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Particle-hole interacting boson approximation applied to '6Ni
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The particle-hole interacting boson approximation proposed by Feshbach and Iachello is applied
to the low-lying excited states of 5 Ni. Since the particle-hole interaction seems to be dominant in

the low-lying excited states in '6Ni, the particle-hole pairs are taken as the bosons. The rest of the

Hamiltonian is considered as the interactions between the bosons. The first excited 2l+ and 4l+ states

as well as the ground state are reasonably described without introducing any artificial treatments

into the calculation. The first excited Ol+ state is shown to be the two-boson dominant state which is

consistent with the experimental prediction. The forbidden components for a fermion system in-

herent in the boson wave function are investigated. As the result, the wave functions of the 0+, 2l+,

and 4l+ states are shown to be almost free of mixing of the components.

I. INTRODUCTION

The calculation of accurate wave functions for nuclear
systems is one of the most recent matters of concern.
Such wave functions are indispensable for the precise
study of nuclear decay processes such as the double P de-

cay from which valuable information concerning funda-
mental physics can be obtained. ' Since these wave func-
tions should be fully microscopic, they must be derived ei-
ther from shell model calculations or from models based
on the projected Hartree-Fock method. However, there is
still a region where common understanding of the level
structure based on such microscopic calculations is not
yet obtained. In this paper we discuss the low-lying level
structure of 56Ni since the arguments based on microscop-
ic investigation on this nucleus seem not yet to be con-
vergent.

The nucleus Ni decays into '6Fe through orbital elec-
tron capture and P+ decay. The investigation of such a
proctors requires an accurate wave function of the 0+
ground state for Ni. We do not aim, however, at the
calculation of such an accurate wave function in this
work. Our purpose is to give insight into the difficulties
inherent in the microscopic calculations on this nucleus.

The first problem lies in the choice of the single particle
energy difference between Of7/z and lp3/2 orbits (hereaf-
ter we use b, for the energy). Wong and Davies, 2 for in-
stance, adopted a value 5=1.5 MeV which produces the
best fit to the experimental data in their restricted 4p-4h
calculation. With such a small value for 5, however, it
would be difficult to get a —', state as the ground state
for the Ni. Do Dang and Rabbat and Motoba and
Ogawa (MO) used a value of about 5=4.5 MeV, which
is consistent with a value obtained from the binding ener-

gies of Co, 56Ni, and 6sNi nuclei. Using this 5, they
could reproduce well the positions of the lowest —,

'

, and —', states in Ni. This choice of b seems very

plausible, but their results on Ni do not look as good as

those of Wong and Davies.
The next problem, which seems to be more important,

is the absence of the first excited 0+i (3.95 MeV) state in
all the microscopic calculations reported up to now. This
state is excited strongly with Fe(3He,n) Ni (Refs.
10—15) (with about 50% of the ground state), whereas in
the Ni(p, t) Ni reaction, ' ' it is weakly excited (with
about 3% of the ground state transition). This 0+i is un-

derstood to be a 2p-2h state following a simple shell
model picture since transfer strength of a i@3/z pair in the
( He,n) reaction is stronger than that of a Of7/2 pair in the

(p,t) reaction by a factor of about 6.' In the shell model
calculation, the 2p-2h state is greatly affected by the ex-
istence of 4p-4h configurations. There are some calcula-
tions which include the effects of 4p-4h configurations ei-
ther explicitly with much restricted form ' or rather im-

plicitly. 6 In the above studies many different values for b,
are adopted in each calculation, but none of them could
successfully reproduce the state in the correct position.
Therefore the problem seems to lie also in the truncation
methods to the 4p-4h configurations. For the purpose of
obtaining insight into the structure of excitations in this
nucleus, we employed an approximated method to the
shell model approach. The method is called the interact-
ing boson approximation (ISA) proposed by Feshbach and
Iachello. ' This method exploits the existence of one-
particle —one-hole (or particle-particle, hole-hole) excita-
tions in nuclei to build elementary modes (bosons), and
treats the residual interactions for nucleons as an effective
interaction acting between the modes. This approach was
already applied successfully to the low-lying states of
' O. ' It was also applied to Ca to gain insight into the
coupling scheme in the low-lying states of the nucleus.
But the application to Ni must be more promising be-
cause two low-lying states (2+i, 2.70 MeV and 4i, 3.92
MeV) in Ni are considered to be almost 1p- lh configura-
tions and are the possible candidates for such elementary
modes [d boson (2=2) and g boson (1.=4)).
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The present study is intended to be a breakthrough for
the above-described difficulties in the microscopic calcu-
lations. We do not aim at obtaining an accurate wave
function for the nucleus but rather to give a clue for
resolving the difficulties inherent in the shell model calcu-
lations.

In the analysis we follow the viewpoint of MO, that is,
we choose the same value for b, as they used and we also
use the Kuo-Brown matrix elements. ' In their 2p-2h cal-
culations they multiplied the matrix element
&(lf7n)'

I
6

I
(lfsri)'& by 0 6 to obtain an excited ~t~t~

in the correct position. We neither follow such a correc-
tion for the matrix element nor use any other phenomeno-
logical interactions. In this sense, in principle, there are
no free parameters in our calculation.

In Sec. II we summarize the formulae of the IBA. In
Sec. III we discuss the calculational results, and we give a
summary of this work in Sec. IV.

II. THE CALCULATION METHOD

The IBA was proposed for the purpose of describing
the complex nuclear excitations in an approximate
manner. As a first step, in the IBA, the approximately in-
dependent normal modes are derived from the correlated
ground state. Any excited states as well as the ground
state of nuclei are then described by considering the in-

teractions acting between the normal modes.
The nuclear Hamiltonian relative to the Fermi sea,

(2.1)
i'd%

can be written as

lh subspace. The matrix elements of all the other parts of
the H;„, vanish exactly in this subspace. Those parts,
however, are taken into account as the interactions acting
between the bosons. On the other hand, the conventiona1
random phase approximation (RPA) considers only Hzh
and H,&h parts of the interactions. In this respect the
ISA is beyond the RPA.

A normal mode is defined in the lp- lh subspace as

Bt= g f„;C„C;, (2.4)
Pl

where p, denotes particles and i denotes holes. By solving
the equation of motion in the Tamm-Dancoff approxima-
tion,

[Up+Hp+Hph, B ]=RcoB

we can obtain solutions in the lp-lh subspace,

14t.r&= +f1,'Cl C; I do& . (2.6)
Pl

In the above solutions the energetically lowest one or two

levels are selected as the bosons in the IBA.
In the next step, the boson-boson interaction is micro-

scopically constructed by considering the interaction

Hamiltonians 0» Hh-h &mph and Hmph The two-

boson state and the matrix element between the states can

be written as

I Ot. ,kt.,&T &

= g f tiffs la& 'I. iT»y& '1.2T2:I-T&
aPyS

H = Uo+Ho+Hm~

where

g 2)
alld

(2.8}

and

Uo= &4ol H 14o&

Ho ——g e'~a~u~ —g 6;b; b;,
l

1

H~, = —, g stirs CNCttc.scr
apys

~p-h+~p-p++h-h+Hcph+Hmph &

(2.3)

The constant M is a normalization factor. This matrix
element can be expanded in terms of a nucleon-nucleon
interaction. The calculation of the matrix elements for
the boson-boson interaction in the multiboson space is
straightforward when employing the boson coefficient of
fractional parentage (cfp). Details of the calculation are
presented in Ref. 19.

Next we consider the H,~h part of the interaction,

&0 IH.ph I 4L, ,PL, :I =T=o& (2.9)

a~ =C~,
where g ~ ez (e~ is the Fermi energy), and

l

=( —)
+m + 2+m

where e & ez. The indices a,P, . . . label the single parti-
cle quantum number (a=n 1~ rn tlrn' ). States below
the Fermi surface are expressed as ( a= n 1J~-
—rn t rn') and —contain an additional phase factor

( —} to ensure the correct transformation
property under rotation. The matrix elements of H;„are
given in terms of five basic graphs and their mirror im-

ages, which are shown in Fig. 1. In the ISA H&h is con-
sidered for creating the normal modes (bosons} in the lp-

The expansion of this matrix element in terms of the
nucleon-nucleon interaction is also available in the refer-

Hmph

FIG. 1. The graphic representations of the five basic interac-
tions in the H;„,.
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ence. In the matrix element, of course, only a boson pair
which is couphng to L =T=O can annihilate into vacu-
um through the H~h interaction.

The last part of the interaction H ph can be considered

to be the one boson annihilation interaction. Since the
formulae for this interaction are not available, we present
them here. Its matrix element in the boson basis can be
written as

~&PL:LT IH ph14'L, 4&L,:LT&=~gf IIfrsf~. &r5 ':LT IH ph Irz& 'L1T1 14~ 'L2T2&T&,
cP
ys

(2.10)

where the matrix element in the fermion basis can be expressed as

&y5:LT
I Hmph I a~ 1L12T12 Pv L34T34:LT&

Ja
A A A2 A2 A A A2 A
L12L34L 13 24T12T34T 13T24 ' Jp

L)3T)3 I.13
24 24

where L12 ——(2L12+1)'~ and

Jv
1

L34
1

2

T24

T12
2 2

T34
' ', '[351~ +85J J ],

24 13

(2.1 la)

I.
( )L +T+L24+ T24+Lg,

Jv

I.
&=(—)

L +T -L24 —T24-L),

Jp,

Jy Js
'&vY

I
6

I rsvp &L„T„

Js Ja

(2.11b)

(2.11c)

and Lx j„+jII+j——„+js, LT j~+j„. T——his matrix element connects the boson spaces whose boson numbers are dif-
ferent by one. The matrix elements of this interaction in the multiboson space can also be expressed by utilizing the bo-
son cfp. By denoting the multiboson state [p1,]"simply as 1" (dropping the isospin index t) we can express the matrix
elements as

&11.uL
I Hmph 111(U1L1),12.UL &

=n g [11 '(O'L ')1
1 I11UL][11 ' (O'L')11 I11vL]U(L'11L12,L111)&11 I Hmph 1111211 & (2.12)

v'L'

1/2
n1(n1 —1} n2!

&1 '.UL, IH „„11':UL&=
2 n)! g [1 ' (U2L2)111 Il 'UL][l ' (U1L1)1 (1)'Il 'UL]&l

I Hmph I
1:1&,

v1L1

v2L2

(2.13)

where n1 n2 + 1 ——and the u's are the seniority quantum numbers.
Next we consider the transition rates in the IBA approach. The reduced matrix elements for the electromagnetic

operator in the boson space are given by

II I

&4L-IIQLIIPL &= 2(e'rr+e."a}g f'jifrsL'L" 5ga&)'IICLII~& ' .
aPyS Ja Js Jy

I." I. I.'

r&&II LII & 'j j j (2.14)

&OIIQL114'L & = (e~ err) Xf II5LL'(—} &&II&L I!~& (2.15)

z

CL ——g ( —,
' +T, )y YL (8;,y; } .

i=1
(2.16)

vvhere CL expresses an electroquadrupole moment opera-
tor defined by

t

Since in the present study we consider only E2 transition
probabilities, only the L =2 boson (the d boson} can con-
tribute to the one boson annihilation processes. Calcula-
tion of the reduced matrix elements in the multiboson
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space are straightforward.
In the present study we take the Of-1p shell as a model

space. Therefore the hole state is restricted to only the
Of&~ orbit. We consider all the configurations in the
multiboson calculations. The maximum dimension for
the energy matrix, in our study, is 105 in the case of the
L=4 state of the five-boson space. As for the effective
nucleon-nucleon interiictions we use the Kuo-Brown ma-
trix elements. The reasons are to avoid increasing the
artificial parameters in the calculation and to compare the
preiamt results with those of the previous shell model cal-
culation which used the same matrix elements.

III. CALCULATIONAL RESULTS

Orbits

1p I/2

Often

1p3/2

Of~n

Energies
(MeV)

1.22
0.70
0.00

—4.62 (for a two-boson spectrum}
—5.02 (for a four-boson spectrum)
—5.38 (for a five-boson spectrum)

TABLE E. The single particle energies for the orbits in the
Of-1p shell which is employed in the present study. The energy
differences between Of7~ and 1@3&A (denoted by 5 in the text)
are taken as 4.62 MeV (Ref. 8) for two-boson, 5.02 MeV for
four-boson, and S.38 MeV for five-boson calculations.

A. Boson creation and mutual interaction

The first step of the IBA starts with creating bosons
from the fermion degrees of freedom. This is done by di-
agonalizing the Hzq part of the Hamiltonian within the
lp-lh subspace. The matrix elements for the other four
types of the Hamiltonian (H», Hq q, H~q, and Hmi, q) in
the lp-lh subspace are exactly zero. In the calculation we
adopt the same single particle energies as those used in the
work of MO whose values are listed in Table I. These
values were fixed to reproduce the low-lying —,

'

, and —, states in Ni within (lp-Oh)+(2p-lh) space.
The results of the diagonalization for L=2, 3, and 4
( T=0,1) cases are listed in Table II. All the other solu-
tions (L=1, 5, and 6 states) are higher in excitation ener-
gies. Among the indicated states we take the following
two lowest solutions as the elementary modes:

Eq(L =2,T =0)=2.76 MeV (d boson),

Es(L =4, T =0)=3.50 MeV (g boson) .

The dominant component in the d-boson state is

~ pq~qqL =2,T =0) (99%) and in the g-boson state is

~ p3qzf~qxL =4,T =0) (72%). Parity for the boson states
is everywhere positive since our model space is restricted
to the Of-lp shell. After identifying the boson spectra in
the lp-lh space we can construct any multiboson space by
utilizing a properly symmetrized boson basis. The multi-
boson spectra can be obtained by taking into account the

l

H», Ha a, H~a, and H ~i, parts of the total Hamiltoni-
an as boson-boson interactions. The numerical values for
the matrix elements of the Hamiltonians are indicated in
Fig. 2. From the figure we can see that the average
strength of the diagonal parts of the interactions is almost
one-fifth of the boson self-energy (the single boson ener-

gy). This fact indicates that our bosons have good charac-
ter as elementary modes within the present model space.

S. Two-boson spectrum

Before performing the multiboson space calculation we
first analyze the results of the two-boson spectrum to see
the characteristic futures of the present method compared
to other approaches. The calculational results are shown
in Fig. 3 and Table III. The ground state is shown to be
0+ with 91% zero-boson component. This state is 0.55
MeV lower compared to the uncorrelated ground state.
The value is very small compared to the 2p-2h shell model
calculation by MO, whose value is about 4 MeV. The ori-
gin of this difference may be attributed to the following
reasons. In the calculation we take only d- and g-boson
modes and discard all the other 22 boson states which are
produced in the lp-lh calculation. Furthermore, in the
IBA approach the pairing correlation is very underes-
timated owing to the following recoupling factors:

r

f7n fan
I A(P3nfvn) ka(P3nf7n)& =O, T'=0&=5+L '

p3~x @3~i

2 2

(3.1)

This transformation is necessary in calculating the boson-
boson interaction microscopically. The study by MO has
made clear that the pairing correlation inherent in the
Hamiltonian plays a dominant role in the low-lying excit-
ed states of s Ni. The inclusion of the f boson which ap-
peared next to the g boson (see Table II) is expected to in-
crease the correlation, which will lead to a greater depres-
sion of the ground state energy. Therefore the f boson
may also be important in our calculation. But f bosons
are expected to play a minor role compared to the d and g

I

bosons in Ni because only the lp-lh nature of 2+i and 4+i

is observed in the low-lying excited region. For this
reason we neglect f bosons in the present approximated
calculation.

Because of the small depression of the ground state en-
ergy, however, we can obtain the 2+~ and 4+& states in the
correct positions. In our calculation the excitation ener-
gies of the 2+i and 4+i states are 3.18 MeV and 3.93 MeV,
respectively. The 2i level is almost a one-boson (d boson
94%) state with 99%

~ p3&2f~&zL =2, T =0) component.
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TABLE II. The eigenvalues and the components of vrave functions for boson states obtained from

the diagonalization of H~h in the 1p-1h subspace.

Eigenvalue
(MeV)

2.76
6.09
3.96
5.05
6.28
3.50
5.02
5.45
5.67
6.36
4.97
5.82
6.60
4.67
5.71
6.83

( &Pin ~ofen l

0.996
—0.084

0.937
0.050
0.346
0.846
0.359
0.395
0.735

—0.678
0.957

—0.172
0.233
0.962
0.019

—0.273

(OIsn~ of7n &

—0.084
0.996

—0.012
0.994

—0.112
—0.366

0.929
—0.060

0,678
0.735
0.046
0.885
0.463
0.081
0.934
0.349

(&Pin of7nl

—0.349
0.101
0.932

—0.388
—0.093

0.917

—0.286
—0.432

0.855
0.262

—0.357
0.896

In shell model terminology this state is a lp-lh state. The
4i+ state is also a one-boson (g boson 93%) state. In the
work of MO, a large depression of the ground state results
in the high excitations of the 2i and 4~ states. They at-
tributed the reason to the omission of 3p-3h configura-
tions in their model space since the configurations signifi-
cantly affect the lp-lh states, whereas 2p-2h configura-
tions act upon the Op-Oh components. To see an effect
from the three-boson components on the one-boson states
in the ISA, we extend the calculation up to the three-
boson space. As a result, the 2+i and 4+i states reduce
their energies about 0.4 MeV with respect to the uncorre-
lated ground state. However, we cannot find any particu-
lar change or improvements in both energy levels and the

wave functions. Therefore in our approach the three-
boson components seem not to play an important role in
the 2+i and 4+i states. Following the maximum symmetry
principle, 3 Jaffrin selected certain 2p-2h and 4p-4h config-
urations which involve the maximum binding energies.
With such configurations, without 3p-3h components, he
successfully reproduced the low-lying spectra of s Ni.

C. Nultiboson spectrum

One of the main purposes of this work is to reproduce
the 0+i (3.95 MeV) state in the correct position and to
predict its structure. Up to now no theoretical discussions
were made on this level.

0.28

0.~5 028

(4,4) I (2.4 j (2,2) (4) (2) ()
L 0 2 4 6 8I2 3 4 5 6 0 2 4 4 2 0
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R 09C
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0
(22) 2

(4)

(2) 2

, (4) 0

0.16 0,25

Q5l 0.~6

0.73 0,28
2-

FIG. 2. The boson-boson interaction matrix elements. (2,4)

means a coupling state of a d boson and a g boson and (4) is one

g-boson state. The symbol P represents the zero-boson state.

A11 boson states are T=O. All the energy values are negative

and the unit is MeV.

E XPT.

Q = 4.62 (MeV)

FIG. 3. The results of the diagonalization of the H~ Hh-h

~~h, and H ~h in the taro-boson space.
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TABLE III. The wave functions for 0, 2~, 4~, and 0+~ states
resulting from the two-boson calculations. The numbers express
the percentage of the ccmponents in the wave functions.

ons

TABLE IV. The wave functions for 0, 2~, 4&, and 0& states
resulting from the four-boson calculations.

ons

0+

2)
4+

0+

0+

2[
g+

0+

10

9

13

0
16

16

15

2

7

28

2
6
0

(3,5) 2,6
4

4-

In the shell model investigation the choice of the single
particle energies is very crucial in detamining the level
structure. lL especially plays an essential role in 'sNi. In
the multiboson calculations we also follow MO's value for

In the present case, however, the model space is ex-
tended up to four- and five-boson configurations, then we
try to change the value from 6=4.62 to 5.02 MeV for the
four-boson system and to 5.38 MeV for the five-boson
system as the optimal values. These values still seem
reasonable since they are also close to the value ( -6 MeV)
obtained from the binding energy calculations of 'Co,
s Ni, and Ni. In the four-boson case the single boson
energies become E(d boson)=3. 16 MeV and E(g bo-
son) =3.90 MeV, and all the other states are higher in ex-
citation energies. Calculated results with up to four-boson
components are shown in Fig. 4 and Table IV.

Followin the experimental analysis of Nann and
Benenson, ' the dominant component for the 0+i state is
expected to be 2p-2h configurations as discussed in the In-
troduction of the present study. In the IBA approach a

0+ state is obtained at 4.07 MeV with 49% two-boson and
28% four-boson components. The two-boson part is com-
posed of 91% [d boson]q r o component. Thus the
dominant structure of this state can be described as a
two-particle-hole-pairs state with each pair forming
L =2+ and totally coupled to I.=T =0.

Although the four-boson components are not so large in
the above result, we consider these components to be sig-
nificant in reproducing this state, because we could not
find the 0+ state in the two-boson spectrum discussed in
the preceding subsection.

Above 5 MeV we cannot make any correspondence be-
tween calculated and experimental states. The present ap-
proach especially fails to reproduce the 02+ (5.00 MeV)
state observed in the experiments. This state is weakly ex-
cited in both (p,t) and ( He, n) reactions and is pointed out
as a 4p(T=O) —4h(T=O) state. ' In the experiment
we can find the 22 (5.35 MeV) and 42 (5.49 MeV) states
just above the Oz+ state. Following the quadrupole pairing
model by Fucks et al. ,

" these three levels can be under-
stood as 4p-4h states provided the 2i (2.70 MeV) state is a
quadrupole pairing (2p-2h) state. The differential cross
sections of these 2+2 and 4+2 states show almost one-tenth
(at H~,b ——0) of that of the 2i and 4+& states in (p,t) reac-
tions. Since they are also weakly excited in ( He, n) reac-
tions, there is a possibility that they are the 4p-4h dom-
inant states. This idea, however, contradicts both the
present IBA result and the work of MO; thus it is still not
clear about the structure of the Oi+ state.

We can find further three 0+ states at 6.66, 7.91, and
9.92 MeV in the data. These three levels are nicely under-
stood as T=O, 1, and 2 states by utilizing the Zamick for-
mula' '

0 0
EXPT. A

5.3 B

(BA-4 IBA - 5

E=Eo+bT(T+1)/2
with Eo=6.66 MeV provided we assume the following
coupling scheme for the above 0+ states:

[ Cu;7 =0+,T =1][ Co;I =0+,T= 1] .
FIG. 4. The comparison of the previous and the present

works with the observed data. The experimental data are taken
from Ref. 16. The letters A —E correspond to the following
works: A, Motoba and Ogawa; B„Jaffrin; C, Do Dang and
Rabbat; D, Soiti et al. ; and E, Oberlechner and Richert. ISA-4
means the calculational result in the four-boson space. The
symbol h, represents the single particle energy difference be-
tween Of7~ and 1@3~. The parity of the states is everywhere
positive.

This fact implies that above 5 MeV, the H~~ and H„„
parts of the Hamiltonian play dominant roles compared
to the H~h part. Thus our boson modes (particle-hole
pairs) must be already broken in the energy region.
Therefore, in the application of the IBA to Ni, we
should restrict ourselves to the discussions for the energy
region less than 5 MeV.

In the four-boson spectrum, Os, 2~, and 4+, levels are
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described as 88% zero-boson components, 71% one-boson

components, and 64% one-boson components, respective-
ly. The main trends of these structures are not changed
compared to the two-boson spectrum, and they are also
conserved when we extend the space up to five-boson con-
figurations. The calculational results for the five-boson
spectrmn are shown in Fig. 4. We can find 2+ and 4+
states near the 22 and 42 states, but they are not the
four-boson dominant states. As discussed already, H~~
and Hh h act strongly in this energy region. Therefore we
cannot have any discussion about the states within the
present approach.

Before closing this subsection, we give a brief discus-
sion on E2 transition rates. We calculate 8 (E2;2+i ~Os+)
and 8(E2;4+i~2+i) in five boson space. In the experi-
ment only 8 (E2;2i ~Os ) =77+32 (e fm ) is reported. '

In the calculation we use effective charges for protons and
neutrons as e~f =1.19e and e,"ir=0.49e, respectively.
These values were adopted in the 4p-4h shell model calcu-
lation. The results are 8(E2;2+i~Os+) =64 (e fm ) and
8 (E2;4+~~2~ )=49 (e fm ), and the former is very close
to the observed value. If we set the additional charges as
hei=be"=0. 42e, then we can reproduce the experimen-
tal value. These additional charges are also close to the
value he, rr =(0.53+0.17)e which is obtained from a sim-

ple shell model estimation.
From the above results we can say that the Oe+ and 2+i

states are reasonably described within the IBA approach
and their dominant components are zero-boson and one-
boson states, respectively. Sharma investigated the
ground state of ssNi with the Hartree-Fock method7 9 and
came to the conclusion that a Of7~2 orbit is occupied by
13 particles, that is, the 0~+ state is an 81.3% closed shell
state.

D. Comparison mth other studies

In this subsection we compare the present results for
Oe, 2i, 4i, and Oi states with several other investigations.
We use the following indices for the references: A, Moto-
ba and Ogawa (Ref. 8); 8, Jaffrin (Ref. 3); C, Do Dang
and Rabbat {Ref.6); D, Boiti er al. (Ref. 4); and E, Ober-
lechner and Richert (Ref. 5). The energy levels obtained
in these works as well as the IBA results are compared
with the experiments in Fig. 4. Among these works A, C,
D, and E are the shell model studies, whereas 8 follows
the projected Hartree-Pock method. The space is restrict-
ed up to 2p-2h configurations in A and D, while in the
works of 8, C, and E, 4p-4h configurations are taken into

account in a restricted form. Relatively large values for 6
are adopted in A, 8, and C, whereas in D and E the em-
ployed values are somewhat smaller.

In A the energy depression of the ground state is about
4 MeV. In order to reproduce the 0+3 {6.66 MeV, T=O)
state in the correct position they multiplied the matrix ele-
men«(f7')'I G l(f5/2) &J, T by 0.6 and reduced the
depression to about 2 MeV. In their resultant wave func-
tion Op-Oh components are included to about 80%%uo. The
energy depression is also large in D, but only 54% Op-Oh

components exist in the Oe+ state. The reason is that their
value for b, is very small (6=2.2 MeV). In 8 and C, Oe+

is almost a closed shell state.

2. 2q+ end 4+&

In A both levels consist of more than 90% lp-lh
configurations. The 2+i state is almost a
~P3qzfz~'2L =2, T=O& state. In 8 both levels are Pure
lp-lh states. In C the two levels include more than 85%
lp-lh states. In D the 2+i state consists of 87% 2p-2h
configurations and the 4+i is 40% lp-lh configurations
because of the small value for h.

There are neither any discussions nor calculational re-

sults concerning this state in works A, 8, C, and D In
work E, the 0+ (4.23 MeV) state is found which includes
47.4% 4p-4h configurations. However, considering their
small value for b, (3.38 MeV), this level seeins to be a pos-
sible candidate for the 02 (5.00 MeV) state since the level

is expected to be a 4p-4h state as discussed in subsection
C. They also reproduced the 0+ (4.26 MeV) state in a
separate calculation with 5=—e(f5~2) —e(fr~2) =2.5 MeV.
With such a value for 5, however, it will be difficult to
reproduce the ground state of Ni.

Following the above discussions, we can see that the
IBA approach can reasonably describe the Oe+, 2+i, and 4+i

states without relying on any artificial adjustments of the
parameters.

E. Forbidden components in the IBA wave function

In this subsection we refer to the existence of the for-
bidden components which can be easily recognized in the
expansion of the boson wave function. The two-boson
state can be expanded as

I &i„&1.34&T & = Xfl.,gr. 34 I J&p
'I

i2 Tie,i,i s 'I-34T34&T &

= Xf~,J134 I I- —9J l I T —9J I li farl i3Tl3r2 13 Js I-24T24+T & .

In the above expansion we can find a forbidden com-
ponent for a fermion system such as

lp3n«i3=»Ti3=0»f72«&4=»T34=0)-L =»T=o& .

(3.3)

I

These components, however, are necessary for fulfilling
the orthonorrnality relations among the boson states. An
admixture of such components into the boson wave func-
tion is inevitable when one describes a nuclear system
with the IBA approach. In the derivation of the matrix
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elements for the Hzz, Hh h, H~h, and H zh between the
boia3n states, however, these forbidden components do not
come into play in the calculations [see Eq. (3.15) in Ref.
19}. The existence ratios of these components in every bo-
son basis (~one-boy), ~two-boson), . . . ) are already fixed
when one creates bosons from the diagonalization of the
H~h part of the Hamiltonian. The ratio is unaltered dur-
ing the multiboson calculational process.

Clearly the forbidden components are not included in
the one-boson states. Therefore one-boson dominant
states, such as 2+1 and 4+, in ssNi, are almost free from
these components. In the realistic calculation of the two-
boson spectrum, 0&+, 2+1, and 4+1 states are shown to in-
clude the "permitted" components of 95.5%, 97.1%, and
95.3%, respectively. Since the nature of these three levels
is conserved also in the multiboson spectrum, our calcula-
tional results with the IBA approach might be acceptable.

On the other hand, the dominant components in the 0+1

state are two-bosoll alld four-bosoil collflgllratlons. Ill thc
[(d boson) ]q r o state 49.6% forbidden components
are included. Therefore the IBA description for multibo-
son states, such as the 0+1 in ssNi, suffers from such ad-
mixture of the components into the boson wave function
no matter what its simplicity for the interpretation of the
level structure.

The low-lying level structures of 36Ni are discussed
within the fraiiiework of the IBA. Although several shell
model studies on this nucleus already exist, their results
sann to be still confusing. The main discrepancies may be
attributed to the different choice for the single particle en-
clgy differences between Of7/2 and lp3/3 and to the treat-
ments of the 4p-4h configuration in their model spaces.
In the present work we followed the viewpoint of Motoba
and Ogawa as to the choice of the energy difference.

It requires huge effort to carry out the whole 4p-4h cal-
culation. Then we employ the IBA as an effective trunca-
tion method to the shell model approach. The IBA is ex-
pected to work well when H~h dominates over the other
part of the Hamiltonian. The nucleus s Ni seems to satis-
fy this condition.

Our investigations are summarized as follows:
(1) After the diagonalization of the H~h part of the

Hamiltonian, d and g bosons are taken as the elementary

modes in the lp-lh subspace of Ni. The strength of the
interaction acting between these bosons is about —, of the
boson self-energies.

(2) Os, 21, and 41 states are reasonably reproduced.
The Os is a 91% closed shell state, 2+, is a 61% one-boson
state, and 41 is also a 53% one-boson state within the
five-boson calculation. The above structures are compati-
ble with the result of the shell model study of Motoba and
Ogawa. In our study, however, the positions of the levels
are well reproduced without relying on any artificial ad-
justments of a matrix element which was introduced in
their work. The IBA also works well in reproducing the
8(E2;21 ~Os+) transition rate within the permissible ad-
ditional charges.

(3) The excitation energy of the 0+1 state is well repro-
duced in our multiboson calculation. This level cannot be
identified in the two- and three-boson spectra. The state
consists of 29% two-boson and also 29% four-boson com-
ponents. In shell model terminology 4p-4h excitations
may play a crucial role in reproducing the level in the
correct position.

(4) The pairing correlation so:ms to be much reduced
within the present truncated space. Introduction of the f
boson (3.96 MCV, see Table II) into our calculation serves
to increase the correlation, which results in a greater
depression of the ground state energy. Since the 2+i and
4+1 states are almost lp-lh states, the above effect may
shift up these levels. Therefore the study of an interacting
three-type-boson system (d, g, and f bosons) as well as a
large space 4p-4h shell model calculation seems to be in-
dispensable for making the more definite comparison be-
tween the two approaches.

(5) Some forbidden components for the fermion systems
are included in the IBA wave functions. The ratio of the
components is large for the state in which more than
two-boson components are dominant. Since zero- and
one-boson states do not include such components, 0, 2~,
and 4+1 levels are almost free from the problem. On the
other hand, the 0+1 state suffers from the mixing of such
components in the boson wave function. This problem,
however, is unavoidable in our approximate method.

The authors are much indebted to K. Ogawa for helpful
discussions and a careful reading of the manuscript.
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