two- or three-
body results, and we do not consider them.

Since V~") is now to be taken as a sum of two-particle
interactions, the two-body and three-body character of the
rhs of (3.10) will be determined by the connectivity struc-

+. . . )g(+) (3.11)

where V= V is the total interaction, viz. ,

=gyij. (3.12)

Substituting (3.11) into (3.10) gives

ture of G'+'. This is most simply obtained by expanding
G'+' using the free-particle resolvent Go+'.

g(+) g(+)+g(+)( y+ yg(+)y+ yg(+)yg(+)y

U y y (I ya(i)+ Va(oltg(+)+g(+)(y+ yg(+)y+ yg(+)yg(+)y+. . . )G(+)]Vail )p
5=2

(3.13)

IV. NUCLEON-NUCLEUS SCAL l BRING

For this case, the canonical partition a(0) will be chosen

a(0)= (1)(2. . .N), (4.1)

Evaluation of (3.13} requires knowledge of the incident
channel a. We examine the nucl(xin-nucleus and
deuteron-nucleus cases in the next two sections.

so that

a(i) =P (i&(0)a{0)=(i)(1,2. . i —l,i +. 1. . .N) .

The state P (i)Q is given by

it)~(;)0 X(i )it)0(
——l. . i —l,i. + 1. . .N},

(4.2)

(4.3)

where X is a one-particle spinor and $0 is the (N-1)-
particle, target-nucleus ground state.

In Eq. (3.13), the sum on i contains N terms. We con-
sider the i=0 case first, viz

3

Io g, g Vlj+ g Vlj Go +Go g Vik+ g Vikgo g Vl + GO g Vip
n =2 j~l i&k i&k i p —]

n-BC

Io,2V}+QI0.2V p» (4.4)

where

I0,2V},ylj+ Vlj GO +Go g Vik+ g yikgo g Vlm + GO g Vip
i&k i &k l&m p~1

(4.5)

and
P

Ioi(jp)=, y)j+V)j Go+'+Go+' g Vk+ g Vikgo+' g Vi +''' Go+' V)p+V)j(''')V)j.
i&k i &k 1&m

, 3-BC

+(same expression with j and p interchanged)3 i)( {4.6)

The usage "two-body contribution" and "three-body
contribution" can now be defined in terms of the cluster
decomposition, Eq. (3.2). The two-body contributions are
obtained by truncating the sum in (3.2) to partitions of the

OA11

the single term in the cluster decomposition of Io which
has the connectivity of the partition alv i. In a similar
fashion, the three-body contributions to Io are obtained
by picking out the terms in its cluster decomposition hav-
ing the connectivity of the partition

l
——(lj)(2). . .(j —1)(j+1).. .(N) . (4.7) (2N 2

——(ljp)(2). . .fj —1)(j+1).. .(p —1)(p+1).. .(N) .

In other words, the term denoted by I02(j) in Eq. (4.4) is (4.8)
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Thus the term Io 3(j,P) in Eq. (4.4) is the Part of Io with
connectivity a~ 2. The preceding definition of two-body
and thre. body contributions to the transition amplitude
were introduced by Kowalski' and their use was referred
to him as forming a connectivity expansion. Of course,
this is not the only possible procedure. An alternative is
to adopt the inclusive connectivity expansion introduced
by Picklesimer, Tandy, and Thaler' and later expounded
on by Kowalski. ' We choose to concentrate on the form-
er method since it is simpler, and our major goal in this
paper is to establish that standard approximation schemes
to the standard optical potential can be developed within
an asymmetric formalism.

The two-body contributions can now be extracted from
the expression in (4.5). It is clear that the only terms in
the various sums which can contribute to Io 2(j}are those
which contain the interaction V)j. Therefore,

0,2(j) Vlj+ Vljgo Vlj+ Vijgo Vljgo Vlj+
(4.9)

where t» is the two-particle transition operator for parti-
cles 1 and j, embedded in the N-Particle sPace ( uia Go+').

Summing the result (4.9) on j as indicated by (4.4) gives

g Io,2(j)= g tij . (4.10)
j~$ j~f

This is the familiar impulse approximation, an expected
result, since restricting the sum in (3.13) is equivalent to
making a distinguishable particle approximation. It is the
first indication that reasonable approximations can be
recovered from an asymmetric formalism.

The energy dependence of t)j in (4.10) has been
suppressed, but since the free N-particle Green's function
appears in (4.9), then this implies that t» should be
evaluated at the shifted "energy" E+ Ho. Thi—s feature
has led to a major criticism of the connectivity expan-
sion, '6 uiz , the bin. ding effects in the target nucleus have
been ignored. If, however, one were to use the inclusive
connectivity expansion, then (E+—Hp) ' would be re-
placed by (E+ Hp) ', where—

P=( 1j)(2.; .j—1,j+1. . N), .

y (g(+) +g(+)y g(+)

+G'+'V 6'+'V 6'+'+ ) V . (4 11)0 uw —z 0 a& 2 0 1P

The series in parentheses is the expansion for the channel
Green's function G,'+', . (It is not necessary that the

series converges as the expansion is only used as a tool to
study the connectivity properties of the operator Io. ) The
above expression can therefore be rewritten as

Vijgl„,Vip
(+) (4.12)

The third term must now be examined for possible
three-body contributions. In order for this term to pro-
duce a true three-body contribution, the expression
sandwiched between the V»'s must contain at least one
interaction involving nucleon k, 1+k&j. All such three-
body contributions must be summed over k. Since k is a
dummy variable, it can be set equal to p, which is already
summed over as indicated by (4.4). Thus, all three-body
contributions to the third term in (4.7) are contained in
the expression

thereby including binding effects. Similar comments hold
for the other expressions derived in this paper. However,
for reasons stated before, we continue with our present
procedure.

The three-body contributions can be determined from
Io i(j,Ij) iil (4.6). Only the first exPression in curly braces
wi11 be considered in detail, as the expression in
parentheses in Eq. (4.6) can be gotten from it by a simple
interchange of indices. It is immediately clear that the
first term containing V)j alone has already been counted
as a two-body contribution and must therefore be ignored.

The second term contains both V)j and Vip. This en-
sures that it will at least have the connectivity of the par-
tition aN 2 defined by (4.8}. It is thus only necessary to
eliminate the pieces with higher connectivity. This is easi-
ly done by restricting the potentials which appear in the
expansion in parentheses to Vij and Vip. The three-body
contributions to the second term are then seen to be

y (g(+)y g(+)+g(+)y g(+)y g(+)+. . . )y y (g(+)y g(+)+g(+)y g(+)y g(+)+. . . )y

(4.13)

where the part that has been subtracted off has already
bo.'m counted as a two-body contribution. The above ex-
pression can be rewritten in terms of channel Green's
functions as

y (g(+) g(+))y (4.14)

where 6')j+' is the channel Green's function for the parti-
tion aN i defined by (4.7).

%'e are novo ready to evaluate the three-body contribu-
tions I() i(j,p) of Eq. (4.6). Combining (4.12) and (4.14)
plus the same expressions with j and p interchanged,
yields

Io,i(jp) =(V)j+ Vip)6'„+', (V)j+Vip}

(+) (+)—V)~G(q V(j —V)pG)p V)p . (4.15)

The above equation for Io i(j,j)) can be Put into simPler
form by adding and subtracting V»+ V)p.

Io~(j j»=[(y)j+ V)p)+( Vij+ Vip)6'„+', (V»+ V)p)]

—(Vij+V)jg)j+'V») —(Vip+Vipgip+'Vip) .
(4.16}

The first term in square brackets is seen to be the three-
body elastic transition operator describing nucleon l
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scattering off nucleons j and P; this term will be denoted
TJ)'Jp'; "Jp). Like the t)J operator given by Eq. (4.9), it is a

few-body operator embedded in the full X-particle space.
The second and third terms in parentheses on line two of
Eq. (4.16) are simply two-body r matrices, again embed-
ded in the N-particle Hilbert space. Hence, Io 3(j,p} can
be written in the compact form

(jp), (jp) (4.17)

The Io 3(j,p) term can now be summed on all pairs j
and p to yield

(4.18)
J+P

This is the three-body correction to the impulse approxi-
mation (4.10) which one would expect on physical
grounds. The first term yields the amplitude for the pro-
jectile to scatter off the pair of target nucleons j and p.
The second and third are subtracted terms which prevent
the overcounting of processes already accounted for by

the two-body impulse approximation.
We have so far only considered terms in Eq.(3.13) for

which i=0. Since this ignores exchange terms, what we
have done so far amounts to a distinguishable particle ap-
proximation for the nucleon-nucleus amplitude. Howev-

er, one of the advantages to working with a connected-
kernel formalism is that exchange effects can be included
in a straightforward and consistent manner. We will
evaluate exchange effects starting from (3.13}by selecting
a term in the sum on 1 with i+0, and then summing our
result over all i

In analogy with (4.4), we write

I;= g I;2(l')+ QI;3(l ,P) P';1,
J+f P

(4.19)

where P;1 is an explicit representation of the operator that
takes a(i) into a(0) and is taken to mean an interchange of
particles 1 and i, multiplied by the appropriate phase fac-
tor.

In an analogy to the i =0 case, I; 2(j) can be expressed as

r

I,2V)=, V~j+Vij Go+'+Go+' g V.k+ g V.kGo+' g Vi + ''' Go+' g Vp,
ngk n(k I &m P=f

(4.20)

In similar fashion, I; 3j(,p) can be written as
r T

Ii, 3V j3)=,V, + V, Go"+Go" g V.k+ g V kGO g Vl Go + ' ' '

ngk ngk 1&m
Vip+ V~j( ) Vj

3-BC

+ [(same expression with j and p interchanged)& Bc]pp 1 . (4.21)

I; 2(j )= t, i5~ )p; ) . (4.22)

Next, summing on allj&i as indicated by (4.19), and then
summing on all i &0 as indicated by (3.13), yields

We will now extract the two-body contributions from
the curly-bracketed term in (4.20). Because of the pres-
ence of the P;J operator, it is clear that the only two-body
contributions can come from the interactions V„. There-
fore, the only two-body contributions occur when j= 1.
Once this observation has been made, the two-body con-
tributions can be evaluated just as in the distinguishable
particle analysis (i=0). The result is

where ti; is the physical two-body t matrix describing
nucleon-nucleon scattering with particle exchange taken
into account. This "antisymmetrized" tp expression is a
familiar approximation for the nucleon-nucleus optical
potential and is a result that is expected on physical
grounds as the natural extension of Eq. (4.10). Again, we
have shown that physically reasonable and well-known
approximations can be recovered from an asymmetric op-
tical potential formalism.

The three-body exchange contributions to the optical
potential are obtained fram (4.21). Similar manipulations
as in the i =0 case yield the expression

g I; 2(j)= g t; )p;1 . (4.23) ( Tj( lp), 1(jp)
& )p + ( Tp()j), 1(Jp)

& )pf, 3 —
aN 2 1j lj aN 2 1P 1P.

(4.25)

Combining this with the distinguishable particle result
given by (4.10) gives

( Ua(0)a(0))2-BC g rij(I +Pi 1}
i+1

—= ~ t», nucleon-nucleus case,S

i+1
(4.24)

for the two-body contributions to the optical potential,

The operator TaJ"~'"JJ", for example, is the prior-form

three-bady transition operator (embedded in the S-
particle space) for scattering from the channel 1(jp) to the
channel j(lp). As in Eq. (4.17), the two-body t matrices
are subtracted to prevent overcounting of two-body con-
tributions. In addition, these subtractions also ensure that
Ii 3(j,p) has the connectivity of the partition aN 2 ~

To obtain the full three-body contributions to the opti-
cal potential, I; 3(j,p) must be properly summed over j
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t(J(—I+P) } t)p(—I+P)p)] . (4.26)

Although this expression looks unwieldy, it may be put
into simpler form. It can be seen that the first three terms
are equivalent to the correctly symmetrized three-body
transition operator describing identical particle scatter-
ing of the particle 1 off of the pair j and P. This will be

denoted by T,"Jt'), where the a)v 2 subscript is to remind

us that it is a three-body operator embedded in the X-
particle space. Furthermore, the last two terms are sym-
metrized two-body matrices that have been defined by
(424). Thus (4.26) can now be rewritten as

and p and the result added to that obtained in (4.18). This
yields

p T1(jp},1(jp) ~ Tj (1p), 1(jp)p Tp(1j), 1(jp)~
~

~

N —2 % —2 J .V —2
J+p

j+1+p

and

(z (i)=( li)(0, 2. . i —.l,i +1.. .N) (5.2)

a (i)=(Oi)(1,2. . i —.l,i +1.. .N),

and finally there are partitions of the form

(5.3)

a '(i)=(ij)( 0, 1,2. . i —l.,i + l. . .j —l,j +1. . .E) .

evaluated at half of the incident deuteron energy and fold-
ed over the deuteron density. This prescription is known
as the folding model, and we will bear it in mind when
comparing our results for the deuteron-nucleus case to
those from the preceding section.

We now work with Eq. (3.13) to determine the two- and
three-body contributions to deuteron-nucleus scattering.
We first examine the equivalence class of partitions that
contains a(0). There are four types: first, a(0), as given
by (5.1); next, there are the two types of partitions

( Ua(0)a(0) )3-BC g ( Ta t 1j——t lp ),1(jp)~ S 5

~= Ij*pj

nucleon-nucleus case ',

(4.27)

where a runs over all pairs of nucleons that do not include
1. As was the case with the two-1xxly contributions, the
result (4.27) is a natural generalization of Eq. (4.18) to the
case of identical particles in which all of the operators are
replaced by their symmetrized counterparts.

The main results of this section are Eqs. (4.24} and
(4.27) which, when folded over the nuclear density, give
the two- and three-body contributions, respectively, to the
antisymmetrized nucleon-nucleus optical potential. In the
next section, we show how the same techniques can be
used to construct low-order approximations to the
deuteron-nucleus optical potential.

It can be seen that while a (i) and a'(i) can be obtained
from a(0) by the interchange of only two nucleons, the
simplest permutation that takes a(0) into a '(i) is Po;P&~,
which involves four nucleons. Since we are only consider-
ing two- and three-body effects, contributions from the
a '(i) partitions will be ignored. Physically, this simply
means that the double exchange processes, in which the
incident deuteron trades places with two of the target nu-
cleons, do not make any two- or three-body contributions
to deuteron-nucleus scattering.

In addition to the various partitions occurring in Eq.
(3.13), there also appears the infinite series
Go+'Vgo+'+Go+'Vga+'Vga+'+. . . . Since the opera-
tor V is the sum of all of the pairwise potentials, substitu-
tion of this sum for V leads to an expression for (3.13)
similar to that of (4.4). In order to apply our earlier re-
sults most easily, it is helpful to decompose the pro:eding
series into the sum of four operators:

U. DEUTERON-NUCLEUS SCA r-TEMNG g(+)Vg(+)+g(+)Vg(+) Vg(+) +. . .

To examine the two- and three-body contributions to
deuteron-nucleus elastic scattering, where the projectile is
now a composite particle, we again use Eq. (3.13} as a
starting point. We will choose the canonical partition to
be

(z(Q) =(01)(2. . .E), (5.1)

so that N +1 particles comprise the system. This enables
us to make use of results derived in the preceding section
and also facilitates the comparison of composite particle
scattering with that of nucleon-nucleus scattering. %'e

note that the operator U (0) (0) must be folded over both
the target density and the deuteron density in order to re-
cover the optical potential, rather than just the target den-
sity as was the case for nucleon-nucleus scattering.

Before we proceed, it should be noted that a popular
method to relate the deuteron-nucleus optical potential to
the nucleon-nucleus optical potential is to take the deute-
ron potential to be the sum of the nucleon potentials each

(5.5)

where A' " contains terms involving only the potential
Voi, A' "contains all terms involving potentials with par-
ticle 0 but not 1, A'"' contains all terms involving poten-
tials with particle 1 but not 0, and A'&' contains all terms
involving potentials with neither particles 0 nor 1.

We begin by considering the term in Eq. (3.13) in which
a(i) is equal to a(0). This is analogous to the distinguish-
able particle analysis of Sec. IV, and we shall be able to
carry over a number of results from that section. The
operator V ' ' can be expressed as a sum of two contribu-
tions:

V""= g V„+ g V„.
J&2 J&2

(5.6}

Using this decomposition and the definition (5.5), we in-
troduce the operator Io, in analogy with the notation of
Sec. IV:
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g v„+ g v„(g,'+'+~(")+~ "J') g v„+ g v„+ g v„(g',+'+~(")+~"&)) g v„
N=2 J &2 J &2 j&2 j&2 p &2

+ g vol(~""+~"")g v„+ g v)J(w""+w"") g v
j&2 p&2 J &2 p &2

g y (g(+)+g(+)yg(+)+. . . ) g y + y y (g(+)+g(+)yg(+)+. . . ) y y
J &2 p&2 J &2 p &2

(5.7)

The reason for dividing the series (5.5) into four terms
now becomes clear: It can be seen from a comparison
with {4A} that the first four terms correspond, with one
slight difference, exactly to the separate scattering of par-
ticles 0 and 1 off the target nucleus. All of the work
needed for extracting the two- and three-body contribu-
tions from these terms has already been carried out in Sec.
IV. The one difference is that while the operators in (4.4)
are operators in an N-body Hilbert space, the operators in
(5.7) are operators in an (N+1)-body Hilbert space.
Thus, for example, although particle 1 does not appear in
any of the interactions in the first two terms of (5.7), it
still appears in the kinetic energy terms of Go+'. This
difference does not affect the form of the operators: only
their "energy dependence" is changed.

We are now ready to evaluate the two-body, "distin-
guishable particle" contributions to deuteron-nucleus
scattering. By inspection of (5.7), it is seen that all but the
first four j sums involve at least three particles. The two-
body contributions from the first four j sums have been
evaluated already and are given by

(N+1)-particle space. If it is assumed that Eo and I(')
can be replaced by an energy equal to half of the deuteron
incident energy, then the folding model~ is reproduced at
the level of two-body contributions. It is only in the
three-body contributions that deviations from the folding
model start to appear. This remark also holds for the ex-
change contributions.

%'e now proceed to extract the three-body contributions
from Io. The first four terms are of the same form as
those that have appeared in Sec. IV, and their three-body
contributions are given by (4.18). Adapting that result to
the present case yields

~
j j(

'" ""' — — + " ' " ' —,— ),
JP

Jip &2

(5.10)

where

a)(( 2 ——(ljp){0)(2).. .(j —1)(j+1).. .(p —1)(p+1).. .(N)

(5.11)

g (t t+t, ) .
J &2

(5.8)
and

az 2
——(Ojp)(1)(2). . .(j—1)(j+ 1). . .(p —1)(p + 1). . .(N) .

I: U"{E)]2= &((}oi I [U'« + —&i )]2

+ [U'{E+—&o)]2 I (()o(& (5.9}

where ()(}oi is the (deuteron) bound state wave function for
particles 0 and 1, and Uo and U' are evaluated at shifted
energies because they are operators embedded in the

The above result can be compared with the distinguishable
particle two-body contribution to the nucleon-nucleus op-
tical potential, which will be denoted by [ U (E)]2. If the
two-body contributions to the deuteron-nucleus potential
are labeled by [ U '(E)]q, then upon comparison of (4.10)
with {5.8) it is seen that

(5.12)

The suppressed energy dependence of the operators in
(5.10) refers to the fact that they are embedded in an
(N + 1)-particle Hilbert space.

Thus far, there are still no deviations from the folding
model. However, the remaining terms in Io will give dif-
ferent results than the folding model. In the fifth j sum, j
and p must be set equal to each other, or else this term
will involve four nucleons. For the same reason, the
terms appearing in A'"' must be restricted to those con-
taining only the potentials V(J. The three-body contribu-
tions from this term are thus found to be

g [y (g(+)y g(+)+g(+)y g(+)y g(+)+. . . )v +y {g(+)v g(+)+g(+)y g(+)y g(+)+. . . )y ]
{5.13)

g Vo (G(')+i'+G'(J+' —26()+') VoJ .
J &2

A similar analysis yields

(5.14)

This expression can be rewritten in terms of channel
Green's functions as

I

for the three-body contributions from the sixth j sum.
Now examining the seventh and eighth j sums in Io, we

see that the three-nucleon contributions occur only when

p is equal to j. As these terms are very much like those in
Eqs. (4.11) and (4.12), we easily find the three-body con-
tributions from the seventh and eighth j sums in Io to be

g y (g(+)+g(+) 2g(+))y
j&2

(5.15} X (VoJgb+' Vi + Vi g('+' Vo }
J &2

(5.16)
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where

bN 3——(01j)(2). . .(j—1)(j+ 1). . .(jV) . (5.17)

Adding together Eqs. (5.14), (5.15), and (5.16) yields,
after the use of some Green's function identities,

g [(Voj+ I'(j)Gb„+', ( Voj+ V(j)
j)2 —I'0 Go I'0 —Vi Gi. Vi ] .J J J J J J (5.18)

+ y (Tj(0(),j(0))

J Q2
(5.20)

As noted earlier, it is the term given by (5.19) which
provides the first carrection to the folding model. It
physically corresponds to the scattering of the bound

Adding and subtracting two-body potentials as was done
in Eq. (4.16) gives for (5.18) the result

(5.19)
J&2

Finally, adding Eq. (5.10) to (5.19) produces the full,
dinstinguishable-particle, three-body contributions to
deuteron-nucleus scattering, Uiz. ,

( T l(jp), l(jpi t t + TO(jp), 0(jp)
~

j j
l+p

J~p &2

deuteron by each of the target nucleons, which is neces-
sarily a three-body contribution. This is another example
of a physically reasonable result that has been recovered,
despite the fact that an asymmetric optical potential for-
malism has been used as the starting point.

To now determine the low-order exchange contributions
to deuteron-nucleus scattering, the sum in Eq. (3.13) must
be evaluated for partitions of the form a (i) and a'(i)
Using the preceding analyses, this calculation is straight-
forward but lengthy, and details will not be reproduced
here. [An apparent problem involves expressions of the
form to;P); that arise from terms analogous to the first
four terms of (5.8). However, these expressions are exact-
ly canceled by contributions from other terms. ]

As might be expected, the only modification of the re-
sults already obtained in this section when exchange ef-
fects are fully included is that the unsymmetrized opera-
tors are replaced by their fully symmetrized counterparts.
Thus, from Eq. (5.8), the two-body contributions to
deuteron-nucleus scattering are the following:

( U (Q) (Q) )2 i)c= g (tpj + t (j ), deuteron-nucleus cases s'

j+ 2

(5.21)

while the three-body contributions are given by

( U(g(0}(g(0) )3 B( — g ( T tQj tQp + Tg t ij t ip )+ g ( Tf tpj t ij ), deuteron-nucleus caseO~ jp)S S S 1(jp)S S S o&]s s s (5.22)

Both of these equations fully account for all exchange ef-
fects within the approximations that only the two- and
three-body contributions to the scattering process are in-
cluded.

The major results of this section are Eqs. (5.21) and
(5.22), which give, when folded over the product of the
deuteron and target densities, the two- and three-body
contributions to the antisymmetrized deuteron-nucleus
optical patential. What we have analyzed here is the opti-
cal model, which reduces deuteron-nucleus scattering to
an effective two-body problem. However, due to the ease
with which the deuteron can be broken up, it is often use-
ful to treat deuteron scattering via an effective three-body
model, so that the composite nature of the deuteron can
be treated explicitly. In fact, the folding model can be re-
garded as an approximate solution to the full three-body
model. It is possible to use the farmalism developed in
Secs. II and III, specialized to the BRS theory, to analyze
the three-body deuteron-nucleus model with exchange ef-
fects included and to show what approximations are
necessary to arrive at the standard form of the three-body
model. This has been done and will be presented in the
third paper of this series.

I

tributions to the scattering from both two- and three-
nucleon interactions. Since we started with optical paten-
tials that include exchange effects ttb initio, our low-order
approximations cantain exchange effects in a correct and
consistent fashion.

Although some of our final results have been obtained
by other workers using different approaches, one of our
major points was to show that well-established and physi-
cally reasonable results can be obtained from an optical
potential which was asymmetric. (The asymmetry here
refers to the fact that the optical potential is nonlocal and
not equal to itself when its two arguments are inter-
changed. ) For the case of nucleon-nucleus scattering, we
have recovered both the standard impulse approximation
and corrections from three-body effects.

%'e have also obtained some new results. To our
knowledge, the calculations in Sec. V are the first con-
cerning deuteron-nucleus scattering which consistently in-
clude the effects of exchange. As stated earlier, this will
be examined in more detail in a subsequent paper, where
the question of deuteron breakup will be addressed.
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