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Collective potential energy surfaces are calculated in both the adiabatic and sudden approxima-
tions by using the asymmetric two-center shell model in the Strutinsky method. It is shown that
fusion of two colliding heavy ions occurs by their crossing over of the adiabatic interaction barrier.
The adiabatic scattering potentials present two barriers, whereas no barrier is shown to occur in sud-
den scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such
that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system
fall into the fusion well, whose excitation energy then determines whether a cool compound nucleus
is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation ener-
gy is found to be small for only a few target-projectile combinations, which increase as their mass
asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus
can be identified by a simple calculation of the fragmentation potential based on the ground state
binding energies with Coulomb and proximity effects calculated at a constant relative separation of
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the two nuclei. Our calculations are made for the composite systems with 102<Z < 114.

I. INTRODUCTION

The question, “How do colliding nuclei fuse and then
why and when does the compound system formed go to
the ground state and give a stable compound nucleus or
fission instead?” has always been of much theoretical in-
terest.~> The importance of such a question has become
more apparent due to some recent experiments: whereas
collisions at one bombarding energy (e.g., 265 and 280
MeV 2%Pb on °Ti and 3°Cr, respectively®’) lead to
measurable fusion cross sections, for the same target and
projectile (and many others) at another energy8 (4.8—8
MeV/nucleon 2%Pb on different targets of Mg, **Ca,
0Ti, 32Cr, *8Fe, and *Ni ), the fusion excitation functions
as well as the symmetric mass fragmentations of the com-
pound systems are measured. According to Swiatecki,’
the fused systems obtained in these reactions of *°Pb on
various targets® could either be true compound nuclei
trapped inside the true saddle or simply the composite nu-
clei (also called mononuclei) trapped inside some condi-
tional saddle.

In this paper, we show that within the fragmentation
theory based on the two-center shell model, the fusion of
colliding nuclei occurs by overcoming an adiabatic in-
teraction barrier. Fusion starts already at the first outer
barrier, located past the saddle shape formation. There is,
however, a second inner barrier that must be overcome for
achieving the complete fusion. This essentially constitutes
our model for the fusion of two nuclei. The excitation en-
ergy of the compound system so formed is given by the
height of the inner barrier, and this along with the corre-
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sponding nuclear shapes determine the exit channel ef-
fects; i.e., whether it proceeds to form a cool compound
nucleus after the evaporation of a few neutrons or gives
rise to the process of “fusion-fission.” A cool compound
nucleus means the compound nucleus with a minimum of
excitation energy, for which the number of neutrons eva-
porated is small and consequently the cross section for its
formation in the ground state is large. On the other hand,
for the system to fission in the exit channel, it must be
strongly excited and the nuclear shapes must have neck
formations after the saddle is formed. In case the incident
energy is not enough for the system to cross over the inner
barrier, then because of the outer barrier (which is only a
small bump), damped or deep inelastic collision (also,
called “quasifission”) occurs since a (conditional) saddle is
shown to be formed here.

The method for calculating the adiabatic and sudden
interaction potentials, using the fragmentation theory, is
described briefly in Sec. II. The fusion model based on
these potentials is then given in Sec. III. A relative com-
parison of the fusion excitation energies, i.e., the adiabatic
barrier heights, for different target-projectile combina-
tions forming the same compound system, is carried out
in Sec. IV which allows us to optimize the choice of
target-projectile combinations corresponding to the cool
compound nuclei. The calculations are made for col-
lisions of any two nuclei with masses larger than 40 u,
forming compound systems with 102<Z <114. A sum-
mary of our results is given in Sec. V and an application
of this model to the data® of symmetric mass fragmenta-
tion following capture is made in a subsequent paper’
(hereafter referred to as II).
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II. METHOD FOR CALCULATING
THE POTENTIAL ENERGY SURFACES

The fragmentation theory introduces'®!! two new col-

lective coordinates of mass — and charge — asymmetries,
respectively,

7]=(A1—A2)/(A1+A2) (1a)
and
7]z=(Zl—Zz)/(Zl+Zz), (1b)

in the nuclear shape which is taken to be described by the
asymmetric two-center shell model (ATCSM).? Here
A =A1+A2 and Z=Z] +Zz, with A,' and Z,' (i = 1,2)
referring to incoming nuclei or outgoing fragments.
These two coordinates are, of course, in addition to the
other commonly used coordinates of: (i) relative separa-
tion R or equivalently, the length parameter A=1/2R,,
with [ the length of the nucleus and R, the radius of the
corresponding spherical nucleus; (i) the deformation
coordinates 8; and f3,, defined as the ratios of major to
minor axes; and (7ii) the neck parameter €, giving the ra-
tio of the actual barrier to the rounded-off barrier between
two harmonic oscillator potentials.
The collective Hamiltonian is then of the form

H=T( RlBi’n:nZ;R’B.iaﬁ’ﬁZ)"’ V(R;Birn»nz) ) (2)

where the collective potential V is obtained in the Strutin-
sky way'> by renormalizing the sum of single-particle
states of the ATCSM to an appropriate liquid drop model
(LDM)."* Depending on whether the collision proceeds
adiabatically or as a sudden process, in the ATCSM the
instantaneous oscillator frequency w(R) at the separation
distance R is, respectively, the frequency w,(R) for which
the volume enclosed by an equipotential at the surface is
conserved, or @, the same frequency the colliding nuclei
had when they were far apart at infinity. In other words,
the oscillator frequency in the case of sudden collisions is
fixed and equal to its asymptotic value o, for all relative
separations R. For sudden collisions, the liquid drop en-
ergy also contains an additional term!’* due to the
compression effect, since the relative velocities of the col-
liding nuclei are now assumed to be high. We fix the
shape parameters B3, B,, and € by minimizing the poten-
tial V in these coordinates for the adiabatic approxima-
tion, and by taking the ground state deformations B; and
B, of the incoming nuclei with e=1 for the sudden col-
lisions.

For the asymptotic limit, i.e., R >R;+R,, the poten-
tial is defined simply as

V(R,’I])=—BI(AI,ZI)—Bz(Az,Zz)+Ec+VP+V[ s (3)

where B;(A;,Z;) are the experimental nuclear binding en-
ergies (taken from the tables of Seeger'® which are calcu-
lated for the liquid drop energy smoothed with shell
corrections from the Nilsson model), minimized in the 7,
coordinate, and Ec, V,, and V) are, respectively, the
Coulomb interaction energy, the proximity nuclear poten-
tial, and the rotational energy due to angular momentum
l. In this paper, however, we limit ourselves to the / =0

case, i.e., ¥;=0. For the Coulomb interaction, though
various prescriptions are available,!’~1° we use here the
expression of Aroumougame and Gupta,® obtained by fol-
lowing Hirschfelder et al.?® and Nix?!' (see also Web-
ster’?), for two arbitrarily oriented prolate spheroids
separated by a distance R >R;+R,. Their expression
simplifies to the usual form

212282
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for spherical nuclei. The proximity potential between two
spherical nuclei is given by the “pocket formula” of
Blocki et al.,?

4)

Vp=41ryb§d>(§o) , (5a)
where ({p=so/b, with the separation distance s,
=R—R;—R,;

R=RR,/(R,+R;), (5b)

R; =1.284/7—0.76+0.84;,"'"

~ 1154} (i=1,2), (5c)
b=1fm, (5d)
y=0.9517|1-1.7826 | X=Z | | MeV/fm?, (5e)

and the dimensionless universal function
D&y =— %(;0—2.54)2—0.0852@0—2.54)3 o< 1.2511
= —3.437 exp(—§,/0.75) §o>1.2511. (51)

This function is defined for negative (overlap region), zero
(touching configuration), and positive values of s, al-
though for negative s, the definition becomes somewhat
arbitrary (see Refs. 24 and 25 and the Appendix for fur-
ther discussion on this point). The possible generalization
of (5) to deformed and oriented nuclei is presented in the
Appendix, which is worked out in the central line
prescription?® because of its computational simplicity.
Realistic derivations of the proximity potential for col-
lision of two coplanar, deformed, and oriented nuclei are
given in Refs. 24, 25, and 27.

II1. FUSION MODEL—ADIABATIC
AND SUDDEN INTERACTION POTENTIALS

The necessary condition for the fusion of two colliding
nuclei is the occurrence of a potential barrier (also called
the “interaction barrier” or the “fusion barrier”) after the
saddle is formed, or the presence of a deep “pocket” in the
interaction potential. The interaction barrier is shown??2?
to lie higher and at a much smaller value of R than the
Coulomb barrier. The presence of an interaction barrier is
interpreted’ to mean that during collisions the nuclei
would arrive at the top of the barrier (called the point of
no return) and fall into deep “fusion well” behind the bar-
rier, stick together due to loss of enough kinetic energy,
and form a compound nucleus. Then, depending on its
excitation energy, the compound nucleus would either go
to the ground state by emitting a couple of neutrons or ex-
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hibit some other phenomenon, like the preformation of
fission fragments (the fusion-fission), etc. Since a com-
pound nucleus can be reached by various combinations of
the targets and projectiles and collisions can occur both
adiabatically or as a sudden process, it is of interest to
study the interaction potentials calculated under both the
adiabatic and sudden approximations and for various
target-projectile combinations referring to the same com-
pound nucleus. This is done in the following, and a rela-
tive comparison of the excitation energies of the com-
pound nucleus formed through different target-projectile
combinations is carried out in Sec. IV.

Figure 1 shows our calculated adiabatic and sudden
scattering potentials VF(A) for a number of different
target-projectile combinations (7 values) forming the same
compound nucleus 258104. The potentials in two approxi-
mations are matched at the touching configurations
(A=1.5) for the sudden case. For A > 1.5, the sudden po-
tentials are shown to be lower due to Coulomb effects,
whereas at this length the adiabatic potentials still show
the presence of nuclear effects that are known to be
predominant up to a separation distance of ~ 1.7 fm (Ref.
28). The corresponding nuclear shapes are given in Fig. 2.

We notice in Fig. 1 that for adiabatic collisions, the in-
teraction or fusion barriers (marked Ar) are obtained for
all the target-projectile combinations having 7 <0.5. This
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FIG. 1. The adiabatic and sudden scattering potentials for

various target-projectile combinations forming the compound
system 2%8104. The two sets of graphs are matched at the touch-
ing configurations (A~=1.5) for sudden collisions. The positions
of the two barriers in the adiabatic case are also indicated.
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FIG. 2. The nuclear shapes in both the adiabatic and sudden
approximations at different lengths (A values) for the target-
projectile combinations of 2**104 considered in Fig. 1.

barrier occurs at a point just after the saddle shape is
formed (see Fig. 2). For n>0.5, the saddle shape is not
formed (see the case of 2®Pb + 3°Ti, n=0.612, in Fig. 2)
although the interaction barrier is still seen in Fig. 1 at a
somewhat larger A value (A=1.8). The occurrence of an
interaction barrier past the saddle shape means that the
colliding nuclei start to fuse already at this length of the
compound system, called the “fusion length” Ar. Howev-
er, this barrier is obtained only as a small bump and will
not be able to hold the colliding system together. In other
words, at this energy the saddle formed at A is a kind of
“conditional saddle”® leading to “quasifission” or “deep-
inelastic collision” of the intermediate compound system
(the mononucleus) formed. In Fig. 1, however, there is a
second barrier (marked Acg), that is shown in each case at
a much shorter length of the compound nucleus, called
the “complete fusion length” Acg. This barrier is ap-
parently high, so that if the colliding nuclei cross over it,
they will fall into the deep “fusion well” behind it and
may proceed to form a stable compound nucleus. An ad-
ditional incident energy is clearly required for this process
of complete fusion to happen.

On the other hand, for sudden collisions we notice in
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Fig. 1 that no interaction barriers or deep pockets appear
in the scattering potentials, though the nuclear shapes in
Fig. 2 show neck and saddle formations. The neck is,
however, known to develop suddenly from €> 1 in the en-
trance (or fusion) channel to €~0 in the exit (or fission)
channel with a gain of about 40 MeV energy (see Fig. 6.7
in Ref. 29). This means that even if the colliding nuclei at
infinity approach in a sudden approximation, once they
touch, the neck formed gets filled quickly and the col-
lision proceeds adiabatically. In any case, at low incident
energies of 5—10 MeV/nucleon, the collisions are not ex-
pected to proceed via sudden approximation, except for
the nuclear molecule formation. Also, there are other
macroscopic slowing-down forces of friction and viscosity
which increase the collision time and make it more favor-
able for the collision process to be adiabatic.

We have also made calculations of adiabatic and sudden
scattering potentials for a number of other target-
projectile combinations forming compound nuclei with
102<Z <110. This is shown in Fig. 3, only for nearly
symmetric (7 =0) and asymmetric (1 > 0.5) combinations.
We notice that exactly the same results as obtained above
for 258104 are given.

Summarizing, our “fusion model” involves the follow-
ing steps: We calculate the adiabatic scattering potentials
for all the possible target-projectile combinations of a
given compound nucleus. The nuclear shape in this ap-
proximation is fixed by minimizing the potential energy
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FIG. 3. The adiabatic and sudden scattering potentials for
the (nearly) symmetric and asymmetric target-projectile com-
binations forming the compound systems 2°°102, 260106, 266108,
and 272110.

in deformations and neck coordinates. In this way, the
saddle shape and the interaction barriers are located. The
fusion of the colliding nuclei starts already at the first
outer barrier, but deep-inelastic collision takes place since
this barrier is not high enough to hold the system togeth-
er. Allowing for dynamical distortion effects and the role
of classical friction and viscosity, if the incident energy is
large enough to come up to the top of the second inner
barrier, the colliding nuclei would fall into the deep
“fusion well” and stick together due to loss of enough ki-
netic energy. This compound system will then either go
to the ground state by emitting a few neutrons, or mani-
fest the preformation of fission fragments, etc., depending
on its excitation energy.

IV. THE FUSION MODEL
AND THE COOL COMPOUND NUCLEUS FORMATION

The excitation energy of the compound system is given
by the height of the interaction barrier, which is apparent-
ly different for different target-projectile combinations (7
values) used. Then a plot of these barrier heights as a
function of mass asymmetry 7 gives the so-called frag-
mentation potential V(7). Notice that here the length of
the nucleus A (or the R value) for each n value corre-
sponds to the point at which the fusion actually occurs.
This is important because in all our earlier calculations of
fragmentation potentials (see, e.g., Refs. 1—4), we made
an approximation of using a constant value of R in order
to save the large computer time involved in the three-
dimensional minimization of the potential energy sur-
faces. For the same reason, we determine here the depen-
dence of barrier positions Ar and Acg on 17 from a few
carefully calculated points, rather than calculating the
scattering potentials for all possible target-projectile com-
binations of a compound system, as is required by our
fusion model. This is done in Fig. 4 for 2°*104 by using
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FIG. 4. Variations of the “fusion” length Ay and the “com-
plete fusion” length Acp with mass asymmetry 7 for the com-
pound system 2¥104. The triangles refer to the scattering poten-
tials in Fig. 1 and the open circles are for the other intermediate
points for which Ar was determined by calculating the relevant
parts of the scattering potentials.
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the adiabatic scattering potentials of Fig. 1. In addition
to the five points from Fig. 1 (shown as triangles), the A
barriers for a few other intermediate n values were also
calculated, which are shown here as open circles. (The
full scattering potentials were not calculated for these in-
termediate points.) For 7=0.612 (*%®Pb 4 °°Ti), al-
though no saddle shape was obtained, we have taken the
barrier at Ar=1.80 and extrapolated the Ap curve
smoothly up to 7=0.65. Beyond this 7 value, the two-
center shell model does not remain very reliable since one
of the colliding nuclei is then a light nucleus.

We notice from Fig. 4 that the barrier position at Acf is
almost independent of 7, whereas Ap(n) shows a steplike
functional increase. Using these lengths (rather than con-
stant values'™%), the fragmentation potentials V(n) are
calculated for both cases. These are plotted in Fig. 5,
marked Ay and Acg. For comparison, we have also plot-
ted here the fragmentation potential for a constant value
of R =142 fm, calculated by using Eq. (3). We observe
that the basic structure of the two potential energy sur-
faces, obtained by calculating the true fusion barriers
(curves marked Ay and Acp), is identical and is compar-
able with that for the fragmentation potential calculated
simply at a constant R =14.2 fm. In particular, all the
potential energy minima are nearly at the same 7 values,
and the variations of their excitation energy with respect
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FIG. 5. The adiabatic fragmentation potentials for 2*®104,
calculated for the constant relative separation R =14.2 fm [us-
ing the ground state binding energies from Seeger (Ref. 16)] and
for the lengths Ar(17) and Acge(n) given in Fig. 4. The proximity
contribution is added for the cases of constant R and Ag(7) by
using Eq. (5) and the method described in the Appendix.

to 7 are identical. We are interested only in the potential
energy minima, since at the minimum 3V /31=0, and ac-
cording to Sandulescu et al.l, for headon collisions, the
compound nucleus reached through such target-projectile
combinations would be very much cooler compared to
that formed by reaction partners belonging to an 7 value
lying outside the minima. For 7 values away from the
minima, the driving force —d¥ /37, according to classical
mechanics, is nonzero, which will make the system run in
the direction of the potential minima, accompanied by a
large mass transfer and hence transfer of energy into the
excitation of surface vibrations.

Hence, from Fig. 5, we have obtained two important re-
sults: (i) the idea of using constant R (> R;+R;) in our
earlier calculations' ~* of the fragmentation potentials is
quite reasonable for locating the target-projectile com-
binations that form cool compound nuclei; (ii) the mass
asymmetry degree of freedom 7 plays an important role
in determining the excitation energy of these cool com-
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FIG. 6. The adiabatic fragmentation potentials for various
compound systems with 104 < Z < 114, calculated at constant R
values by using the ground state binding energies of the colliding
partners [taken from Seeger (Ref. 16)] with the Coulomb and
proximity potentials added to it.



pound nuclei. The excitation energy increases as 71 in-
creases. Specifically, the compound nucleus formed due
to an asymmetric target-projectile combination is very
much excited compared to that formed through sym-
metric or nearly symmetric reaction partners. As a test of
this result, we apply our model in II to the data of Bock
et al.® We show that the measured capture cross sections
as a function of incident energy are reasonably reproduced
by letting the incoming nuclei be captured by the inner
adiabatic interaction barrier and that, because of the large
mass asymmetry of the incoming nuclei, the captured (or
fused) system fissions back with symmetric mass distribu-
tion, in satisfactory agreement with experiments.

Finally, we have used the first result of our last para-
graph for calculating the fragmentation potentials V(%)
at constant R values. This is done for a number of com-
pound systems with 106<Z <114, and the calculated
fragmentation potentials are shown in Fig. 6. The poten-
tial for 28104 is also reproduced for completeness. The
interesting result from Fig. 6 is that in all cases, only four
or five target-projectile combinations are shown to give
the compound nuclei with small excitation energies (i.e.,
the cool compound nuclei), and once again the excitation
energies of these cool compound systems increase with the
mass asymmetry of their reaction partners.

V. SUMMARY OF THE RESULTS

We have shown that, on the basis of fragmentation
theory which uses the two-center shell model, fusion of
two heavy ions can take place only if they overcome the
adiabatic interaction barrier. Actually, the fusion process
starts already at the first barrier which appears at a much
larger length (or separation) of the colliding system, at a
point just past the saddle shape formation. This barrier
is, however, too low such that only a “conditional saddle”
can be said to be formed and the deep-inelastic collision
process occurs. Another barrier at a smaller length of the
composite nucleus is also observed which is high enough
to hold the system together. Provided the incident energy
is good enough, complete fusion of the colliding nuclei
occurs by crossing over of this barrier. Then, depending
on the excitation energy of the fused system formed (given
by the barrier height), it will either go to the ground state
after evaporating a few neutrons (producing a compound
nucleus) or fission back, resulting in a fusion-fission pro-
cess.

The excitation energies, i.e., the fusion barrier heights,
calculated for all the possible target-projectile combina-
tions of a compound nucleus, when plotted as a function
of their mass asymmetry, give the fragmentation poten-
tial. This calculation, upon comparison with the frag-
mentation potential calculated simply for a constant rela-
tive separation (larger than the sum of radii of the incom-
ing nuclei), gives two further interesting results: (i) the
use of a constant value of relative separation in the calcu-
lations of the fragmentation potential is a reasonable ap-
proximation for locating the target-projectile combina-
tions corresponding to cool compound systems; (ii) the ex-
citation energies of the cool compound system increase as
the mass asymmetry of the incoming nuclei increases.
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APPENDIX: PROXIMITY POTENTIAL
FOR DEFORMED, ORIENTED COLLISIONS
WITHIN THE CENTRAL LINE PRESCRIPTION

The central line prescription consists in calculating the
proximity potential with the distance s, between the nu-
clear surfaces as the one along the line connecting the nu-
clear centers (the central line) rather than the shortest dis-
tance between them. Also, the variation of the mean cur-
vature radius R with the angle of orientation of the sur-
face is neglected. Such an approach has been quite suc-
cessful for light ions. For a heavy spherical projectile on
a heavy deformed nucleus, however, Randrup and
Vaagen®® have shown that this prescription gives the po-
tential to within 10% only if surfaces with quadrupole de-
formations are considered. More recently, Baltz and Bay-
man?’ have also shown the inadequacy of the “central line
potential” within the proximity approach, if either of the
nuclear surfaces has high multipole (hexadecapole) defor-
mations. In spite of all its inadequacy, it is still very
much used because of its being computationally very sim-
ple. In the following, we use it for the collision of two de-
formed, oriented nuclei having quadrupole deformations.
Our treatment is somewhat similar to that of Tricoire
et al.,*® who studied the deformation effects in the prox-
imity potential for two axially aligned nuclei (6,=6,=0
in Fig. 7).

For spherical nuclei, the proximity potential is ade-
quately given by Egs. (5). When both the colliding nuclei
are deformed, the surface separation in the central line
prescription for the axially symmetric nuclei lying in the
same plane is given by

S0=R ——RI_RZ , (A1)

where the nuclear radii are now defined by

Yzl 2 = QZ/bz
X2

,
» 22

FIG. 7. A schematic configuration of two deformed and
oriented colliding nuclei.
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R;(6;)=R;[1+4a;P,(cos0;)] (i=1,2). (A2)

Here 6; is the angle of rotation of the ith nucleus with
respect to the symmetry axis (see Fig. 7) and a; are related
to the quadrupole deformation S; (see Ref. 16 for a defini-
tion of «;),

B;i=1+1.5a; + 1.6a?+higher orders . (A3)

R; is given by Eq. (5¢), but in the actual calculations we
use the central radii C; instead of these effective sharp ra-
dii, where??
2
C,' =R i 'b_ .

R, (A4)

We use definition (A1) for only the positive sy, i.e., for
R>R,+R,. For negative sj, this definition becomes
quite arbitrary?*?> and we use an alternative definition
given below.

The mean curvature radius R for two deformed nuclei
is given by?

1 1
+ +
RyRi;;  RyRy

1
R 1Ry,

sin’p

1
— +
R? R;3Ry

1

+ (AS)
Ry 1Ry  RyRy,

cos’p ,

+

where @ is the azimuthal angle between the principal
planes of curvature of nucleus 1 and 2; and R;; are the
four principal radii of curvature, at the points of
minimum separation (see Ref. 27 for explicit expressions).
For coplanar nuclei, g=¢, —@,=0", and if the two nuclei
have their symmetry axes aligned with the collision axis,
ie, 6;=0,=60=0" (as is the case for the calculations of
Figs. 5 and 6), then (AS5) reduces to

11 1 1 1
R? aa,  bib,  ayb,  azb

, (A6)

where a; and b; are the semimajor and semiminor axes of
the two colliding deformed nuclei (Fig. 7).

For the nuclear surface width b and the surface energy
coefficient 7, we take the values given by Egs. (5d) and
(5e), respectively. Tricoire et al.*° allow for the deforma-
tion effects in b as well.

In the case of the interaction region, i.e., R <R;+R;,
the saddle and necked shapes are formed. The proximity
potential would then apparently depend on the shape pa-
rameters also, as is shown in Ref. 25 for two equal collid-
ing nuclei. For the present calculations, however, we still
use Egs. (5) with s, defined as the difference between the
length of the nuclear system obtained by minimizing the
liquid drop energy (see Fig. 2, adiabatic case, for typical
shapes) and the corresponding length of the colliding
partners at their touching configuration,

so=2RoA—2(R;+R3) . (A7)

Apparently, now s, can be both positive and negative and
the proximity term contributes till the neck disappears. R
is still given by Eq. (A6).

A proper derivation of the proximity potential for the
collision of two coplanar, axially symmetric deformed and

oriented nuclei is given by two of us®® and it will be of in-
terest to compare the present central line prescription re-
sults for deformed nuclei with the corresponding realistic
calculation. As already mentioned in the first paragraph
of this Appendix, Randrup and Vaagen?$ have carried out
such a comparison for a spherical-plus-deformed system.
However, instead of carrying out such a comparison here,
in the following we look for the justification of the above
approach by analyzing its role in the heavy-ion fragmen-
tation potentials. Calculations are made for both the
asymptotic (R >R;+R;) and interaction (R <R;+R,)
regions.

First of all, we study the variation of the proximity po-
tential ¥, as a function of mass asymmetry 7 and the
orientation 6; and 0, of the colliding nuclei. We consider
the case of R>R;+R; and 6,=6,=0. Figures 8 and 9
show the results of our calculation for the compound sys-
tem 258104 as an illustrative example. We notice in Fig.
8(a) that the proximity contribution is small for large sur-
face separations (see the dashed line for R =15 fm, plot-
ted for the case of 8=0° only). As R is decreased to 14.2
fm, the proximity potential is still negligibly small, almost
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FIG. 8. (a) The proximity potential as a function of mass
asymmetry, within the central line prescription, for the com-
pound system 2°)104 at constant R values (>R, +R;) and at
different orientations 6,=6,=6. (b) The deformations of the
two colliding nuclei as a function of mass asymmetry for 28104,
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FIG. 9. The surface separation s, as a function of mass
asymmetry n for R =14.2 fm and for different orientations
6,=0,=8, for the compound system >**104.
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FIG. 10. The fragmentation potential V as a function of
mass asymmetry n at R =14.2 fm, 6=0°, and /=0 for the
compound system 2%8104. The solid and the dashed lines give,
respectively, the potential with and without V, in it.
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FIG. 11. The surface separation s, as a function of mass
asymmetry 7 for the interaction region (R <R,+R,,0=0°),
calculated for the length Az(7) of the compound system 258104,

independent of 7, for the spherical nuclei (8;=p8,=1).
However, it becomes strongly attractive for the deformed
colliding nuclei and this attraction is shown to increase as
the deformation increases [see the solid curve for 6=0° in
Fig. 8(a); for deformations of the two colliding partners,
see Fig. 8(b)]. We further notice in Fig. 8(a) that as 0 in-
creases the proximity potential ¥,(7n) rapidly decreases
and becomes almost zero at §=90°. This result is a sim-
ple manifestation of the fact that as the orientations 6 of
deformed nuclei increase, the surface separation s, in-
creases (and hence, in view of our result for R =15 fm,
the proximity potential decreases), as is shown in Fig. 9.
As we go to R <14.2 fm, the proximity potential for
spherical nuclei becomes a couple of tens of MeV more at-
tractive, but then for deformed nuclei it is larger than or
at least of the order of — 100 MeV, which is rather an un-
realistic value if ¥, is simply an additional attraction due
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FIG. 12. The proximity potential (triangles and open circles)
as a function of the surface separation so(7) determined in Fig.
11. The calculations are made for 7 <0.5 only and the solid line
is drawn as a guide to the eye.
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to the close proximity of the colliding surfaces. In anoth-
er calculation, Saroha et al.! have shown that the role of
the proximity potential is negligibly small for spherical
and nearly spherical nuclei even for their touching config-
uration. Hence, this calculation along with that of Ref.
31 allows us to conclude that the proximity potential con-
tributes significantly only for deformed colliding nuclei,
and this contribution decreases gradually as the orienta-
tions of the colliding nuclei increase.

In order to see the role of the proximity effect in the frag-
mentation potential, we have shown in Fig. 10 (solid line)
the fragmentation potential V(%) for 28104, calculated by
using Eq. (3), for R =14.2 fm, 6=0°, and /=0. For
comparison, the fragmentation potential for ¥, =0 is also
shown in Fig. 10 (dashed line). We notice that whereas
the locations of the potential energy minima with respect
to n remain almost unchanged, their relative excitation
energies are strongly affected. Specifically, inclusion of
the proximity term in the fragmentation potential makes
the excitation energies of the target-projectile combina-
tions, corresponding to the potential minima, increase
with the increase of their mass asymmetry. This is an im-

portant result, as is discussed in the main text of this pa-
per, as well as in II.

For the interaction region (R <R +R,), we first obtain
the variation of the surface separation s as a function of
mass asymmetry 7 by using Eq. (A7) for A=Ar(7n) taken
from Fig. 4. This is shown in Fig. 11 and is relevant for
7 <0.5 only, since no necked shapes appear after 7=0.5
(see Fig. 2). The corresponding proximity potential V),
calculated by using Eq. (5), is shown as triangles and open
circles in Fig. 12. It is interesting to find that these calcu-
lated points give rise to a standard form of the proximity
potential which is shown here by the solid line. (The cal-
culated points could also be joined to give the modified
form of the proximity potential of Blocki and Swiatecki,*?
but we have drawn here only the form used.) Apparently,
our use of Eq. (A7) for determining s, in the case of
necked systems formed by any two colliding nuclei and
then using it in Eq. (5) for calculating the proximity po-
tential seems justified. The fragmentation potential for
the length Ag(n), with ¥V, included in it, is already shown
in Fig. 5 and is found to give results similar to those for
R >R +R, (see the main text).

*Permanent address: Physics Department, Panjab University,
Chandigarh-160014, India.
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