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Faddeev calculations of the 2n.-3N force contribution to the 'H binding energy
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The configuration-space Faddeev equations are solved for Hamiltonians that include the Tucson-

Melbourne, Brazil, and Urbana two-pion-exchange three-nucleon force models. Convergence in

terms of the number of three-body partial waves is demonstrated. First-order perturbation theory

results are sho~n to be inadequate. AQ three models produce approximately 1.5 MeV additional

binding, which overbinds the triton, when the standard value of the n N form factor cutoff is used.

I. INTRODUCTION

In the traditional approach of nuclear physics one de-

scribes the nucleus in terms of a model in which nonrela-
tivistic, point nucleons interact via two-body (pairwise)
forces. Subnuclear degrees of freedom are ignored. Al-

though there is no a priori theoretical justification for this
assumption, the simplifications inherent in the traditional
model are enormous. Moreover, the consequence has been
a semiphenomenological description of nuclear structure
and reactions that has enjoyed considerable qualitative
success. Nevertheless, the inability to calculate observ-

ables accurately for a given two-body force model has
been a serious impediment to the development of a funda-
mental understanding of nuclear physics.

Trinucleon bound-state calculations using pairwise
"realistic" potentials, potentials that reproduce the prop-
erties of the deuteron and nucleon-nucleon (NN} scatter-
ing data up to the threshold for pion production, demon-
strate that such a Hamiltonian model underbinds the tri-
ton by 0.8—1.1 MeV and generates too large a charge ra-
dius by 0.1—0.2 fm. This is a nontrivial test of the tradi-
tional approach; there was certainly no guarantee of suc-
cess. Among the possible defects in the traditional model
are the following: (1) the omission of non-negligible rela-
tivistic effects, (2) the failure to include explicitly in the
NN force model meson degrees of freedom and nucleon
substructure, and (3) the neglect of three-body forces,
forces which depend upon the coordinates (space, spin,
isospin, and possibly momenta) of three nucleons simul-
taneously. These three categories are, of course, not dis-
tinct and independent. However, we concentrate on the
last category, in part because it raises the hope of im-
proving the agreement between the Fourier transform of
the calculated He charge density and the He elastic elec-
tron scattering form factor. '

Because of the discrepancies between theory and experi-
ment within the realm of the traditional model, various
groups attempted to estimate the contribution of long-
range three-nucleon forces to the triton binding energy.
These studies dealt primarily with the Tucson-Melbourne

(TM) (Ref. 10) and Brazil (BR} (Ref. 11) two-pion-
exchange (2n ) models of the three-body force (3N),
models which respect chiral constraints. Strong short-
range repulsion of the NN force was assumed to render
unimportant the short-range properties of the three-
nucleon force. (An alternative approach in terms of an
isobar constituent model of the Fujita-Miyazawa'i —type
was explored by Hajduk and Sauer. '

) The diverse ap-
proximations used in estimating the three-nucleon force
contribution to the triton binding energy gave the appear-
ance of significant discrepancies among a number of the
calculations. However, the results of Refs. 8 and 9 es-
tablished the numerical accuracy of the first-order pertur-
bation theory approach. Unfortunately, they also implied
a strong model dependence, which would invalidate the
assumption that one need consider only the long-range
part of the three-body force.

We report here details of the solution' of the full
bound-state, configuration-space Faddeev equations to ob-
tain exact results for the H binding energy using the TM
and BR 2m-3N models as well as the phenomenological
Urbana (UR) model. ' The salient features of the results
are the following: (1) The TM model requires more than
a first-order perturbative treatment to obtain even qualita-
tively reliable numbers; (2) all three 2n.-3N models require
that a large number of three-body channels (viz. , 34, all
two-body potential components with j&4}be included to
ensure that the answer has converged; (3) all three of the
2n-3N models lead to overbinding of H, whether the
underlying two-body Hamiltonian is based upon the stiff
Reid soft-core (RSC) (Ref. 16) or the softer Argonne V14
(AV14) (Ref. 17) nucleon-nucleon force, if one utilizes the
cominonly accepted value of 4 =5.8p (p is the pion mass)
in the (monopole) n-nucleon form factor; (4) for a given
value of A we find no significant difference in the binding
energy increment arising from each model in a full calcu-
lation; and (5) unlike the situation which holds for the
NN Hamiltonian alone, ' we find that the NN odd partial
waves contribute substantially to the 3N force increment
in the H binding energy, which explains why the early
first-order perturbation theory calculations failed to yield
valid results.
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II. THREE-BODY FORCE MODEL

Without attempting to judge the underlying philoso-
phies of the competing methods for constructing a three-
nucleon force, we adopt for the purposes of this investiga-
tion the TM (model independent), BR (chiral Lagrangian),
and UR (phenomenological) models as our ansatze. These
models, have in fact, the same long-range two-pion-
exchange functional form, although only the UR model
includes a nonzero isoscalar term. They differ significant-
ly in the parametrization of the short-range s-wave part of
the potential. This difference should not affect the 2m-3N
force contribution to the H binding, if the short-range

repulsion of the dominant NN force is strong enough to
keep the nucleons apart and therefore suppress the contri-
bution of the short-range components of the three-nucleon
force.

The 2m-3N force W(xl, xz, x3) can be decomposed into
three parts

W= W)+ 8'2+ 8'3,

where the W~ each have the same functional form but
contain cyclically permuted variables. Physically Wl cor-
responds to the process in which particle 1 exchanges one
pion with each of particles 2 and 3. The analytic expres-
sion for the TM and BR potential models is

8M@
(rz r3)(oz x3)( —o3 x, )

X I(a —2lM c)Z', (x3)Z'l(xz)+c[ZO(x3)Zi(xz)+Z'l(x3)ZO(xz)]I

Z'l(x3)
+ ~ ('rz'r3) (oz'x3)( o3'xz)( x3 x2) Zl (x3)

X3

Zl(xz)
X Z", (x, )—

X2

Zi(xz) Zi(xz)
+(oz x3)(o343) Zl (x3)—

X3 X2
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X3 X2

Zl(xz)
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(2)

where we use the relative coordinate definition x; = rJ —rk. Here g = 179.7 is the coupling constant, p = 139.6 MeV and
M=6.726p are the pion and nucleon masses, and cr; and v; are the spin and isospin operators that act on particle i. The
remaining functions are

2 22
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The ~N form-factor cutoff A is the critical parameter in

the calculation; we look at three values below. The actual
form of W'i used in our calculations was reexpressed in
terms of irreducible tensor operators. Although very use-

ful, this form does not lead to further insight and will not
be displayed here. It can be found in Appendix F of Ref.
19. One final comment to be made is the following: Note
that because x2=x3i, in contrast to the definition of Coon
and Glockle' (where x2 ———x2i}, there are sign differ-
ences in Eq. (2} compared to the expression of Ref. 10.
Thus, we begin this discussion with the expression from
Ref. 15.

The UR model differs from the form shown in Eqs. (2)
and (3) in that it includes an additional isoscalar term as
well as a Gaussian cutoff. " We include it in this study
because it is in contemporary use for binding energy and
momentum distribution calculations for three-body and
four-body nuclei and the properties of nuclear matter.

The TM and BR model parameters are specified in
Table I. The c term is the singular (5-function1ike) part
of the potential. For the BR model, one has c=0, which
means that it is much less singular than the TM model.
This is borne out by the numerical results in Sec. IV,
which shaw that the perturbation series for the TM model
converges much more slowly than that for the BR model.
A similar analysis halds for the UR model. We em-
phasize that our purpose is not to argue the validity of
any one model but to produce benchmark calculations,
which can be used to determine the best means of explor-
ing three-body force effects.

III. NUMERICAL METHODS

—=Pi+ 42+ i)'3

%e use the Jacobi coordinates

(4)

(Sb)

I

Following the procedures used in our previous
configuration-space Faddeev calculations, we decom-
pose the total wave function for three identical nucleons
into a sum of three Faddeev ' amplitudes:

4(xi yl}+ P(x2 y2}+(('(x3 y3)

TABLE I. Two-pion-exchange three-nucleon force parame-
ters for the TM and BR models.

TM
BR

1.130
1.048

—2.580
—2.287

1.00
0.0

—0.7530
—0.7656

where i, j, and k denote cyclic permutation.
The Hamiltonian for the system is of the form

H =T+ g V(x;)+ W(xi, x2, xi),

where W is the 2ir-3N force defined in Sec. II. There are
many ways to decompose the Schrodinger equation into
coupled Faddeev equatians in the presence of a three-body
force. Three possible choices are

[T+V(xi) E)fg ————V(xi)(QJ+fk) —W;4, (7a)

[T + V( xi ) E]f;=——V(xi )(QJ +pk )—8'4;, (7b)

[T+V(xg) E]y/= ——V(xg )(yJ+lpk) ——,we . (7c)

For identical particles the amplitudes P; (i=1,2,3) all
have the same functional form, so that it is only necessary
to solve one of the Faddeev equations and cyclically per-
mute the variables to obtain the remaining amplitudes re-
quired to construct the Schrodinger wave function corre-
sponding to Eq. (4). In each of the decompositions speci-
fied in Eq. (7), the three-body force is retained on the
right-hand side of the equation. Thus, the NN tensor
force couples at most two channels on the left-hand side,
which is convenient for the numerical solution af the
equations. Finally, each of the Faddeev equation decom-
positions must lead to the same binding energy when we
include all (or a sufficient number of) partial waves.
Hawever, we shall see below that in practice the methods
do not exhibit the same rate of convergence.

We use the j-J coupling scheme in our partial wave rep-
resentation of the Faddeev amplitudes. The g; is written
in the form:

~
[(l.,s.}J.;(I...S.)J.]g M;(r. , T )~~&};,

&t3'~

where I is the orbital angular momentum of particles j
and k, s is the spin angular momentum of particles j and
k, j is the total angular momentum of particles j and k,
I. is the orbital angular momentum of particle i relative
to the center of mass of particles j and k, S is the spin of
particle i (S = —,

'
), J is the total angular momentum of

particle i, g is the total angular momentuin of the three-
particle system, t is the total isospin of particles j and k,

t

T is the isospin of particle i ( T = —,), and W is the total
isospin of the three-particle system.

To obtain the partial-wave projections of Eqs.
(7a)—(7c), we multiply by x~y; and form the inner product
with;(a

~
. In addition, following Noyes, we introduce

the hyperspherical variables

(9a)



33 FADDEEV CALCULATIONS OF THE 2m'-3N FORCE. . . 1743

(9c)

yi = 7~v 3p sli18,

as well as the cosine of the angle between x, and yi

(9b) This change of variables simplifies the projection integrals
on the right-hand side of the equation, as they depend
only upon the single variable 8 and not p. Equation (7a)
can then be written in the form

(& —ir')ll (p 8)—y ii p(pcos8)ypfp, 8)= y[~ p(pcos8)+w'p(p, 8,p, )] J Kp„(8,8')y„(p, 8')d8'+ y 'pl(yp, 8),
Py

(10)

where ir =—ME/A and we define

1 () 1 g2 l (l +1) L (L +1)
+— +

Qp p Bp p 88 p cos8 p sin8

u.p(p~s8) = i&~
~

I (») I J8&i
M

w (tpi, 8,p) = i(a I
IId'i(xi»2»3)

I && i .

[Note that we have used the relationship

X2,$2 X3,P'3

(12)

(13)

evaluated by means of standard angular momentum
recoupling techniques. The 8+ and 8 limits for the
Kp„projection integral are defined in Ref. 20. The par-
tial wave equations which correspond to Eqs. (7b) and (7c)
are basically the same as Eq. (10), differing only in the
projection of the 3N force term. We, therefore, illustrate
the calculational method only for the decomposition de-
fined by Eq. (7a).

Numerical solution of the partial wave equations is fa-
cilitated by defining a smoother function F (p, 8), which
has the asymptotic part of the i)() (p, 8) amplitude factored
out. Using the definition

to simplify Eq. (10).] The kernels Kp„(8,8') can be

Q (p, 8)=F (p, 8)

we can rewrite Eq. (10) as

(14)

8 1 1 Bz
2

8
Bpz 4p p2 88 dp

l~(l~+ 1) L~(L~+1) F (p, 8)—QU p(pcos8)Fp(p, 8}
p cos28 p2 sin28

= g (v 8+m'8) f KV„(88')Fv(p 8')d8'+ gw'888(p 8) .

P
(15)

The boundary conditions for F (p, 8) are

F~(p, 8)=0 for p=0, (16a)

bicubic Hermite splines on a rectangular grid in p-8 coor-
dinates:

F (p, 8)=0 for 8=0 and 8=m/2, (16b)

F~(p, 8)= g g a „s (p)s„(8) . (17}

aF.(p, 8) =0 for p=p
P

These boundary conditions are easily implemented. How-

ever, Eq. (16c) is not exact for 8=m./2. Nevertheless,
for the bound-state problem, the error in the wave func-
tion due to the use of this approximate boundary condi-
tion is negligible, because the wave function is negligibly
small for sufficiently large pm

To solve Eq. (15), we use the method of orthogonal col-
location. zs First, the F~(p, 8) functions are expanded in

The boundary conditions are easy to impose for this ex-

pansion; they translate into a requirement that the expan-
sion coefficients a~~„ for some of the splines be zero.
Second, the collocation procedure then demands that the
values of the remaining a „be determined by the require-
ment that the F~(p, 8) satisfy Eq. (15) at the M distinct
values of p; and the N distinct values of 8J, which are the
collocation points. If one selects these points to be the
two-point Gauss-Legendre quadrature points for each in-
terval, then the procedure is known as orthogonal colloca-
tion.

Our resulting equation is
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(I +1) L (L +1)s"(p; )s„(8J)+ —,
p; 4 cos 8J sin 8J

M

2~sm(pl}sn {8J}'~mn —y y yvaii(pf cas8J}sm(pl)sn(8J)~mn
m=1 n=1 P

sm (P; )sn (8J ) +—
asm (P; )sn"(8J )

1

p'

M g+ M

X ' r("nli+~~P) I +JJy(8j 8)sm(p~) n{8)d8 ~mn+ r y pic psm(P )sn(8J)&mn .
m=1 n=1 y P m=1 n=l P

This is a matrix equation of the form

(19)

symbolically we have

&Hp& &+ l~&&p
I
T+V+~ l~&&~

I
+&

I
&+

I
+&

where A depends parametrically upon the eigenvalue s.
Fallowing the procedures described in detail in Ref. 26,
we introduce the parameter A, and rewrite Eq. (19) as

Aa =ASa . (20)

=&+~ T+V+IV ~+&J&e[e&, (21)

where V=+V(x;). The NN potential V is always as-
sumed to act only in a

driven
number of NN partial waves.

By projecting Wi (or —, W) in the same manner as V, we
obtain a test of the accuracy of our eigenvalue solution;

Ta determine the energy of the bound state, we search for
a value of ~ for which Eq. {20) has a solution such that
the linear eigenvalue J(, is unity. Because we retain the
three-body force terms on the right-hand side of Eq. (18),
we preserve the numerical advantage described in detail in
Ref. 26, and we can use that same variation of the power
method to solve the eigenvalue equation iteratively for
smaller numbers of channels. However, the Lanczos
method as generalized by Saad~s for nonsymmetric sys-
tems, which is the case for the Hamiltonian of the Fad-
deev equations we are solving, provides even faster con-
vergence. (See the Appendix. ) It was this procedure that
we used to solve the large 34-channel problem.

In order to check our eigenvalue solutions, we use the
wave functions which we generate to calculate variational
upper bounds:

&H&=&q iH i
e&J'&+i e&

H=(T+V)p+W. (23)

By comparing &Hp & and EF for Eqs. (7a} or (7c},we can
estimate the quality of the wave function; this procedure
is not valid for Eq. {7b). By comparing &H & with EF, we
can investigate how the calculation is converging. %hen a
sufficient number of partial waves have been included,
then &HJ & and &H & will have the same value.

IV. NUMERICAL RESULTS

In order to interpret the three-body force results which
we have obtained, we first recall the binding energies and
charge radii of the RSC and AV14 nucleon-nucleon po-
tential models for 5, 9, 18, and 34 channels. (See Table
II.) The number of three-body channels is directly related
to jm and the parity of the NN-force partial waves re-
tained for the calculation:

5 channel- j & 1,+,
9 channel-j &2, +,
18 channel-j (2,+,
34 channel-j (4,+ .

(22)
When we do not use a projected three-body force, we ob-
tain a variatianal upper bound on the projected two-body
plus full three-body Hamiltonian.

TABLE II. Binding energies and point nucleon charge radii for the RSC and AV14 potential models
as a function of the number of channels.

5

9

34

{MeV)

7.02
7.21
7.23
7.35

( 2 ) l/2(3He)

{fm)

1.89
1.87
1.87
1.85

( 2 ) 1/2(3H)

{fm)

1.70
1.68
1.58
1.67

AV14 5
9

18
34

7.44
7.57
7.57
7.67

1.86
1.84
1 ~ 84
1.83

1.68
1.67
1.67
1.67

Expt. 8.48 1.74{3) 1.61{4)
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The stiff RSC potential model (stronger short-range
repulsion) calculation converges more slowly than that for
the softer AV14 potential model. The odd partial waves
(compare 18 channels with 9 channels) contribute little to
the H energy. The increase in binding between 18 chan-
nels and 34 channels was shown in Ref. 26 to come al-
most entirely from the additional even-parity NN poten-
tial partial waves. %e believe the contribution to the
binding energy of NN partial waves with j& 4 to be only a
few keV. The radii decrease as expected with the increase
in binding energy as the number of channels in the calcu-
lation is increased. (A comparison of these results with
those of other groups and with other potential models can
be found in Ref. 15.}

Numerical solution for both %0 (no three-body force)
and for 0 (two-body plus three-body force) was achieved
in terms of the spline expansion procedure outlined above.
The p and 8 breakpoints were distributed differently. The

p breakpoint distribution was scaled according to
p„+,—p„=(p„—p„ i)S&, where Sz is the scale factor.
The 8 breakpoints were distributed uniformly in each of
three equally spaced intervals between 0 and ir/2 The.
largest number of breakpoints were placed in the interval
nearest m/2, where the NN potential is strongest. For
most calculations we used 14 p breakpoints scaled by

Sz ——1.3 with p =16 or 20 fm. The 8 distribution was
(9,3,2). The strength parameter A, was solved for as a
function of a, and an extrapolation to A, = 1 was made to
determine the binding energy. To test our numerical ac-
curacy, we also performed calculations with as many as
20 p and 8 breakpoints; this led to differences in the triton
binding energy of less than 10 keV.

In Table ID we display the eigenvalue and expection
values obtained with each of the three procedures ( $V&,

W, and —,
'

W) defined in Eqs. (7a}—(7c) as a function of
the number of three-body channels for the model
comprised of the RSC NN force and the BR 3N force
(RSC/BR). (Clearly EF {Hz) to a good a——pproximation
for the Wi and —,

' W prescriptions, where the procedure is
applicable. ) Table IV exhibits similar results for the

AV14/TM model. (Note that differences between these
results and those quoted in Ref. 14 are due to a better ex-
trapolation to A, = 1.) Because these results establish that
the calculations converge for 34 channels, we did not run
the full set of calculations for each procedure in the case
of RSC/TM and AV14/BR models.

The results for the RSC/BR model (Table III) clearly
indicate that 34 channels are required to obtain a valid es-
timate of the H binding energy, when such a three-body
force is included in the Hamiltonian. Full agreement be-
tween E~ (and therefore {Hp)) and {H) is not obtained
for fewer than 34 channels, whereas all three procedures
arrive at approximately the same value of E~ and {H)
when 34 channels are included. Clearly the odd parity
NN partial waves play a significant role when a three-
body force is present, because Ez (and (H ) ) changes con-
siderably in going from 9 to 18 to 34 channels. Compar-
ison of the ( T+ Vi ) expectation using 4 with the corre-
sponding NN potential model eigenvalues in Table II
shows that %' contains much more structure (at short dis-
tances where W is largest) than %0 from the two-body
Hamiltonian. (The kinetic energy expectation increases as
the structure in the wave function grows. ) The 2m-3N
force pushes the wave function out of the region of the
origin. However, the increased binding pulls in the exteri-
or part of 0', as the exponential tail must fall off faster.
The result is an enhancement of the peak of 4 corre-
sponding to the equilateral configuration compared to the
peak corresponding to the colinear configuration. The ef-
fect of this upon the He charge density will be discussed
elsewhere.

Based upon the results of Table III, it is difficult to say
which Faddeev equation decomposition of the three-body
force is to be preferred. Such is not the case for the
AV14/TM model whose results are shown in Table IV.
Here the results are incomplete for the W prescription,
because for 18 channels (the first chance to include
negative-parity NN-potential waves), the eigenvalue was
several hundred MeV. If a sufficient number of three-
body channels had been included, then the correct result

TABLE III. Triton binding energies (in MeV) for the RSC/BR model as a function of the number of
three-body channels for the three Faddeev equation decomposition defined by Eqs. (7a}—(7c}. Subscript
P denotes the appropriate projection as discussed in the text.

No. of channels

5
9

18
34

7.66
8.77
8.71
8.89

7.66
8.77
8.70
8.89

0.81
2.11
1.90
1.98

—{w)
1.43
1.94
1.93
2.00

8.28
8.60
8.72
8.91

5

18
34

7.64
8.32
8.77
8.91

1.35
1.65
1.91
2.00

8.26
8.61
8.71
8.90

5

9
18
34

7.38

7.99
8.55
8.89

7.99
8.54
8.89

0.42

0.94
1.66
1.98

1.32

1.60
1.83
2.00

8.28

8.64
8.71
8.91
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TABLE IV. Triton binding energies (in MeV) from the AV14/TM model as a function of the num-

ber of three-body channels for the three Faddeev decompositions defined by Eqs. (7a)—(7c). Subsript P
denotes the appropriate projection as discussed in the text.

No. of channels

5

9
18
34

8.26
8.96
9.49
9.36

8.26
8.96
9.50
9.36

—&w, &

1.98
2.77
3.29
2.88

—&w&

1.93
2.22
2.88
2.84

8.22
8.40
9.08
9.32

5

9
18

8.12
8.64

1.40
1.61

8.31
8.48

—8'I
3 5

9
18
34

7.82

8.34
9.10
9.33

7.82

8.35
9.11
9.33

0.69

1.23
2.61
2.85

1.23

1.44
2.61
2.84

8.36

8.57
9.11
9.32

TABLE V. Perturbation series energies (in MeV) as a func-
tion of the number of three-body channels for the AV14/TM
and RSC/BR models using the W~ Faddeev equation decompo-
sition.

—Eo
E)

8.26
7.44

—0.13
0.76
0.20

No. of channels
9 18

AV14/TM
8.96 9.50
7.57 7.57
0.35 0.92
0.71 0.66
0.34 0.35

34

9.36
7.67
0.76
0.63
0.29

7.64
7.02
0.49
0.09
0.05

RSC/BR
8.76
7.21
1.13
0.30
0.13

8.69
7.23
1.10
0.27
0.08

8.89
7.34
1.17
0.31
0.06

would have emerged. But this snomalaus result for 1&

channels caused us to reject this procedure far the TM
force calculations and not to complete Table IV. The 18-
channel eigenvalue for the Wi procedure also overshoots
the result for the full calculation. This peculiar behavior
probably accounts for the remaining lack of convergence
apparent in the 34-channel eigenvalue. Otherwise, the
comments made above for the RSC/BR model hold also
for the AV14/TM model.

The convergence of the solution for the less singular
BR 3N-force model is obviausly faster than for the TM
model. This is made quantitative in Table V. There we
compile the results of Hajduk's perturbation series26 3o i3

for E=(+~H
~

+) (for both models using the Wi
prescription to generate ql}

(4'~H
~

qi) =E +Ei+E +E3 .

We have defined:

Eo=('Po IHNN I +o)

Ei ——(iIto [ W ('I'o)

E~ —3(E Eo)

E3——2(E —Eo)+E,+«,
SE=(e

i
W i+),

where HNN ——T+ V is the NN-force Hamiltonian, iso is
its eigenfunction, and one assumes that Ei 0 for i &——4.
Obviously this series can be generated only because we
have solved for the complete solution iII. However, com-
paring Ei, E2,, and E3 permits one to understand how
well perturbation theory works. It is clear from Table V
that for the RSC/BR model the first-order Ei result is
the dominant part of the E Eo difference—. However, for
the AV14/TM model there is clearly no convergence. We
do not find Ei »Ei »E3. Furthermore, Ei as a func-
tion of the number of channels varies significantly. Final-
ly, the strong model dependence of the five-channel result
as well as the small value of Ei (for the TM force) ac-
counts for most of the disparate results found in the litera-
ture. ~9 This failure af the first-order perturbation-theory
estimate for (%o

~
W

~

'llo) can be seen by corn aring re-
sults of Refs. 8 and 9 with ours. Wiringa et al. obtained

(Hist) = —7.29 MeV and (W) = —0.14 MeV for the
AV14/TM model in the five-channel approximation.
(Here (W) is the full, unprojected three-body force. )
Ishikawa et al. agreed with the Wiringa et al. estimate
for the five-channel calculation and made the first
RSC/TM 18-channel estimate obtaining (HNN )=—7.22
MeV and (W)= —0.89 MeV. Our calculations agree
completely with those results for first-order perturbation
theory using the unprojected three-body force. However,
the —0.14 MeV is far from our 34-channel value of
E Eo= —1.69 MeV f—or the AV14/TM model and the
—0.89 MeV is far from our 34-channel value of
E Eo ———1.5—3 MeV for the RSC/TM model. First-
order perturbation theory is simply inadequate for es-
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timating three-nucleon force effects in the triton, because
second-order modifications of the wave function (in par-
ticular, the odd partial waves} are large.

In Table VI we summarize the triton binding energy re-
sults for all six combinations of the three-body force
models (TM, BR, UR) with the NN force models (RSC,
AV14) which we have studied. First, note that the 0.4
(0.3) MeV difference between the AV14/TM {AV14/BR)
and RSC/TM {RSC/BR) binding energies is essentially
the same difference that is seen in Table II when one com-
pares the triton binding energies of the AV14 and RSC
NN force models in the absence of a three-body force.
The same holds for the 0.3 MeV difference between the
AV14/UR and RSC/UR binding energies. Second, each
of these three-nucleon force models yields approximately
the same 1.5 additional binding energy for the triton. The
slightly smaller binding energy increase in the case of the
UR model (-0.2 MeV) is likely a refiection of the dif-
ferent form of the irN form factor cutoff in that model;
we discuss below the sensitivity to A in the case of the
TM model. Third, the RSC 34-channel eigenvalues for
the TM and BR models are very similar; the strong
short-range repulsion of the RSC NN force does effective-
ly suppress the contribution of the more singular TM
2n-3N force model. The softer AV14 NN force does al-
low small differences in the 2m-3N force models to be
seen.

Each of these three-body force models provides too
much additional binding. However, these three-nucleon
force models neglect the pir and heavier meson contribu-
tions to the 3N force. i' The choice of A=5.8p (the value
consistent with the current view that one-half the
Goldberger-Trieman discrepancy is attributable to form-
factor effects32} as the mN form factor cutoff appesxs to
be much more critical. We quote in Table VII results for
the 3H binding energy using the RSC/TM model for three
values of A. There obviously exists a value of A for
which the theoretical binding energy matches the experi-
mental value for the triton. However, again we emphasize
that our purpose is not to claim a valid model calculation
of the triton binding energy, but rather to produce bench-
mark calculations which can be used to explore three-
body force effects. Modeling the three-nucleon force is in
its infancy. We hope that these calculations will stimulate
further work in this area.

TABLE VI. The 5-channel, 9-channel, 18-channel, and 34-
channel triton binding energies (negative of the 8'~ eigenvalues
in MeV) for six model combinations.

No. of channels
9 18

TABLE VII. Triton binding energies (in MeV) for the
RSC/TM model using the 8'~ Faddeev equation decomposition
with various values of the mN factor cutoff A.

No. of channels

5

9
18
34

A=4. 1p

6.93
7.27
7.44
7.46

A =5.8p

7.55
8.33
8.93
8.86

A=7. 1p

8.75
10.30
11.40
11.16

In Table II we quote values of the He and H point-
nucleon charge radii. As noted above, they decrease as
the binding energy increases. {We have not included the
proton-proton Coulomb repulsion in these numbers; such
an effect has been shown to increase the He radius by
less than 0.03 fm. ) We have computed He and H charge
radii with our 3N-force wave functions. We find that the
radii are too small when H is overbound. In Fig. 1 we
plot a collection of model He and H radii values along
with least square fitted curves. The curves agree well
with the datum for each nucleus. ~ Thus, a model which
yields the correct H and He binding should produce
correct rms radii. Separating the radii into isoscalar and
difference values also shows that the agreement between
theory and experiment is very good. " (See Fig. 2.)

We have also calculated the point Coulomb energy of
He in the presence of the 2ir-3N force. For the RSC/TM

model we obtain a He- H eigenvalue difference of 0.64
MeV, in complete agreement with the perturbation theory
estimate. This is quite consistent with the reduction in
size of iHe and sH due to the increase in binding energies
arising from the inclusion of the 2n.-3N force.

Our results for the UR model differ from those of the
variational calculation of Schiavilla et a/. ' They report a
value of —8.37+0.1 MeV for the triton binding energy in
the AV14/UR model. We obtain —9.0 MeV or some 0.6
MeV more binding. This difference is likely due in part
to the large contribution of the odd parity NN partial
waves in our solution. However, there is a 0.4 MeV
difference in the 3H binding energy calculated by the two
methods for just the AV14 NN force alone: the variation-
al method yields —7.30+0.07 MeV compared with our
—7.67 MeV from the Faddeev procedure. There is a
small disagreement mth Sasakawa's group concerning the
results for the TM and BR 2ir-3N models combined with
either the RSC or AV14 NN potential. In this case the
reason for the difference is not understood, as we do agree
on the results for the NN force calculation alone.

Model
AV14/TM
AV14/BR
AV14/UR

RSC/TM
RSC/BR
RSC/UR

8.26
8.32
7.70

7.54
7.66
7.22

8.94
9.27
8.34

8.33
8.77
8.00

9.49
9.06
8.77

8.93
8.71
8.43

9.36
9.22
8.99

8.86
8.89
8.70

V. CONCLUSIONS

We have solved the configuration-space Faddeev equa-
tions to obtain "exact" results for the H binding energy
using the Tuscson-Melbourne, Brazil, and Urbana two-
pion-exchange three-nucleon force models (in combination
with the realistic phenomenological Reid soft-core and
Argonne AV14 nucleon-nucleon potentials). The TM
model requires more than a first-order perturbation theory
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FIG. 1. The H and He rms point charge radii plotted vs Ez, the triton binding energy, for various model Hamiltonians. The
symbols refer to the number of three-body channels in the calculation; individual entries can be found in Refs. 18 and 19. The data
are from Frois (Ref. 34).
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FIG. 2. The rms isoscalar and vector (difference} point charge radii plotted vs Eq, the triton binding energy, for various model

Hamiltonians. The symbols refer to the number of three-body channels in the calculation; individual entries can be found in Refs. 18
and 19. The data are from Frois (Ref. 34).
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treatment to obtain even qualitatively correct results. All
2m-3N models require at least 34 three-body channels to
ensure that the answer has converged, which means in-
cluding all NN partial waves with j &4. Unlike the situa-
tion in the case of the NN force alone, the inclusion of
these 2m-3N forces leads to large contributions from the
NN odd partial waves, which explains why first-order
perturbation theory calculations fail. For a given value of
A in the monopole m.N form factor, each of the 2m.-3N
models leads to approximately the same increase in bind-
ing. If one uses the commonly accepted value (A =5.8p),
then each of the models overbinds the triton by about 1.5
MeV. The stronger repulsion of the RSC NN force tends
to mask the differences that exist between the TM and BR
models in the parametrization of the short-range s-wave
part of the three-nucleon force. The convergence of the
binding energy calculation is no worse for the UR model
with its additional isoscalar repulsive term than for the
TM and BR models. However, the use of the Gaussian
cutoff in the UR model makes an exact comparison be-
tween it and the TM and BR models difficult to make.
Still, all three models yield essentially the same result in a
complete calculation of 34 three-body channels.

Furthermore, we confirm that the low energy properties
of the H and He system appear to scale with energy in-
dependently of the mechanism (enhanced NN singlet
force, three-body force, etc. ) used to modify the trinucleon
binding. The rms radii and the Coulomb energy are two
such examples. If one obtains the correct binding energy,
then agreement with the experimental radii is obtained.
The Coulomb energy is exactly what one expects from
perturbation theory, again being determined by the size of
the system as reflected in the binding.

iiiote added in proof. Prof. Robilotta has pointed out
that a more correct interpretation of the BR model would
lead to o= —1.048 instead of the + 1.048 quoted in
Table I. Such a value of a results in an eigenvalue in the
RSC/BR model of EF —9.09 MeV——instead of —8.89
MeV.
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supercomputers is too large to solve directly when N, ap-
proaches 10. Because the two-body force on the left-hand
side of Eq. (7) couples at most two channels, A is block
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our calculations), and matrix equations of the form

can be solvixl efficiently one block at a time.
Because we seek the eigenvalues k closest to unity, we

consider the related equation

Ba =—a
1

(A4)

or

1
Ha =—a, (A5)

and

a2 ——Ha] —Q]a )

b2 ——H b) —a)bj,T

(A6a)

(A6b)

where a, is determined in such a manner that b2 is
orthogonal to a &. That is, we choose

ai ——b)Hai .T (A7)

The solutions of Eq. (A6) are obtained in two steps. We
first find

and

c&
——Ha

&
(A8a)

such that A,=l becomes one of the large eigenvalues.
Note that H =A '8 is a nonsymmetric matrix.

To solve Eq. (A5), we use the Lanczos algorithm2~ 2 to
generate a small basis set which can be solved via stan-
dard eigenvalue programs. Assume an initial vector a&

and generate the basis set a; as well as the biorthogonal
basis set b; for i=1,2, . . . , v.

First, choose b~ =—a& with b&a& ——1. Second, generate

The work of C.R.C. and G.L.P. was supported in part
by the U.S. Department of Energy. The work of J.L.F.
and B.F.G. was performed under the auspices of the U.S.
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di ——H"bi .

To find c
~

we convert Eq. (A8a) to the form

Ac& ——Ba&

(A8b)

(A9a)

APPENDIX: LANCZOS METHOD

The generalized eigenvalue problem which we must
solve in p, 8 coordinates in Sec. III is of the form

or

Ac) ——z . (A9b)

Equation (A9b) can be solved one block at a time. To
solve Eq. (Agb) we rewrite it in the form

where A and 8 are nonsymmetric real matrices. The
eigenvector a contains the expansion coefficients a „of
the reduced wave function

1 =B {A ) b

Then, if we define

ei ——(A ) 'bi

(A10)

(A11)

F = g g a „s (p)s„(9) . (A2) and solve the related equation

The dimensionality of A and 8 for a calculation truncated
at X, channels is X, XMXX, which even for modern

W e, =b,
for ei, we can obtain di as

(A12)
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dt =8 etT

Our Eqs. (A6) now have the form

(A13)

b )
——H b —ab. —ybT (A15b)

Q2 =C) —0!)Q) (A6a') where

br. I (A16)

b2 —d, a—b, ,

where a, is given by

1.TQ)=b)C)

(A6b')»d

(A7') p; =b; a;/y;T-.

(A17a)

(A17b)

and

tt2 ~2/
I
b z'~2

I

'" (A14a)

The normalization condition bza2 ——1 is imposed follow-

ing Saad. We choose
are the normalization factors that determine a;=a;/y;
and b; =b;/p;. Equations (A15) are solved using the same
procedure that is followed to obtain tT2 and b2.

Thus one can generate v vectors a; and their biorthogo-
nal vectors b; such that

(A14b)
.T ~ = ..b; a, =5J . (A18)

Given the first two vectors, we can generate the remain-

ing vectors by means of the recursion relations

Using this reduced basis set (v&&N, &(M)&N), we can
write

a/+ t ——HQ; —a;a; —p;a; (A15a)
(A19)

(a)

n 0

(c)

FICx. 3. Plots of I/A. [Re(1/A, ) along the abscissa; Im(1/A, ) along the ordinate] for two different p, 8 grids ( o and X ) as a function of
the number of iterations (v=3,5,10,15) for the Lanczos eigenvalue procedure discussed in the Appendix ( X,=3).



33 FADDEEV CALCULATIONS OF THE 2m-3N FORCE. . . 1751

and, after substituting this in Eq. (A5), we obtain

g e;Ha; = g—e;a; .1
(A20)

The inner product with bj leads to

T 1g e(b/ Hag = EJ,
' (A21)

or using Eq. (A15a)

l
ge;(y;+i5;+i, +a;5;, +p;5; i, )=—e, .

Thus we are left to solve

Pi

r2 ~2 133

(A23)

'Yn +n

The eigenvalues of this equation are approximations to
the eigenvalues of our original matrix equation. In prac-
tice one increases v until the change in A, is less than the
desired accuracy. Normally 4 to 8 iterations is satisfacto-
ry. The expansion coefficients for the resulting approxi-

mation to the Faddeev amplitude are determined from Eq.
(A 19).

As an illustration of the results of the Lanczos method,
we plot in Figs. 3(a)—(d) the eigenvalues (1/A, ) of Eq.
(A22) in the complex plane (along with the unit circle) for
two different p, 8 grids (circles and crosses) as a function
of the number of iterations v=3, 5, 10, and 15. Clearly,
certain eigenvalues are manifestations of the mesh selected
(circles and crosses not overlayed) while others are deter-
mined by the properties of the Hamiltonians, as they de-
pend only upon the number of iterations. As the number
of iterations is increased, the eigenvalues approach their
limits; the largest eigenvalues converge the fastest. Actual
eigenvalues of the Hamiltonian are those which are stable
with respect to the number of iterations. Positive eigen-
values along the horizontal axis denote poles of the Ham-
iltonian for I/A, times the given potential. Negative real
eigenvalues correspond to bound-state poles for —1/A,

times the potential. For the power method to succeed,
A, = 1 must be the largest eigenvalue. The fact that some
eigenvalues lie outside the unit circle implies that the
power method would fail if applied directly to this Hamil-
tonian. The RSC NN potential yields one such eigen-
value; it must be removed before the power method will
converge to the desired A, = 1 solution. The 2n 3N forc-e
has much more structure at small distances and leads to
several additional eigenvalues of that type, as can be seen
in the plots. There are fewer eigenvalues than iterations
for v p 10, because some eigenvalues correspond to numer-
ical noise and are too large to appear on the plot.

'Present address: Department of Physics and Astronomy,
University of Rochester, Rochester, NY 14627.

~J. L. Friar, B. F. Gibson, and G. L. Payne, Annu. Rev. Nucl.
Sci. 34, 403 (1984).

~See, for example, J. L. Friar, Nucl. Phys. A353, 233c (1981)
for a discussion of the first two categories.

I. Sick, Lecture ¹tesin Physics {Springer, Berlin, 1978), Vol.
87, p. 236.

4J. Torre, J. J. Benayoun, and J. Chauvin, Z. Phys. A 300, 319
(1981).

5Muslim, Y. E. Kim, and T. Ueda, Phys. Lett. 1158,273 (1982);
Nucl. Phys. A393, 399 (1983).

6%'. Glockle, Nucl. Phys. A381, 343 {1982); A. Bomelburg,
Phys. Rev. C 28, 403 (1983); A. Bomelburg and %'. Glockle,
ibid. 2, 2149 (1983).

7J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl.
Phys. A401, 59 (1983);R. B. Wiringa, ibid. A401, 86 (1983).

SR. B. Wiringa, J. L. Friar, B. F. Gibson, G. L. Payne, and C.
R. Chen, Phys. Lett. 143$, 273 (1984).

S. Ishikawa, T. Sasakawa, T. Sawada, and T. Ueda, Phys. Rev.
Lett. 53, 1877 {1984).

i S. A. Coon, M. D. Scadran, P. C. McNamee, B.R. Barrett, D.
W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A317, 242
(1979); S. A. Coon and W. Glockle, Phys. Rev. C 23, 1790
{1981).

~iH. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C
28, 1812 (1983).

2J. I. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360
(1957).

' C. Hadjuk and P. U. Sauer, Nucl. Phys. A322, 329 (1979); C.
Hadjuk, P. U. Sauer, and W. Strueve, ibid. A405, 581 (1983);
P. U. Sauer, Nuovo Cimento 76, 309 (1983}.

'~C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.
Rev. Lett. 55, 374 (1985).

'5J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl.
Phys. A401, 59 (1983); R. Schiavilla, V. R. Panharipande,
and R. B. Wiringa, ibid. A449, 219 (1986).
R. V. Reid, Ann. Phys. {N.Y.) 50, 411 (1968); B. Day, Phys.
Rev. C 24, 1203 (1981).

~7R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys. Rev.
C 29, 1207 (1984).
C. R. Chen, G. L. Payne, J. L. Friar, and B.F. Gibson, Phys.
Rev. C 31, 2266 (1985).

' C. R. Chen, Ph.D. dissertation, University of Iowa, 1985.
oG. L. Payne, J. L. Friar, B. F. Gibson, and I. R. Afnan, Phys.

Rev. C 22, 823 (1980).
2'L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov.

Phys. —JETP 12, 1014 (1961)].
2H. P. Noyes, in Three Body Problems &n Nuclear and Particle

Physics, edited by J. S. C. McKee and P. M. Rolph (North-
Holland, Amsterdam, 1970), p. 2.
E. P. Harper, Y. E. K,im, and A. Tubis, Phys. Rev. C 2, 877
(1970);6, 126 {1972).

~E. L. Slaggie and E. H. Wichman, J. Math. Phys. 3, 946
(1962).

~5P. M. Prenter, Skylines and Variational Methods (Wiley, New
York, 1975).

6C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.



1752 C. R. CHEN, G. L. PAYNE, J. L. FRIAR, AND B. F. GIBSON 33

Rev. C 31, 2266 (1985}.
7C. Lanczos, J. Res. Nat. Bur. Stand. 49, 33 {1952}.
Y. Saad, SIAM {Soc.Ind. Appl. Math. ) J. Num. Anal. 19, 485
(1982).
J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 24,
2279 {1981).

~oC. Hajduk, private communication.
'R. G. Ellis, S. A. Coon, and B. H. J. McKellar, Nucl. Phys.

A438, 631 (1985).

~~S. A. Coon and M. D. Scadron, Phys. Rev. C 23, 1150 (1981).
~ G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 22,

832 {1980).
48. Frois, private communication; note that these data differ

from those on similar plots in Ref. 35.
J. L. Friar, B. F. Gibson, C. R. Chen, and G. L. Payne, Phys.
Lett. 1618,241 (1985).

~~R. B.%'iringa, private communication.
7T. Sasakawa and S. Ishikaw'a, Few-body Systems 1, 3 (1986).


