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The nuclear matter parameters and the single-particle properties are compared for the standard (non-) lo-
cal Paris potential and its separable representation, given by the Graz group. The results are discussed.

The treatment of few- and many-body models with realis-
tic nucleon-nucleon potentials often causes, due to the local
structure of the force, numerical problems of great com-
plexity, which are sometimes intractable. In order not to
sacrifice the model or to avoid an extensive numerical treat-
ment, one can simplify the problem by using a separable
representation. This method was first employed in nuclear
physics by Yamaguchi! and was extended by numerous au-
thors (see, for instance, Ref. 2). However, this procedure
has the drawback that the off-energy behavior of the two in-
teractions is different. It is possible to reduce this short-
coming by several methods; for instance, by utilizing the
so-called EST method.> With this method one can repro-
duce, to a certain extent, both the on- and off-shell
behavior of the original potential. Recently, the Graz group
has obtained a separable representation of the Paris poten-
tial* with this procedure.>® The obtained parametrization
worked, it seems, reasonably well in a variety of few-body
problems. Therefore, it is interesting to test the applicability
of this potential for other cases. A good choice seems to be
the nuclear matter problem, where one needs the effective
scattering matrix in matter for an extended energy range. A
successful test would open the possibility to treat more re-
fined approximations in this field due to the tremendous cut
in computer time. The test was performed for the Paris po-
tential utilizing the so-called A® approximation® of the
Green'’s function approach, where negative energies are im-
portant, and the Brueckner approximation with the standard
choice,’ respectively. These cases, where the results for the
standard Paris potential are known from the literature 81!
seem to be sufficient for the test, because they cover, with
respect to complexity and energy domain, the basic features
of the nuclear matter theory. Since the formulation of the
models is outlined in detail in the literature,’12 we will not
repeat their description in this note. We only emphasize the
basic advantage of the separable potential («=JS,T, g

TABLE I. Comparison of nuclear matter parameters.

Approximation  kr (fm~!)  Eg(4)/ p (fm™3) « (MeV)
A (MeV)

A% (separable) 1.663 -13.12 0.256 114

A (Ref. 8) 1.548 -13.17 0.213 162

A (separable) 1.548 -11.86 0.250 148

A (Ref. 4) 1.51 -11.22

denotes the form factor; for details, see Ref. 2).
N N
”ZL'(””")=,§U§1 g (PG gt (p) 6))
namely, the preservation of this separable structure for the
T matrix

N
TL"L,(Q;p,p",z)=u2=‘g,""“(p)‘r,7"’~ (0;2grE (p) . ()

Because of this structure the integral equations for the T
matrix [Eq. (2.1) of Ref. 8 after angular decomposition]
reduces—besides integration—to a linear system of equa-
tions. The gain in computer time for the treated models
was approximately a factor of 4013

In the discussion we will mainly concentrate on the A%
approximation because for this case we have the most de-
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FIG. 1. Nuclear matter energy vs Fermi momentum. The
dashed-dotted curve gives the outcome for the separable Paris po-
tential in the Brueckner theory with standard gap choice. The
results of the A% approximation are given by the solid (dashed)
curve for the separable (staridard) Paris potential.
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FIG. 2. Single-particle energy (k) and mass operator X(k) in
A% approximation vs momentum for the separable and standard
Paris potential.

tailed information available.® Furthermore, the behavior of
the T matrix for negative energies, needed in more sophisti-
cated approximations,”!%-12 is significant in this model. The
comparison of the nuclear matter parameters is given in
Table I and Fig. 1. A first glance might suggest a satisfacto-
ry agreement, at least, with respect to binding energies.
However, a closer inspection reveals greater discrepancies
and the agreement of the binding energies may be acciden-
tal. For this purpose we show in Figs. 2 and 3 the effective
single-particle potential and the momentum distribution,
respectively. This comparison exhibits a weaker single-
particle potential and a steeper decrease of the momentum
distribution for the separable potential. Since the A%® ap-
proximation is completely determined by the free off-shell S
matrix for (large) negative energies [see, for instance, Egs.
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FIG. 3. Momentum distribution in A% approximation for the
separable and standard Paris potential at kz=1.36 fm~L.
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TABLE II.
MeV (A% approximation).

Partial-wave contributions to the mass operator in

k=0 k=kp=1.36 fm™!
Channel Separable Paris Separable Paris
150 -36.9 -38.0 —24.4 —-25.2
1p 6.2 6.7 7.5 7.6
1
1p -2.8 -3.0 -5.7 -5.9
2
3p -4.0 —4.6 —-8.1 —8.6
2
351 —43.0 —46.9 =319 —34.2
3”1 0.5 1.5 1.5 2.1
3p 0.0 0.3 0.1 0.7

(55), (75), and (76) of Ref. 6], this result can only be ex-
plained by a different off-shell behavior of the S matrices in
this negative energy domain. In most nuclear applications
this difference seems to be insignificant and it might be
caused by favoring the (physical) positive energy range in
the fitting procedure of the separable potential. The shown
structure of 3 and p implies, by taking the weighting factor
p? into account, a higher saturation density. It is quite pos-
sible that a combination of these features causes a compen-
sation effect for the energy but obviously leads to higher sa-
turation densities and (in-) compressibilities.!> Therefore,
the approximate agreement of the binding energies alone
does not prove the equivalence of both potentials within
these models. For completeness the differences for the dif-

TABLE III. Partial-wave contributions to the potential energy in
MeV at kg=1.36 fm~! using the Brueckner approximation with
standard gap choice.

Channel Separable Paris (Ref. 9)
lso —15.88 —16.35
1p, ~2.71 -2.82
3, ~17.09 ~17.25
301 1.06 1.49
302 -3.80 -5.762
3, -3.17 ~3.55
3,:] 10.49 10.52
3;,2 -7.18 -7.25
3, -0.27 ~0.60
Ip, 437 4.40
3, 0.09 0.11
36, 0.10 0.22

Total -33.99 —36.85
(-35.39)2

3L ejeune et al. (Ref. 10) recalculated the channel contributions and
obtained for the 3D, case —4.3 MeV, which seems more in accor-
dance with our result. A further comparison with Ref. 11, where
—4.62 MeV was obtained for ky=1.4 fm~!, suggests, that the result
of Ref. 10 is more reliable.
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ferent channels are exhibited, in more detail, in Tables II
and III. In the Brueckner approximation, where the in-
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the free nucleon-nucleon problem. For the A® approxima-

volved domain of negative energies is smaller,” one expects
and obtains a better agreement (see Tables I and III). Un-
fortunately, a direct test of the single-particle properties was
not possible because the mass operator is not given in Ref.
9.

From the given comparison one can conclude that the
separable representation of the Paris potential is sufficient
for nuclear matter calculations within the Brueckner scheme
(see Fig. 1, Tables I and III), since here the T matrix in
matter is needed in an energy domain which is similar to

tion (see Figs. 1-3, Tables I and II) the agreement, it

seems, is not as good as in the Brueckner theory. A prob-
able cause is the different behavior of the T matrixes for
larger negative energies (see discussion of the mass opera-
tor).

The authors would like to thank Professor Plessas for fur-
nishing the most recent version of the separable potential
before publication. Furthermore, we are indebted to Dr.
F. Weber for helpful discussions.
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