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Gamow separable approximations for realistic N-N interactions: Single channel case
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A separable approximation for the 'So, 'P&, Po, and P& channels of the N-N Reid soft core and
Argonne potentials, based on the use of Gamow states, is presented. The on- and off-shell scattering
amphtudes obtained from these separable forms are compared with the corresponding exact ones.
Excellent agreement is obtained, which makes the Gamow separable approximation a successful and
unambiguous method to construct separable approximations for local realistic N-N interactions.

I. INTRODUCTION

Models for the nucleon systems are usually built from
nonrelativistic protons and neutrons interacting through
two-body potentials. These potentials are partially
phenomenological in nature, since no first principle calcu-
lation of the N-N interaction is presently available. The
parameters are then adjusted to reproduce the experimen-
tal phase shifts for the N-N scattering, as well as deuteron
properties. In this sense they can be considered realistic.
The Reid' and Argonne2 potentials fall in this category.
The Reid is the oldest realistic model which is able, like
other realistic potentials, to reproduce the two-particle
data, but the results for H and 'He as well as for the nu-
clear matter are not satisfactory. The Argonne potential
is the most recently proposed, and is especially simple in
form. In particular its velocity dependence is, in contrast
to the Paris potential, contained in the conventional
terms involving the orbital angular momentum.

All the calculations done with the realistic potentials
for few-body systems and nuclear matter are based on
variational, perturbative approaches, or exact solutions of
the Fadeev equations with few N-N channels. This is due
to the complexity of the interaction which therefore
prevents an exact treatment. It is then not clear if the
poor results obtained are due to deficiencies of the interac-
tion or of the method of calculation. To overcome this

biguity one can construct a separable representation of
the given potential, therefore solving the few-body equa-
tions exactly and getting also simple solutions for the nu-
clear matter problems. Furthermore an exact solution
where all the N-N channels are taken into account could
help in isolating the contributions coming from other de-
grees of freedom of quark origin which are present at
short N-N distances, and which obviously cannot be
described even by a covariant N-N potential.

Many attempts to construct separable approximations
have been presented in the literature. For a review see
Ref. 4, and Ref. 5 for a more recent discussion.

The most general separable interaction is of the form,

Different methods to construct this expression correspond

to different choices of h„and the basis vectors
~
g„).

The former can be energy dependent like in the Weinberg6
procedure or fixed like in the general method of Adhikari
and Sloan. The basis vectors can be a general fixed set of
states like in Haidenbauer and Plessas, ' or a set of solu-
tions of the Schrodinger equation for a given potential
with well-defined boundary conditions like in the Ernst,
Shakin, and Thaler (EST) or Fullers approaches. In the
recent work of Bund a variant of the EST approach was
used to get a separable expansion of the 3S N-N interac-
tion. Elements of the basis satisfy a linear boundary con-
dition at a distance which is varied as a free parameter of
the method.

In this work we present a separable representation of
both Reid and Argonne potentials, which follows the gen-
eral prescription of Ref. 7 and uses Gamow states to ob-
tain the basis vectors. The details of the method are
described in Sec. II. The applications to the chosen N-N
interaction are presented in Sec. III. Section IV is devoted
to the conclusions and prospects.

II. THE METHOD

Recently we have presented a method' to obtain a se-
parable expansion VM of rank M for a local potential V,
namely

where the vectors
~ f„) are chosen as the bound and

Gamow states associated with the original potential V,
and (4 ') =(f„~V~ f ). Such ansatz guarantees, ac-
cording to Adhikari and Sloan, that VM

~ f„)=V
~ f„)

for all n= 1, . . . ,M, therefore the first M bound and
Gamow states of Vsr coincide with those of V, and the
corresponding S matrix has the first M poles at the
correct positions.

This Gamow separable approximation (GSA) was ap-
plied to a schematic model and analyzed in detail in Ref.
10: The advantages of the GSA, in relation to other
methods, rely on the possibility of constructing an ap-
proximate S matrix which satisfies unitarity, reproduces
low-lying bound states and resonances, is free of spurious
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zero width resonances unlike the EST procedure, indepen-
dent of energy at variance with the Sturmian expan-
sions, "and is simply manageable. Furthermore there are
no free parameters involved in the calculation.

The Gamow vectors are the solutions of the
Schrodinger equation with purely outgoing wave boun-
dary conditions, and correspond in general to complex en-
ergies. For general potentials the computation of these
vectors can be done numerically in configuration space'
integrating the Schrodinger equation from the origin up
to some cutoff radius R,„. At this radius the Gamow
vector is matched to a pure outgoing free wave with com-
plex momentum k (Imk &0). This is equivalent to as-
suming that the potential V vanishes for r larger than
R,„, that is, V is approximated by a potential of com-
pact support. This is a reasonable approximation for
short-range potentials and sufficiently large R . In
agreement with this fact the cut-off dependence of the
GSA is negligible for on-shell as well as off-shell ampli-
tudes. The theoretical aspects of this will be discussed
elsewhere. It should be noted that even if the Gamow
vectors are exponentially growing at infinity the product

~
f„}= V

~ f„) belongs to I. for a compact support po-
tential V.

The T matrix for the potential of Eq. (1) can be written

where

n, m

g„(k)= 2 J ut(k, r)Vt(r)f„'(r)r2dr (4)

and

[D '(k)]„=(f„~ V —VGO(k} V
~ f ),

and Go is the free propagator.
The matrix elements of the operator of Eq. (2) can be

explicitly written for a given partial wave l,

t (k, k';k" )= gg (k)D (k")g (k') (3)
n, rn

with

(D' )„=f f„'(r)V~(r)f (r)r dr+ 2
ik" r' dr' r dr f„'(r')VI(r')uI(k", r&)vt(k", r&)Vt(r)f (r),

0 h2 0

where f' (r) and Vt are the radial part of the Gamow vec-
tor and the potential for the partial wave 1. The functions
ut and vt are the regular and irregular solutions of the
free problem. The quantity p is the reduced mass of the
system.

For k=k'=k" in Eq. (3) we get the on-shell t matrix,
which can be related to the phase shifts 5t by the relation

tt(k, k;k )= ——e 'sin5i .

Both Eqs. (3) and (6) satisfy automatically the off- and
on-shell two-body elastic unitarity.

III. APPLICATION TO THE N-N INTERACTION

An interesting application of the GSA is an approxima-
tion to realistic nucleon-nucleon interaction potentials
where both an attractive part and a repulsive core are
present.

Our first choice for such interaction is the Reid soft
core potential' (RSC) since it was one of the most widely
used and modeled to reproduce the Yale and Livermore
phase shifts as well as the low-energy data. This local po-
tential contains central, tensor, and spin orbit corn-
ponents, with channel dependent parameters.

The second choice for the N-N interaction is the recent-
ly devised Argonne v&4 potential (Av&4}, similar in form
to the Urbana model. ' lt contains 14 different operator
components describing the long-range part (OPE}, inter-
mediate range, and short-range contribution to the
nucleon-nucleon interaction. It fits the recent data of
Amdt and Roper' being comparable in the quality of the

TABLE I. First five Gamow vector momenta in fm ' for the
RSC potential calculated with R,„=6.5 fm.

Real k Im k Real k Im k

0.0
0.466
1.080
1.646
2.192

0.810
1.356
1.910
2.457
2.999

'so

3p

—0.056
—0.720
—0.809
—0.854
—0.885

—0.635
—0.747
—O.SOS
—0.848
—0.877

0.5670
1.157
1.720
2.262
2.792

0.621
1.175
1.707
2.225
2.739

3p

—0.574
—0.726
—0.777
—0.808
—0.831

—0.659
—0.741
—0.785
—0.815
—0.839

fit of phase shifts and low energy observables to the Paris
potential. It is worth mentioning that the Reid and Ar-
gonne potentials have a quite different short distance
behavior.

The model described in Sec. II was then applied to these
interactions for the uncoupled S and I' channels, calculat-
ing the phases and off-shell amplitudes. In order to
achieve these, Gamow vectors for both interactions in
these specific channels were calculated using the method
of Ref. 12. The radial equation is integrated numerically
using the Fox-Goodwin method' with trial initial values
for the Gamow energy. Two solutions are calculated.
One is regular at the origin and the other satisfies the out-
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TABLE II. The same as in Table I but for the Au&& potential.

Im k Im k

0.0
0.472
1.081
1.646
2.194

0.805
1.360
1.911
2.453
2.989

3p

—0.053
—0.714
—0.801
—0.849
—0.881

—0.633
—0.741
—0.797
—0.832
—0.856

0.657
1.172
1.703
2.237
2.767

0.645
1.174
1.701
2.228
2.750

3p

—0.578
—0.662
—0.731
—0.777
—0.809

—0.646
—0.720
—0.779
—0.820
—0.851 -0.25-

going wave boundary condition at R . At some inter-
mediate radius the two solutions are matched and the cor-
responding logarithmic derivatives compared. From the
difference of the two derivatives the next trial energy is
computed until convergence is reached according to the
specified accuracy. The normalization is properly calcu-
lated; however, the separable potential of Eq. (1}does not
depend on this normalization. The first antibound and
resonance poles in the complex k plane are shown in
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FIG. 2. T=1, S=O; T=O, S=O; and T=1, S=1 phase
shifts for the RSC potential. The solid line represents the exact
phases. The circles represent the rank M =5 approximation.
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FIG. 1. T=1, S=O and T=O, S=O phase shifts for dif-
ferent rank approximations to the Au~4, potential. The full,
dashed, and dash-dotted lines correspond to the rank M =5, 3,
and 1, respectively.

Tables I and II calculated with 8. ,„=6.5 fm. It was
found that at this cut-off radius the phase shifts for the
Reid and Argonne U&4 potentials have stabilized to one
part in a thousand. The Gamow vectors were then used
in Eq. (3) in order to obtain the GSA t matrix. For com-
parison the Lippmann-Schwinger equation was solved in
order to obtain the t matrix for the corresponding local
potentials, also using the same cut-off radius. Though
Gamow vectors can be calculated if the Coulomb interac-
tion is present using the code of Ref. 12, in all the calcula-
tions presented here the Coulomb interaction was neglect-
ed for simplicity.
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A. The GSA phase shifts gies, and in particular the change of sign around

E~,b ——240 MeU, is only obtained with the inclusion of the
other Gamow vectors up to the rank M =5. It should be
noted however that the t matrix around this energy is very
small and probably negligible in the context of few-body
calculations.

Similar results are obtained for the other channels Po
and P& for both potentials as illustrated in Figs. 2 and 3.
In the 'P~ channel the rank M =4 already reproduces the
correct results.

It should be noted that in contrast to most of the sepa-
rable approximations available no free parameters are in-

troduced by the GSA. This .act makes it particulariy in-
teresting to investigate how well the approximation works
for off-shell momenta.

A necessary requirement for a separable expansion to a
realistic N-N potential should be the capacity to repro-
duce the corresponding phase shifts up to the pion pro-
duction threshold. This implies a minimal rank M for the
GSA which is able to reproduce such phases. It was
found that for the uncoupled S and P wave channels of
the RSC and Au&4 potentials this rank is essentially
M =5. This fact is illustrated in Fig. 1 for the 'So and
'P~ waves of the Au&q interaction, where we compare the
results for M =1, 3, and 5.

For the 'So the first Gamow momentum corresponds to
the well-known virtual state occurring for the RSC and
Av~q at —0.129 and —0.115 MeV, respectively. The
main structure at low energies of the 'So phase shift is al-
ready well reproduced by the M =1 expansion, therefore
described by this state only. A good fit for higher ener-

B. The GSA in the off-shell regime

Off-shell extensions of the t matrix are of major impor-
tance for the description of nuclear structure and in the
scattering formalism for few-body systems, such as H
and He and n-d scattering. Hence an approximation of
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FIG. 4. Real and imaginary part of the half-off-shell scatter-
ing amplitude, t, for the 'S exact and rank M = 5 approximation
to the AU14 potential. ( ) real t (exact); ( ———) real t (rank
M =S); (—.—.—-) Im t (exact); ( - . ) Im t (rank M =5). The
curves for rank M =S are not drawn since they coincide with
the exact ones within graphical accuracy.
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FIG. 3. As in Fig. 2 but for the AU&4 potential.
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FIG. 6. Different rank approximations to the half-off-shell t
matrix in the 'S0 channels of the Av~4 potential. ( ) real t
(rank M=5); ( ———) real t (rank M=3); (—.——) Im t
(rank M =5); ( ) Im t (rank M =3).
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FIG. 5. Like in Fig. 4 with k'=1, 0 fm ' but for different
channels of the Av~4 potential.

the two-body interaction is only acceptable if it repro-
duces well the off-shell t matrix. The GSA calculations
of the half-off-shell t matrix, tto (k, k';k' },according to
Eq. (3) are displayed in Figs. 4 and 5 for the different
channels and interactions. The real and imaginary parts
of the tI calculated with rank M =5 are compared
with those obtained directly from the local potentials. Its
behavior for momenta k &2 fm ' seimis to govern the re-
sults for the three-body system. The present study was
therefore restricted to this range of momenta. The overall
agreement is quite good in the whole range of momenta
considered. Similar to the on-shell case a lower rank ap-
proximation is probably acceptable for the purpose of
three-body calculations as is indicated by Fig. 6.

K'

g"=2.o w"=zo

K'

FIG. 7. Off-shell behavior for the 'S0 amplitude of the Av~4

interaction. (a) Absolute value of the exact t matrix in fm. (b)
Absolute deviation defined by Eq. (71; on both axis 0&% &2
fm '. The superimposed rectangles correspond to

~

t
~

or /=0
fm and the indicated values.
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3p
1

FIG. 8. As in Fig. 7 but for the approximation to the RSC.

FIG. 9. As in Fig. 7 but for different channels of the Au~q in-

teraction arith k"=1 fm

A three-dimensional overview of the absolute deviation
of the full off-shell GSA t matrix from its local potential
counterpart, given by

gt(k, k';k")=
i tI (k,k';k" ) —tt(k, k';k" ) i, (7)

is shown in Figs. 7—9, for different on-shell reference mo-
menta k". The agreement is good for all the different k"
values of both the RSC and AU |4 potentials in the various
channels.

A strongly varying set of functions, as the on- and off-
shell t matrix, was therefore well reproduced without any
free parameters.

IV. CONCLUSIONS

For the first time the GSA method was applied to ob-
tain a separable expansion of two realistic N-N potentials,
namely the RSC and the AU&&.

The analysis has been restricted to the uncoupled S and
P wave channels. Excellent results for the phase shifts, as
well as for the off-shell scattering matrix, have been ob-
tained with a rank M =5 expansion. As a remark it can
be pointed out that the remaining deviations could be
cured by perturbative approaches. Thus the GSA appears
to be a successful and unambiguous method to construct

separable approximations for local realistic N-N interac-
tions.

The two chosen potentials have a rather different
behavior at short distances, but the method is flexible
enough to give equally good approximations to both of
them.

All these results give confidence in applying these
separable potentials to few-body calculations. In this con-
text a lower rank approximation could be accurate
enough, since a lower rank GSA expansion already gives a
reasonably good approximation for the on- and off-shell
scattering amplitudes, at least in the range of momenta
where they are appreciably different from zero. The other
N-N channels, in particular the coupled Si- Di ones, are
under study. We plan to apply the different separable
GSA to three-body nuclear systems as well as to nuclear
matter.
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