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The predictions of the exact SU(3) symmetry limit of the interacting Aeon model are reviewed fox

the Dy—Pt region. Evidence of a functional relationship of the coefficient a of the L (L +1) term
in the expression for energy in the SU(3) limit with the product XpN„ is presented, with a similar re-

lation for B(E2,2+&-0+&). In contrast, the absence of a simple direct relationship of the coefficient P
(=K) of C(k, ,p) or of the SU(3) symmetry breaking term K"/K with Np, X„ is illustrated. The
possible reasons are discussed.

I. INTRODUCTION

The interacting boson model' (IBM) provides an alge-
braic description of the various symmetries involved in
the collective structure of the atomic nuclei. The three
dynamical symmetries of the U(6) group, SU(5), SU(3),
and O(6), offer analytic solutions. The study of the devia-
tions from these limits in actual nuclei can provide insight
into the complex nuclear structure. It is of great in-
terest to find its links with the shell model of nuclei.
An important step in this task is to find the (N,Z) depen-
dence of the coefficients of the various interaction terms
of HtaM. We report in this paper a partial solution of this
intermediate problem in the SU(3) limit of the U(6) sym-
metry, and discuss the transition from the SU(3} to O(6)
symmetry for the deformed nuclei in the 66&Z &78 re-
gion.

We do this by first reviewing the conditions of an exact
SU(3) symmetry6 (Sec. II A} and then test them with the
experiment (Secs. II B—IIE). Instead of studying a single
nucleus or a few nuclei, we consider the whole deformed
region of 66 &Z & 78 and N & 104. This enables us to for-
mulate the dependence of the coefficient of the quadru-

pole term and the B(E2) values on the boson numbers
N~ and N„(Secs. II B and II D). In the next step we con-
sider the effect of the symmetry breaking term K"P P
(Sec. 11C). Our conclusions are given in Sec. III.

II. VALIDITY OF THE SU(3) SYMMETRY

A. Characteristics of SU(3) nuclei

Arima and Iachello6 discussed the four conditions of
the SU(3) symmetry. The first necessary condition of an
exact SU(3) symmetry is that the energies of the g-band
levels exhibit the L(L+1) pattern with the energy ratio
R4 —E(4i+)/E(2—i+)= ", . This cond—ition is well satisfied
for the above nuclei, which lie in the deformed region.

A second condition is that the p and y bands be degen-
erate. The best exam~ples for satisfying both conditions
are in 's Gd ' Er ~U (Ref. 6), ' Yb, and ' W. Most
other nuclei exhibit a broken p- and y-band degeneracy.
We shall examine this violation of the exact SU(3) sym-
metry in detail below (Sec. II C).

A third stricter test is in the vahdity of the expression
for B(E2}values of intraband transitions:

B(E2;L +2~L)= Ba(ME' 2L+2 L)
(2N+-', )'

which implies a cutoff factor at L =2K. This test of the
conservation of neutron-proton bosons limited to the s-d
subspace, leading to the compact U(6) group, and of the
dynamical group SU(3), is difficult to verify experimental-
ly. Only a slow fall with increasing L predicted by Eq. (1)
was verified in ' Yb and later in Kr. There have been
several reviews ' of this condition vis-a-vis the results
of high spin excitation experiments, and the predictions of
the IBM are not borne out. In fact, the continuation of
the yrast E2 transitions beyond L, =2% can be explained
in terms of the core excitation, ' thus changing the effec-
tive boson number X.

A fourth test was suggested in the ratio

B(E2,2r ~Op) /B (E2,2r ~Oi ) .
In the strict SU(3) limit, the 2„-Oi transition is not al-
lowed. If the SU(3) symmetry is broken slightly, this ra-
tio in the interacting boson approximation (IBA) would
still be large. Only a few p-y transitions which do exhibit
stronger p-y band couphng have been observed in this re-
gion.

As stated above, we apply a different criterion for the
test of the zeroth approximation of SU(3). Instead of a
single nucleus we test all the above SU(3) conditions
simultaneously for the whole region. The F-spin symme-
try in IBM-1 requires that all members of the F-spin mul-
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N =Xp+X„ Dy

TABLE I. Total boson number N~, from Eq. (3).

Er Os

12
13
14
15
16
17

2.0
3.7
4.3
4.3
4.0

2.7
3.4
3.7
3.8
40

2.8
3.6
4.3
5.2
7.1

8.2

44
5.2
6.4

2.3
2.8
2.6

tiplet, nuclei with the same total boson number
N =N~+N„or states with I' =N/2, have approximately
the s~e st~cture for the low lying levels. ii We apply
the various tests in these F-spin multiplets.

Arima and Iachello added the L L part of the two
d-boson interaction to the SU(3) Hamiltonian, where

L =~10(dtd)")

B. The (2%,0) g band

At first, we test the simplest SU(3) Hamiltonian

H =—KQQ; Qg,

where

(2)

is the d-boson conserving interaction. (However, see the
comment in Ref. 13 on the consequence of adding this
term phenomenologically and on its insufficiency. ) Since
it is a diagonal term in the (A, ,)M) representation of SU(3),
the wave functions are not affected, and

I= KQQ—; QJ
—K'$L; LJ

Q =(std+dts)(2) (dtd)(2)
2

E ( [N](A, ,p )KLM) = ~ KL (L + 1)—KC( A,,p ) .

The SU(3) Casimir invariant is given by

C(A, ,p)=(A, +p)(A, +p, +3)—Ap, .

In this limit, the energy difference between the levels of
the lowest (2N, O} and the next (2N —4,2} representation
with the same L value is 6(2N —1)K. Since K is deter-
mined from E(2)+),

E(2r) —E(2)+}=—', (2N —1)E(2i+)

is a function of N only. Using this relation we derive
In ' Gd, ' Er, and U, the good examples of

nearly exact SU(3) symmetry, the N~, are 5.0, 4.6, and
8.2 instead of the required values of N =12, 17, and 13,
respectively. Further, we look at all the stably deformed
nuclei in the region under consideration, where the F-spin
symmetry holds well"' (see Table I}. The calculated
values of the boson number N fall short up to a factor of
6. So Eq. (3) is wholly inadequate, and using the known
N =N~+N„value for a given nucleus, one cannot predict
the value of the E(2r).

E((N](Ap)KLM) =aL (L +1)—PC(A„p, ),
with a=( ~K —K'), p=K. Now E(2&) is not related to
E(2i+) analytically, so that a and p are both parameters
to be determined for each nucleus from experiment, as is
done in a phenomenoloyical calculation using the Bohr-
Mottelson (BM) model. ' Thus

E(2)+)=6a,
E(2r}—E(2)+)=6P(2N —1}.

The calculated values of the coefficient a are given in
Table II. For a fixed boson number N, a is fairly con-
stant, except in Os and Pt. Thus 2)+ states here form
good F-spin multiplets. " This also leads to a constant
Rs ———', , satisfying the first condition of an L (L +1) pat-
tern of the low lying levels of the g band in all the above
nuclei. As N increases, the value of a decreases on the
average (see Fig. 1), but a functional relation with ¹isnot
known.

To search for a relation between a and N we plot I/a
vs the products N~N„and (N~N„)'~ . In each plot, the
separate curves of Fig. 1 merge into a single curve with
only a random small scatter (less than 10%, except for

Pt) (see Figs. 2 and 3). A linear relation seems to hold

Dy

TABLE II. The g-band energy scale parameter a (in keV) from Eq. (5).

11
12
13
14
15
16
17

55.8
23.0
16.5
14.5
13.4
12.2
12.8

32.0
20.9
17.0
15.2
13.4
13.3
13.1

27.7
20.6
17.1
14.6
14.0
13.1
12.75

26.5
20.65
16.8
15.9
15.2
14.7

26.1

20.5
18.65
18.2
17.7

26.5
22.5
22.0
22. 1

26.5
25.4
25.8

28.5
61.0
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FIG. 1. Plot of the coefficient a in Eq. (5) vs boson number
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well in both plots. So we look at the products a(N&N„)
(see Table III) and a(N~N„)'/ (not shown). The former
product overshoots the folding with respect to N. Thus a
linear relation

1/a=a +b (N~N, )'/ (7)

with a = —23 and b = —, seems to be more probable from
the above analysis. The uncertainty in the empirical
values of (a,b) is limited to & 5%%uo only. In the geometri-
cal picture of the BM model, 1/a represents the moment
of inertia W(2i+ ) =6/E (2i+ ). Compare the standard
W(2i+) vs atomic mass A plots in Ref. 14 (Fig. 4.12),
where for each series of isotopes a separate curve, with an
initial linear rise and a final saturation value, is obtained.
In the IBM, a folding of all these separate curves into a
single curve is obtained in the above. For the largest
value of NsN„ there is some indication of a saturation
value. Also note that we have limited the plot to the
N &104 midshell limit, N~+N„=N &12, for reasons dis-
cussed at length in Ref. 12.

Using the hybrid rotational model of Moshinsky'
which takes advantage of the extended BM model and of
the SU(3} limit of the IBM for the deformed nuclei, Par-
tensky and guesne' showed that (P ) is proportional to

Since 1/a itself is approximately proportional to
(P2), it should be proportional to N in the exact SU(3)
limit. In the "two-fluid model" (TFM) of a rotating nu-
cleus, Vallieres et al. ' calculated Jr(2+) and N~„s, the
number of nucleons in the rotating wing, using the experi-
mental 8(E2) values for extracting the deformation pa-
rameter P. Their N „s show greater correspondence with

FIG. 3. Linear relation of I/a to QN~N„. The symbols for
the data are the same as in Fig. 2. The single data point far
below corresponds to N = 11 for Dy.

the J (2+) vs A curves than to the actual N =N +N„
values (see Figs. 1 and 2 in Ref. 17). Thus our present
analysis shows that the N „s values derived from such a
naive model as the TFM are a function of the NsN„
product rather than of the total boson number N This i.s
logical, since the collectivity in this region depends on the
dominant attractive proton-neutron boson interaction
rather than on the total number of bosons N. While N
represents the static effect, the product NqN„represents
the dynamics of the deformation. Casten's used the
NsN„product for unifying the R4 data in the A —150 re-
gion.

C. The (2N —4,2) Pand y bands

Next we look at the systematics of the coefficient P of
the Casimir invariant C(A,,p, ), derived from E(2&) and
E(2i+) (see Table IV). Over the stably deformed nuclei in
the Dy—Os region, P varies through a factor of 2, even
for the two neighboring nuclei with the same boson num-

ber N and approximately the same NsN„product, e.g., in
Er and '7 Yb, the good SU(3) nuclei.
Further, in most nuclei, the P- and y-band degeneracy

is broken (the second condition}. So a given value of the
P coefficient (and of a) will not fit both the P- and y-band
levels simultaneously. In fact, a measure of this symme-
try breaking can be the degree of splitting in the 2}rand 2„
levels. A more general Hamiltonian for the SU(3)~O(6)
transitional nuclei is obtained by adding the O(6) Casimir
invariant term E"P.P.

H = KQ.Q K'L.L—+K"P.P—, (8)

80-

60-

~40~x

20-

Hf
N

o OS
a Pt

where P= —,'((d d) —s s). The pairing term raises the
K =0+ band upwards, the K =2+ remaining unaffect-
ed. Casten and %amer' suggested a one-parameter mea-
sure of the SU(3) symmetry breaking in the ratio K"/K,
since I( represents only the energy scaling factor and I.-L,

is a diagonal term not contributing to the relative energy
of two levels of same L. The ratio K"/K was related to
the expression

I I I l I I i 1 I I

ZO 30 ~ N
40 50 60 ?0

FIG. 2. Linear relation of 1/a to XpX„.
Rg ——

E(0p) —1,
E(2„+)—E(2i+)

(9)
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TABLE III. The product a(N~N, ) in keV.

Hg

12
13
14
15
16
17

735
660
694
753
783
922

733
714
746
752
838
917

743
716
702
758
788
842

723
672
715
759
810

655
671
726
778

608
660
728

507
568

671

which is zero in the exact SU(3) limit. In the general case,
for the SU(3) nuclei (R4 ———", ) a mathematical relation be-

tween K"/K and the term Ra is not known. For N =16,
Casten and Warner'9 presented a correspondence between
the two quantities. But in general, one has to find the
value of K"/K by a least square fit to the 2+i, 2&, and Oti

levels. Then in the IBM-l, other (E(2{)—E(2i+))/K are
a function of K"/K only. ' In order to search for a shell
model dependence of the symmetry breaking parameter,
we limit our study to the exactly knowable quantity Ri) it-
self. However, instead of the above expression for Ra,
one can also define it as

in heavier isotopes. But unlike the Gd isotopes, we do not
expect a SU{5) to SU{3}transition here; all these Hf iso-
topes have R4-3.3. Draayer and Weeks'o examined the
SU(3} symmetry in the pseudo-coupling scheme in the fer-
mion space and showed the need for third and fourth or-
der Q terms, to obtain the K splitting in the SU(3) itself,
but they used a different representation, and the simplici-
ty of the IBM-1 is not available. The intruder orbit i)3/2
in the N =5 shell of neutrons implies a breakdown of the
hartnonic oscillator structure which implies that real
SU(3) symmetry may not be good here. ' Casten et {21.2'

have suggested the use of the adjustable parameter g in-
stead of ~7/2 in the second texu. of the expression for Q,

E(2p) —E(2„)
E(0t))

(10)

Q (dt& +&td){2)+ (dtd){2)

This should be more reliable, since all three numbers in
the above involve the levels of the same (2N —4,2) repre-
sentation. Look at the values from both expressions in
Tables V and VI. More reasonable and consistent values
are obtained from our modified expression for R2). For
example, the large value of Ra —1 for ' Er (which leads
to K"/4K to -5; see Fig. 1, Ref. 19), a good SU(3) nu-
cleus with 2„well above 4i+, is now reduced to Ri) ———,'.
All other values are generally reduced in the second defi-
nition of Ri) and vary more slowly with N.

Even with the improved values of Ri) (see Table VI}
there seems to be no correlation of R2) {much less for
K"/K} with the boson number N or N&N, . Negative
values of Ri) (E2 &E2 ) in Yb and Hf are difficult to in-

terpret with O{6) symmetry breaking. Ronnigen et al. o

had noted the similarity of the P and y bands in the Gd
and Hf isotopes, the 2@ being the lowest and 8(E2, 0)+-

2t)) the highest in both ts4Gd and ' Hf and higher {lower}

Instead of the SU(3) value of X=—3, they obtained
—0.5 &X & —1.2 for Dy and Er. The values for Yb and
Hf for N & 104 are not given where we have found major
differences.

In the task of deriving the IBA parameters from a shell
model, this lack of regularity with N (or N~, N„) appears
to be the first hurdle to be crossed for the lowest two ex-
cited bands.

D. The intraband 8(82) values

Next we test the third condition on 8(E2, I.+2~1.)
in Eq. (1). First we study the 2i+-Oi+ transition, taking
data from Ref. 22, and look for a functional dependence
of 8(E2, 2)+-+0)+) on N~, N, (see Figs. 4 and 5). For a
given series of isotopes, at first the 8 (E2) value increases

TABLE IV. The coefficient P of the Casimir invariant of SU(3), in keV.

Os Pt

12
13
14
15
16
17

5.45
5.65
5.43
4.64
3.70

5.28
5.32
4.75
4.05
3.99
4.31

5.36
5.53
5.53
6.10
7.46
7.87

6.05
6.53
6.74

5.81

4.25
4.56

3.8
3.42
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TABLE V. The SU(3) symmetry breaking parameter

Eo
Rg —— —1

E2 E2
1

as a measure of the E"/E ratio.

Er Hf

12
13
14
15
16
17

—0.103
0.169
0.450
0.401

0.226
0.361
0.620
1.070
0.642
0.044

0.319
0.257
0.290
0.007

—0.248
—0.045

—0,111
—0.272
—0.082

—0.010

linearly with neutron number and then almost saturates to
a maximum value [Fig. 4(a)]. On the other hand, if one
links the data points of the satne total boson number N,
the B(E2}value seems to saturate at N & 13, irrespective
of Ns, N, [Fig. 4(b)]. Figures 5(a) and (b) exhibit the fold-
ing of the distribution when B(E2) is plotted vs N~N, or
(N~N, )'~2. The choice between the two plots is not
unambiguous. Note the initial faster rise [transition to
SU(3)] and a later slow rise corresponding to the satura-
tion.

The predicted variation with L of the
B(E2, L +2~L) values is not supported by experiment
in general, the actual fall being too slow. In the pseudo-
SU(3) approach of Draayer et al. I referred to above, us-

ing (LQL) and (LQQL) interaction terms, a slower fall
with L is predicted. Wu Hua-Chuan23 showed that in the
SU(15)DSU(3) chain, a slower fall of B(E2) with L is
predicted, in a etnnent with experiment, e.g., in ' Yb,

Hf, and 2 2Th. Thus SU(3} symmetry may be good,
but an appropriate represeo. tation is required.

E. The interband E2 strength

Finally we test the fourth condition of larger y-p E2
strength compared to y-g. There are almost no 2„-0~ ob-
served transitions in Dy—Hf, since the p band is expect-
ed to lie higher in the SU(3) nuclei considered here. Only
two 2~2„ transitions are available in ' Er and ' Dy.
The B(E2, 2~2&)jB(E2„2~2&) ratios (assuming the
same quadrupole moment for the excited bands) are 38
and 15, respectively, showing stronger p-y band coupling
than the p-g coupling. This is expected in both the IBM-
SU(3) and the BM models.

III. DISCUSSION

Our study of the four SU(3} conditions shows that the
SU(3} symmetry is good where one is concerned with the
rotational symmetry O(3), e.g., the moment of inertia W
and the B(E2, 2-0) values show a direct dependence on
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FIG. 4. (a) Variation of 8(E2; 2+1-Oj+) in e~b~ with neutron
number ¹ Broken lines link data for the same Z. (b) The bro-
ken lines link data for the same boson number.

FIG. 5. (a) The 8(E2; 2~+-0~+) plotted versus the product
N„N, . The data points correspond to Dy, O to Er, X to Yb,
and + to Hf. (b) The same data as in (a) plotted versus

QN~N, . The data points on the fast rising portion belong to
N =10—12.
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TABLE VI. SU(3) symmetry breaking parameter

Rg ——{E2 —E2 )/Eo as a measure of E"/E.

12
13
14
15
16
17

Dy

—0.092
0.140
0.301
0.281

Er

0.160
0.249
0.365
0.508
0.374
0.031

0.215

0.216
—0.007
—0.334
—0.049

—0.141
—0.395
—0.100

the valence nucleon (or hole} boson numbers Nz, N„
which in turn are mainly responsible for the stable defor-
mation of the nuclear core. Note that the main contribu-
tion in a comes from K', since P=E is small (see Tables
II and IV). It involves the d-boson preserving interaction,
coupled to angular momentum one. The significant role
of the N&N„product is made more transparent here,
which reflects the dymunics of the nuclear deformation
expressed in the H~„ term af H»M, .

On the other hand, the intrinsic P and y vibrations
show irregular deviations from the SU(3} symmetry. Nei-
ther the coefficient of the C(A, ,p} term nor that of the
O(6) term P I' is a simple function of No, N, . The local
shell effects are important here, and the effect of the
neglected nuclear core will be maximum for the intrinsic
vibrations. The complexity of the nuclear structure
remains hidden in the parameters of the model deter-
mined by fitting to the data. Our simple analysis differs
from the usual application of the IBM for deriving the
I.-dependent properties in a given nucleus. %'e have
presented the quantities which often serve only for nor-
malization of the L-dependent calculated quantities.
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