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The cross sections for the electric-dipole radiative-capture reaction He(a, y) Be are calculated
with an approximation procedure (approximate-resonating-group-method proctxlure) in which the

antisymmetrization of the wave function is simply represented by the adoption of an intercluster re-

normalized function obtained by operating on the resonating-group relative-motion function with

the square root of the norm operator. The result shows that this procedure does yield values for the

capture cross-section factor in excellent agreement with the resonating-group-method results. By
studying the properties of the approximate-resonating-group-method wave functions, we find that,
in this capture reaction, the nuclear potential is sampled at all energies and should be properly con-

sidered even at astrophysical low energies around 10 keV. In addition, based again on approximate-
resonating-group-method results, we have shown that the macroscopic capture-reaction models of
Iwinski et al. using analytical-continuation techniques and of Buck et al. using Gaussian-type effec-
tive local potentials are not sufficiently accurate for the computation of cross-section factors because

of the fact that the details of the nuclear interaction are not well accounted for.

I. INTRODUCTION

The unresolved long-standing solar-neutrino problem
has inspired in the last few years a series of detailed mi-
croscopic calculations of the radiative-capture reaction
He(a, y}7Be and other electromagnetic properties of the

seven-nucleon system because of the pivotal role played by
the capture reaction in the production of high-energy so-
lar neutrinos in the p-p chain solar model (see, for exam-
ple, Ref. 1). These were carried out in the resonating-
group-method (RGM} formalism. Simultaneously, there
was also a surge of activity in the measurement of the
capture reaction. Oa a less ambitious scale than ROM,
Liu et al. and Walliser and Fliessbach used the cluster
representation, but without antisymmetrization, to calcu-
late many electromagnetic properties of the seven-nucleon
system. In contrast to a calculation with the full RGM
wave function, the matrix elements do not explicitly con-
tain any exchange contribution. They have shown that
their approximations to the RGM calculation of the ma-
trix elements are, in the main, accurate in the low
momentum-transfer region. The radiative capture reac-
tion was not included in their calculations, but it seems

very likely that the same excellent agreement with RGM
would also have been obtained. However, this approxima-
tion requires the foreknowledge of the RGM solutions of
bound and scattering problems; therefore, it is not an ef-
fective way to avoid the elaborate microscopic RGM.

It is obviously desirable to devise simple macroscopic
models which include the most important features of a
microscopic approach and yet have reliable predictive
power. The latter aspect means that, by using at most a
class of experimental data as input, we can predict with
some confidence other physical information. Recent pro-
posals by Iwinski et al. and Buck et al. showed promis-
ing signs of being reliable macroscopic methods to predict
the radiative-capture reaction cross sections of
He(a, y) Be at energies of interest in astrophysics. These

methods have important implications for future calcula-
tions of other capture reactions, e.g., the d(a, y) Li reac-
tion which is relevant to the history of the early universe
and which is not yet amenable to an accurate microscopic
calculation.

In this work we extend the RGM-approximated (A-
RGM) investigations of Liu et al. (LKT1) and Walliser
and Fliessbach by evaluating the He(a, y) Be electric-
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dipole radiative capture reaction using the A-RGM wave
functions. We show that the expected good agreement
with RGM is realized. Although it would be misleading
to compare the details of RGM calculations (which in-
clude explicit antisymmetrization) with the macroscopic
calculations of Iwinski et al. and Buck et al. (which have
no antisymmetrization at all), the results of the A-RGM
calculations are the benchmark quantities against which
macroscopic models can be tested in detail. %e show that
both of the macroscopic models of Iwinski et al. and
Buck et al. are deficient and, with the help of the A-
RGM results, point out where their failings may lie.

In Sec. II, we describe the A-RGM, and in Sec. III, the
macroscopic models of Iwinski et al. and Buck et al. , and
their results are compared. The differences between A-
RGM and the macroscopic models are discussed in more
detail in Sec. IV. In Sec. V, we present some concluding
remarks.

relative-motion function fJI(R) can be obtained after a
great deal of computation, given a many-nucleon Hamil-
tonian. The A-RGM relative-motion function is written

as fq~(R). The central quantity in the approximation is
the operator nP .It is defined via the norm kernel
P'(R', R") of Eq. (26) of LKT2. Upon a partial-wave ex-
pansion, one can write

~(R',R")=, „gnl(R', R "}YL(R')YL (R") .
I.,v

(3)

The RGM normalization of the bound state can easily be
reexpressed in terms of the norm operator as

&PM I Osr &
= &f~l I

Iii ifJI } (4)

A convenient representation of the operator nP can be
constructed from the eigenvalues and normalized eigen-
states of the norm operator, i.e.,

II. THE A-RGM MODEL

Most of the discussion in this section on Be is an exact
parallel of our earlier A-RGM investigation of Li
(LKT1). The essence of the model is contained in the sub-
stitution of the RGM wave function

nl~NI lI'NI~NI

These eigenvalues and eigenstates are labeled by an order-
ing index N which becomes equal to the number of
relative-motion oscillator quanta in the limit where the
width parameters of the clusters are the same. In terins of
these quantities, the operator ni' can be written as

+O'NI }
I ~NI & & &Ni I

~

N

(6)

by the A-RGM wave function

P„Ps R
fz~——(R)YgZ(R, ),

where

(2a)

(2b)

in the evaluation of matrix elements. We denote the
ground and first-excited states of Be or the scattering
state of He+ a by f~. The notation we use here is the
same as that in Liu et al. (LKT2}. In Eq. (1), W is the
antisymmetrization operator. The functions P„and ((}s
describe the internal spatial structures of the a and 3He

clusters. They are assumed to be represented by single-
Gaussian functions characterized by width parameters az
and as, respectively. The RGM solution of the radial

Discussions of the general properties of pNI and XNI have
been given by Horiuchi and in the special case of Li by
LKT1. It is important to remember that nI' is a short-
range operator such that the asymptotic behaviors of
fbi(R) and fzI(R) are identical. Part of the antisymmetri-

zation is contained implicitly in fbi(R).
Inserting the A-RGM wave functions of Eq. (2} into

the machinery of LKT2, we can easily see that the
electric-dipole capture cross section is given by Eq. (45) of
LKT2 without any of the exchange terms and replacing

~
Cq

~

iX7. by unity, while in the direct integrals all thef
RGM radial relative-motion functions are to be replaced
by the A-RGM radial functions.

In the present A-RGM calculations, the width parame-
ters of the He and a clusters are 0.367 and 0.514 fm
respectively, as in LKT2. They reproduce the rms matter

TABLE I. Calculated RGM and A-RGM results for the capture cross sections and branching ratio.

E
(MeV)

0.10
0.15
0.20
0.50
0.75
1.70
2.06
4.00

o(— )
3

(pb)

0.000334
0.00442
0.019S
0.464
1.052
3.047
3.722
7.044

o( —,
'

)

(pb)

0.000 139
0.001 83
0.008 07
0.194
0 AAA

1.334
1.641
3.115

Sum

(pb)

0.000473
0.00625
0.0276
0.6SS
1.496
4.381
5.363

10.159

Ratio

0.414
0.414
0.414
0.417
0.422
0.438
0.441
0.442

0( —, )
3

(pb)

0.000333
0.00441
0.0194
0.461
1.045
3.013
3.673
6.851

A-RGM
o( —, )

1

(pb)

0.000 138
0.001 83
0.008 04
0.193
0.442
1.322
1.623
3.041

Sum

(pb)

0.000471
0.006 24
0.0274
0.654
1.487
4.335
5.296
9.892

Ratio

0.415
0.415
0.415
0.418
0.423
0.439
0.442
0 AAA
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radii of He and a from electron-scattering experiments.
For the scattering waves we include both s and d waves. '

In Table I, we show a comparison of the RGM and A-
RGM results at selected energies. The very slight differ-
ences between our present RGM results and the previous
ones' are doe to a minor improvement in the numerical
procedure. The excellent agreement between the RGM
and A-RGM electric-dipole capture cross sections con-
firms our expectation from previous work. We might
have argued that, at the high energy of several MeV,
where there is a rather strong overlap of the He and a
clusters, the A-RGM procedure might be too crude to
describe the intricate interplay of the exchange effects.
Nevertheless, we see that A-RGM errs only by approxi-
mately 2%%uo at 4 MeV. The summed S factor S(0) to the
ground and excited states of Be is obtained from extrapo-
lating the low-energy results to zero energy with Eq. (27}
of Ref. 10. We have for RGM, S(0)=0.703 keVb and
for A-RGM, S(0)=0.700 keV1. The agreement between
them is again excellent. The s-wave contributions to these
calculations are 0.693 keV b and 0.691 keV b, respectively.

III. MACROSCOPIC MODELS

A. Analytical continuation technique (ACT}

Iwinski et al. proposed this method which is based on
the hard-core model of Tombrello and Parker. " In this
model one assumes that at very low energies the capture
takes place mainly at distances large compared with the
nuclear dimension but under the Coulomb barrier. At
such large separations the bound state is known to within
a normalization constant to be the Whittaker function and
the scattering function is known exactly in terms of
Coulomb functions. Hence, there is some justification in
writing the electric-dipole capture matrix element as

MHC(E) =Ns I 8'& i (2aaR)ROi(R, E)dR, (7)

where ro is chosen to be 2.8 frn, the radius of a charged
hard core which yields reasonably the empirical s- and d-
wave phase shifts. Here W+i denotes the Whittaker
function which depends on the decay constant ~s of the
'Be bound state and the He-a separation distance R, with

p being the negative of the Sominerfeld parameter and
A, =1 + —,

' . The function Oi represents an s or d scattering
Coulomb wave with the corresponding experimental phase
shift at energy E. At energies where the capture to the
ground and first-excited states of Be can be differentiat-
ed, the individual absolute cross sections would determine
the two normalization constants Na of the bound states.
These are then retained for further calculations with Eq.
(7) at low astrophysical energies.

The ACT of Iwinski et al. avoids the determination of
N~ at high energy where Eq. (7) may not be valid. They
used an analytical continuation of the He+a elastic-
scattering pizza and pizza phase shifts to determine the
ground-state ( —, ) and excited-state ( —, ) normalization
constants Nii. The degree of accuracy required of the
phase shifts, they claimed, is about one degree down to an
energy of about 800 keV. As a test of this procedure, they

have taken the phase shifts from our RGM calculation of
LKT2 as the "experimental" phase shifts and successfully
reproduced the normalization constants of the two bound
states of Be given by RGM. Good agreement with the S
factor from LKT2 was also reported, but unfortunately
the exact figures were not published.

The assumption of Eq. (7) cannot be tested in a
straightforward fashion with RGM because the latter con-
tains exchange contributions. But Eq. (7) can be com-
pared directly with the corresponding capture matrix ele-
ment in the A-RGM calculation where the bound and
scattering states are those given by Eq. (2). We shall
present and discuss evidence in Sec. IV that the approxi-
mation of Eq. (7) is not accurate even in the limit of zero
energy. Therefore, although the ACT has demonstrable
accuracy in deriving the asymptotic normalization con-
stant, its usefulness may be limited in the instance of the
radiative capture problem.

B. Gaussian potential model

While the ACT determines directly the asymptotic nor-
malization of the bound state without resorting to a po-
tential, Buck et al. set out to calculate the bound and
scattering states via a macroscopic potential which they
construct from a set of experimental data. The underly-
ing assumption is the same as in A-RGM that the seven-
nucleon system is well represented by a clustering picture
of He-a or t-a. They also used Gaussian functions for
the description of the spatial structure of the individual
clusters. In other words, their macroscopic wave func-
tions have the same form as the A-RGM wave function in
Eq. (2a). Their constructed potential would generate the
bound and scattering radial relative-motion functions to
be used in Eq. (2a} in place of far(R).

The experimental data they used are the electromagnet-
ic properties of Li (those of Be are not available since it
is an unstable nucleus}. However, within the cluster
model, this set of data, including the charge and magneti-
zation radii, the quadrupole moment, the octupole mo-
ment, and the 8(E2) value for —', to —, transition,
determines essentially just the mean square separation
(R }of u and t. With the knowledge of (R }of Li, the
binding energies of the ground-state doublets of Li and
Be determine uniquely the four parameters V, V„, a,

and Rc of their assumed Gaussian potential:

V(R)= —(V+4V L.ir) exp( —aR )+ Vc(R), (8)

with

Vc(R)=ZZ'e /R for R & Rc,
ZZ e

[3—(R/Rc) ] for R &Rc .
2RC

They deduced from their analysis (R }= 13.5 fm,
V=86.08 MeV, V„=0.957 MeV, a=0. 163 fm, and
Rc ——3.248 fm. This is the potential which generates the
ground-state (1=1) doublet of Be. For the scattering s
wave, they found that they have to reduce the central
depth to V=67.67 MeV in order to obtain agreement
with the low-energy elastic scattering phase shifts. This is



Q. K. K. LIU, H. KANADA, AND Y. C. TANG 33

a simulation of the strong parity-dependent effect found
in RGM calculations. ' Making use of the limiting form
of the Coulomb functions at zero energy, they could cal-
culate the S factor S(0) directly without resorting to ex-
trapolation described in Sec. II and obtained a value of
S(0)=0.47+0.02 keV 1. This value is indeed close to the
experimentally measured values, offering tantalizing
promise that this macroscopic procedure could be a reli-
able way to predict capture-reaction S factors, perhaps in
other reactions of interest in astrophysics as well.

To establish the accuracy of the construction of Buck
et al. , we test the procedure in the spirit of Iwinski et al. ,
i.e., we take the A-RGM results of phase shifts (identical
to RGM) and (R ) as "experimental" values which serve
as input for the construction of a Gaussian potential for
the bound and scattering states. For the sake of clarity,
we restrict ourselves to s-wave capture. The S factor is
then compared directly with the value from A-RGM.
This is a more searching test because we can make use of
the A-RGM results of the 3He+a elastic-scattering phase
shifts at energies much lower than experimentally mea-
sured so far, and (Rz) of Be directly without appealing
to Li. Further discussion on the relation between RGM
and the procedure of Buck et al. is given in Sec. IV.

In the procedure of Buck et al. , (Rz) is a crucial input
in the construction of the potential. Even though (R ) is
not an observable, one can derive it from the rms matter
radius calculated with the full RGM wave function be-
cause of the cluster model assumed. ' Walliser and
Fliessbach have demonstrated that this (R ) from RGM
is very well approximated by a direct evaluation with the
A-RGM wave function. For the —', ground and —,

' ex-

cited states of Be,

(R )=I fgt(R)R fbi(R)dR, (10)

where f/t is the A-RGM radial function of Eq. (2), with
I =1 and J= —, or —,'. The results are 14.82 and 16.38
fm, respectively. The value of 14.82 fm is larger than
13.86 fm for the —', ground state of Li because of larger
Coulomb repulsion. Armed with these (R } values for
the ground-state doublet of Be and their energies
E( —,

' )=—1.58 MeV and E( —,
' )=—1.15 MeV from

RGM in LKT2, we determine uniquely the parameters
V3/p Q3/2 V]/2 c]/2 in the Gaussian potentials

V/(R)= —VJ exp( —aJR )

for the —', and —,
'

bound states. Compared with Buck
et al. , we use different width parameters for the —,

'
and

potentials and represent the spin-orbit splitting by

V3/2 and V, /2 ~ The Coulomb potential is evaluated from
folding the Coulomb interaction between protons into the
Gaussian functions representing the He and a clusters, '

i.e.,
1/2

12ctg cLg
Vc(R) = 4 R

R Sag +9o,'g

body of our discussion later. We found our parameters to
be

V3/2 —82.52 MeV a3/2 —0 154 fm

V~/2 ——78.28 MeV, a&/2
——0.149 fm

(13)

(14)

%e see that with these parameters our potentials are very
similar to those of Buck et al. Following these authors
we readjust the depth parameter V3/2 to calculate the
scattering s wave. In our case we found that the depth of
65.60 MeV would reproduce the scattering length
a =28.2 fm from RGM. '

With these potentials we can calculate the S factor by
extrapolating from cross sections evaluated at very low
energies as described in Sec. II. We obtain $(0)=0.515
keV1 and S~/z(0)/'$3/2(0) =0.452. These are to be com-
pared with the A-RGM values of 0.691 keVb and 0.415
from Sec. II and Table I.'

Our value of 0.515 keVb is rather close to the value in
Buck et al. of 0.47 keVb, perhaps confirming our conjec-
ture that our Gaussian potentials are not greatly different
from theirs. However, we constructed our potential from
the A-RGM data and are aiming for the A-RGM S factor
and apparently have fallen rather short. This casts doubt
on our method of construction which we have adopted
from Buck et al. In Sec. IV, we investigate the reason for
the discrepancy between the results from A-RGM and the
Gaussian-potential model.

IV. DISCUSSION ON THE VALIDITY
OF THE MACROSCOPIC MODELS

l i I l

For the investigation of the hard-core model assumed in
ACT, we plot in Fig. 1 the A-RGM integrand of the s-
wave capture matrix element

MA-ROM(E) f() f3/2, 1(R)R fI/2, 0(

to the —', ground state of Be at a c.m. energy of 0.15

MeV. In Eq. (15), the bound state f3/z ] is normalized to
unity while the scattering state f~/2O is normalized ac-

20 40 60 100
where 4 is the error function. Hence the Coulomb radius
Rc is made superfluous. As it turns out, these differences
are on the whole cosmetic and do not affect the main

FIG. 1. The A-RGM integrand of the s-wave capture matrix
element to the 7Be ground state at E =0.15 MeV.
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cording to Eq. (15) of LKT2. In Fig. 1, as in all other fig-
ures, the relative distance between He and a is written as
N, given in units of 0.24 fm. The maximum of the in-
tegrand occurs at R =7.2 fm (N =30), which is nearly
twice the intercluster distance between He and a in the
Be ground state as estimated by (R ) in Eq. (10), con-

firming one of the basic assumptions of the hard-core
model that at low energies capture takes place mainly
under the Coulomb barrier. However, one notes that there
is a significant contribution to the integral in the region
R =3.6 to 7.2 fm (N =15—30}. This is the region just
beyond the intercluster distance of Eq. (10), where we ex-
pect the nuclear interaction to be evident still. Therefore,
Eq. (7) yields a somewhat unreliable result on account of
its using wave functions which are insufficiently accurate
in this region, although the lower integration limit seems
to be acceptable from inspection of Fig. 1.

It is particularly instructive to examine at which inter-
cluster distances most of the capture takes place. For this
purpose, we calculate the following percentage as a func-
tion of R;„and R

2

3/2 jR R )/2 0 R R
I' = '"

g . (16)

3/2 ] R R )/20 R R

3—

QJ

LsJ
~

I

)

I

90'//

l

)—50

20 40 60 "I 00
N

FIG. 2. Values of Rm- and R for P=0.5 and 0.9 in the
s-wave capture to the Se ground state.

In Eq. (16), the denominator is directly proportional to
the A-RGM capture cross section. The lower and upper
limits in the numerator are chosen such that the contribu-
tions to the capture integral of Eq. (15) from R =0 to
R~„and from Rm~ to ao are the same. We use Eq. (16}
to probe the A-RGM s-wave capture to the ~Be ground
state as a function of the scattering energy and plot in
Fig. 2 the range R;„ to R as a function of E for I'
equal to 0.5 and 0.9. It shows that the lower limit Rm;„
increases rather slowly with decreasing energy and the
upper limit R ~ increases much more rapidly. At E =4
MeV, the bulk of the capture concentrates at the surface
of the compound nucleus just beyond R = (R ) '/ =3.85
fm, while at low energies the very-low-density or tail re-
gion dominates, but nevertheless not to the exclusion of
the surface region. By inspection, the 90% and 50%
lower limits at zero energy are apparently near N =16
and 22, which are well within the surface region. Thus we
are led to the conclusion that, in the capture reaction, the

nuclear potential is sampled at all energies and should be
properly considered even at astrophysical energies around
10keV"

The procedure of Buck et al. attempts to construct just
such a macroscopic potential. It is unavoidably an effec-
tive potential to simulate the many-body properties of the
complete problem. An accurate construction must be able
to reproduce all the important features which come from
a microscopic quantal formulation. From RGM stud-
ies, ' one learns that, because of antisymmetrization, the
effective potential is nonlocal. For practical applications,
many authors approximate the nonlocal character by con-
structing an equivalent local potential which is energy and
parity dependent.

We discuss now the accuracy of the Gaussian potential
of Eqs. (13) and (14) in this context. A local Gaussian po-
tential, which reproduces (R ) perfectly, will still lead to
wave functions which exhibit the "Percy effect, "' i.e., in
the range of the local potential the absolute magnitude of
the local wave function is larger than their "nonlocal"
counterpart. For bound states normalized to unity, this
means that the magnitude of the asymptotic part of the
local wave function is smaller than the nonlocal one. We
see in Fig. 2 that at low energies it is the tail region which
dominates. Therefore, this shortcoming of the local wave
function at large separations may explain the difference
between S(0)=0.691 keVb from A-RGM and
S(0)=0.515 keVb from the Gaussian-potential model.
However, this turns out to be not quite the case, because
for the ground state, N3/2 (A-RGM)=4. 60 and N3/i
(Gaussian)=4. 40, where N3/2 in these two cases are the
asymptotic normalization constants with respect to the
Whittaker function. The square of N3/2 (A-RGM)/N3/Q
(Gaussian) gives an indication that, in this instance, the
"Percy effect" amounts to approximately a 10% correc-
tion only to the Gaussian result. This does not account
for the 34% difference between the A-RGM and the
Gaussian S factors. This estimate of about 10% is con-
firmed in a calculation in which the capture matrix ele-
ment is evaluated with an A-RGM bound state and a
Gaussian-potential scattering state. Clearly, the rest of
the discrepancy is due to the difference in the s waves.

It is possible to discuss together the energy dependence
and the parity dependence of the effective local potential
in our situation since our aim is to construct an s-wave
potential for low-energy scattering which is different from
the I-odd bound-state potential, although the energy-
dependent effect itself may be quite small because the
binding energies are only 1.58 and 1.15 MeV. The
prescription according to Suck et al. to simulate these
two effects is to readjust the central depth of the Gaussian
potential to reproduce the s-wave scattering length. Such
scaling prescription may be too crude to account for the
parity dependence which has its origin in the three-
nucleon or core exchange between He and a. ' There are
indications of the qualitative difference between the I-even
and I-odd effective potentials in the work of Furutani
et al. ' These authors used the following potentia1s:

V(R) = —103.4exp( —0.2R )+13.8exp( —0.091R )

(I =even), (17}
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V(R)= —86.2exp( —0.2R ) (l =odd) (18)
10-1

between the t and a clusters in the framework of the
orthogonality condition model (OCM) for the 2a+t sys-
tem to reproduce many experimental data. They pointed
out that the difference between Eqs. (17) and (18) was cru-
cial for their success. The similarity between the Gauss-
ian potentials of Eqs. (13), (14), and (18) is noteworthy.

For our further investigation, we label two types of po-
tentials for s-wave scattering between 3He and a:

(i) Potential A: 2-

V(R) = —Vexp( —0.154R ), (19)
10

/

1 25 N

where in potential Al, V=65.60 MeV and in potential
A2, V=69.81 MeV.

(ll) Potential B:

V(R)= —Vexp( —0.2R )+13.8exp( —0.091R ), (20)

where in potential Bl, V=130.5 MeV and in potential
82, V=120.79 MeV.

In potential Al, V=65.60 MeV reproduces the A-
RGM scattering length of a =28.2 fm which we have en-
countered previously. In potential A2, V=69.81 MeV
reproduces the A-RGM phase shift (identical to the RGM
phase shift) at 8 =4.0 MeV, displayed in Table I of
LKT1. The parameters V in potentials Bl and B2 are
from similar adjustments to reproduce, respectively, the
A-RGM scattering length and the phase shift at E =4.0
MeV. Clearly, potential A is inspired by the prescription
of Buck et al. and potential B by Eq. (17) from OCM.
With the s waves from these potentials and extrapolating
from cross sections at very low energies, we obtain

COULOMB

(B1)+COULOMB

(A1)+COULOMB

I
I
I
I

t

FIG. 4. In the upper part are shown the s-wave radial
relative-motion functions from A-ROM and macroscopic
models with potentials A1 and $1. In the lower part are shown
the Coulomb potentia1, the [(A 1) + Coulomb] potential, and the
[(B1)+ Coulomb] potential.

S(0)=0.515 keV b with potential A 1,
S(0)=0.569 keVb with potential A 2,
S(0)=0.653 keV b with potential B1,
S(0)=0.604 keV b with potential B2 .

We find it useful to display them graphically in Fig. 3 and
compare them with the RGM and A-RGM results. These
S factors must still be corrected for the "Percy effect"

0.7— 0.693keV b ( R G N )

0.691keV b(A - RGM)

E(NeY)
2

-- B1 -10-

-20—

0.5

FIG&. 3. The s-wave S factors of ROM, A-RGM, and macro-
scopic models with s-state potentials A1, A2, 81, and 82.

FIG. 5. Comparison of p-wave phase shifts from ROM and
the Gaussian potential of Eq. (13).
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which would increase their values by approximately 10%.
Such correction notwithstanding, we have reason «be-
lieve that at this stage it is premature to pick a definite
winner among the four potentials.

Using Fig. 2, we have argued that the surface region is
of interest even at zero energy. We now plot potentials
Al and 81 as functions of N, as well as their s waves at
E =O. 15 MeV in Fig. 4 to examine this region closer. We
have discussed earlier the non-negligible contribution to
capture in the region of N =15—30. The s waves from
potentials Al and 81 are dramatically different in this
range which is a direct reflection of the difference of the
potentials. Below N =15, where the contribution to cap-
ture is insignificant, the difference in the wave functions
is of no practical consequence. Above X=30, the s
waves from the two potentials coincide with the A-RGM
wave function —a clear indication that the nuclear poten-
tials become negligible relative to the Coulomb potential.
Since we are equipped with the A-RGM wave function in
this case, we can say at a glance that potential 81 leads to
a more accurate reproduction of the A-RGM results.
However, in other capture-reaction cases where we do not
have the RGM and A-RGM results, we would have no
way to discriminate between potentials Al and 81. The
prescription of Buck et al. of using the scattering length
is apparently not sufficient since, after all, both potentials
give us the A-RGM scattering length. It seems that we

require other nuclear information to constrain the con-
struction of the macroscopic potential.

One class of information may be the phase shifts of the
higher partial waves for a range of energies. We compare
in Fig. 5 the odd p-wave phase shifts from A-RGM and
the Gaussian potential of Eq. (13). The good agreement
between them over an energy range of 4 MeV indicates
that the potential is adequate for the I-odd states, which is
also confirmed by the OCM calculation. ' Perhaps it is
not surprising that the Gaussian potential constructed
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FIG. 7. Comparison of d-wave phase shifts from RGM and
the potentials A1, A2, B1,and 82.

from the electromagnetic properties of the 1-odd bound
states of 'Be seems adequate for the I-odd phase shifts. In
Figs. 6 and 7, we compare the even s- and d-wave phase
shifts of A-RGM and potentials Al, A2, 81, and 82.
Unfortunately, the A-RGM phase shifts do not distinctly
favor one over the others. However, the fact that the re-
sults from these potentials are recognizably different from
each other offers the insight that these even-/ phase shifts
are important data in the construction of a macroscopic
potential for the I-even states.

V. CONCLUSION

We have shown in this study that the A-RGM results
for the electric-dipole radiative capture reaction
He(a, y) Be agree extremely well with RGM results over

an energy range of 4 MeV, being almost perfect near zero
energy and showing only a 2.7% discrepancy at 4 MeV.
The A-RGM wave functions are derived directly from the
microscopic RGM theory and they contain implicitly the
important antisymmetrization property. Yet, its form and
the details of the calculation can be compared directly
with macroscopic models which try to simulate micro-
scopic theories. From such comparisons we found evi-

dence that the hard-core model '" for the electric-dipole
capture reaction near zero energy is not sufficiently accu-
rate due to the neglect of the details of the nuclear in-

teraction. Using the A-RGM results, we also showed that
a recent suggestion on the construction of a macroscopic
nuclear interaction seems to be inadequate. Specifically,
the odd-even difference in the potentials, which has its
origin in antisymmetrization, is not sufficiently well
represented. Obviously, an accurate macroscopic model is
very desirable. To facilitate its construction, we suggest
that other nuclear information, apart from those used in
Ref. 5, may have to be taken into account.

FIG. 6. Comparison of s-wave phase shifts from RGM and
the potentials Al, A2, B1,and B2.
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