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An analysis of low energy pion-nucleon charge exchange and elastic scattering data is presented.
A system of coupled channels with nonlocal potentials is used to include the effects of the Coulomb

interaction, pion and nucleon mass differences, and the photoabsorption channel. By using recent
accurate charge exchange data, redundancies exist, allowing cross checks between data sets. The
cross section for n+n~n p is deduced and a value of a, —aq ——0.290+0.008 p

' is extracted.

I. INTRODUCTION

Recent innovations of pion detection systems have en-
abled high precision measurements of pion cross sections
to be performed. In particular the new n spectrometers
are able to accurately measure single charge exchange
cross sections on the nucleon. A distinct feature of these
charge exchange measurements is the sharp minimum of
the forward cross section, o(0), observed at T -45 MeV,
which arises from the near cancellation of the s- and p-
wave amplitudes. This same dramatic feature has also
been observed in pion-nucleus charge exchange reactions,
with the minimum somewhat shifted in energy and the
shape slightly modified. A possible application of this ob-
servation is that n.+N(A, Z)~ir N(A, Z+1) isobaric ana-
log state (IAS) reactions might be measured with suffi-
cient accuracy in this energy region to utilize the sensitivi-
ty of the s-p cancellation for determining nuclear medium
effects on the pion-nucleus interaction. Experiments of
this type have been done' on 7l.i, '~C, 'sN, i9K, sCa, and

Sn for 30& T &70 anticipating the enhancement of
our understanding of multiple scattering effects, valence
neutron densities, and other nuclear effects on the reac-
tion. In order to isolate these medium effects it is essen-
tial to have a good representation for single charge ex-
change from free nucleons. A precise determination of
the minimum of the forward excitation function is re-
quired for the reaction rr+n~rr p for comparison with re-
actions on nuclear targets. Unfortunately, this cross sec-
tion is not directly measurable in the laboratory due to the
requirement of a neutron target. However, the charge ex-
change reaction m p~m n can be measured and the re-
sulting amplitudes related to those needed for computing
the scattering that occurs in the nucleus. Due to the ex-
treme cancellation of the amplitudes, isospin breaking ef-
fects (such as mass differences and the Coulomb interac-
tion) need to be considered in transforming from the

p~m n to the m+n~m p system. In this paper me
will examine some of these effects.

In Sec. II, we present some forms for the parametriza-
tion of the two channel S matrix, and estimate how iso-
spin breaking effects alter those parameters. We will also
include the effects of the yn channel. In Sec. III, ir-N po-
tentials, consistent mth single charge exchange data, will

be used as a basis for examining the existing pion-nucleon
data. We find the redundancy introduced when one as-
sumes isospin invariance of the strong interaction very
valuable for comparing data sets. Section IV treats the
ir p~n. n and m+n~m p excitation functions and ampli-
tudes in the energy region 30& T &70 MeV. Simple for-
mulae for the charge exchange amplitudes are given at the
end of this section.

II. PARAMETRIZATION OF PION-NUCLEON
SCATTERING

Parametrizations of the S matrix of the pion-nucleon
system have been discussed by many authors. A stan-
dard approach is to work within the framework of a
coupled-channel potential model using an energy-
independent square-well potential to represent the pion-
nucleon interaction. One advantage of this method is that
the Coulomb field and mass differences, which cause a
breaking of the isospin symmetry, can be included in a
straightforward manner. The modifications of the S-
matrix parameters due to these isospin breaking effects
can then be calculated in a relatively unambiguous way.
In this section we will apply these ideas to a nonlocal po-
tential, and also estimate the effect of the yn channel on
the parametrization of the low energy ir-N Smatrix. This
section presents the foundations of the analysis in some
detail. Those readers interested only in the results should
skip to Sec. III. We begin by reviewing some basic ideas.

If one assumes the conservation of angular momentum
and parity, i.e., [H,J]=[H,P]=0, then the full S matrix
can be broken down into channels of good angular
momentum and parity. Under the further assumption of
time reversal invariance, [H, T]=0, each Ji' channel of
the S matrix is required to be symmetric. Finally, the
mathematical condition that one has included all existing
coupled states is that S be unitary. Thus, if there are n

coupled channels for a particular Ji' value of S, then

symmetric unitary

n Qn matricesgJP~ ~

Consider first the two channel ir p, m n (n.+n, n. p) sys-
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tern. For pion laboratory energies less than 70 MeV, s-
and p-wave scattering dominate, and we will confine our
coupled channel analysis to these 1 values. The scattering
is then described by three 2&2 matrices corresponding

to good J and P (or 1), denoted by S'I: S '~,S '~,S '/'.
Since a general n Xn symmetric matrix can be
parametrized by n (n +1)/2 real variables, three parame-
ters are necessary for each S I matrix for the (lr p, arun)

system. Of the many parametric choices, the form of
Blatt and Biedenharn (see also Ref. 3) is very convenient.
Their representation of the S matrix uses two eigenpha!es
and a mixing angle:

3/s is the total invariant energy, and

El +El

(the reduced energy in the center of mass for channel i),
where E; =(m; +k; )', 11/1 is the n. p relative wave func-
tion, and $2 is the n. n relative wave function, with the ap-
propriate boundary conditions.

The hadronic potential V is determined from individual
isospin potentials mixed under the assumption of isospin
in variance:

S/I =M2r(E) M2(E)
O e 2

~12 U3/2
V=

V V ™~)0T

21 22
M2(EI ),

1/2

where M2 EO(2),

cosE sin6
—SiilE' GOSE

2E51 2 2l5
e cos e+e sin e

2i Sl 2152
—,
' sin2E(e ' —e ')

In this form, the mixing matrix

cosG slnF
2 sinE cosE

2i Sl 21S2
—,sin2E(e —e )

2l5) . 2 2l52
e ' sin2e+e 'cos2e

UIIJ(r~r )=g/IJ
+lIJr -nIIJ r'

e e

which in momentum space becomes

U/IJ(k k ) g/IJui(a/IJ k)ui(a/IJ k )

where

Note that in Eq. (2) if Vco~ ——0, /ui
——p2, and k 1

——k2, then
the S matrix parameters become 51 ——53/2 52=51/2 and
E, =EI. The inclusion of the Coulomb potential or
k/+k2, due to mass differences between the two chan-
nels, will result in general in changes of 51 from 53/2 52
from 5//2, and E from Ei reflecting the degree of isospin
breaking due to these two effects. The energy indepen-
dent isospin potentials are taken to be of the form

connects the charge (or physical) basis to a basis in which
the S matrix is diagonal. For the n-N system in the ab-

sence of isospin breaking effects, the eigenphases 51 and 52
correspond to isospin —,

' and —,
'

phases. In this hmit,
E=EI —=sin '(3/2/3) (or EI-54.7 deg) determined from
the Clebsch-Gordan coefficients of the underlying SU(2)
isospin symmetry for three pion and two nucleon states.
Thus, a quantitative measure of isospin breaking can be
obtained by using this parametric form. For low energy
pion nucleon scattering, nine parameters are necessary to
describe the data (at each energy): six eigenphases

(51/2 53/2 533 531 5/3, 5» ) and three mixing angles

(ES Ep 1/2 EP3/2), each of which become exactly EI if
[H,I]=0. We will now consider the following questions:

1. How do the mixing angles, e, depend on energy, m-

nucleon off-shell range, etc.?
2. How does including ny production (i.e., a three-

channel S matrix) modify the variables of Eq. (1)
[S"(51,52, E)]?

The basis for our calculations will be a coupled channel
system of equations of the following form:

~ e 1 +k 1 el +2P i Vl 1 el +28 1 Vl 2 6+28 1 VCoul |t'1
(2)

I $2+k 242+ 2@2 V22 42+ 292 V21 41

where

k; =[s —(m'1+m2) ][s—(m'1 —m2) ]/4s,

and

a
uo(a, k) =

a+k

u 1 (a,k) = tan k/a-a , a3/k

k a'+k' *

The combinations of strengths g and ranges a are deter-
mined «om data and/or phase-shift analysis results for
the energy range of interest here (30 MeV&Tl, b F70
MeV). The codes developed for solving the coupled chan-
nel problem of Eq. (2) are sufficiently general to handle
any well-behaved nonlocal or local potential. However,
the resulting eigenphases and mixing angles do not exhibit
a strong dependence on the form of the potential used.
This is illustrated in Fig. 1. The solid line indicates how
the mixing angle E, (the s-wave channel) varies with pion
energy. The potential used for the solid line was obtained
by fitting the existing n-n data as described in Sec. III.
The off-shell ranges obtained were al/2 ——225 MeV/c and
a3/2 ——600 MeV/c. If one were to use isospin phase
equivalent potentials with different off-shell ranges, the
resulting S matrix does not change significantly. The
difference in the eigenphases in this energy range is less
than 0.5%. We show a similar effect in Fig. 1. The
dashed curve corresponds to potentials with off-shell
ranges a1/2 —cx3/2 —300 MeV. The potential strengths
were varied as a function of energy to match the eigen-
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V23, much smaller than V&3 since there are no charged
particles in either the initial or final state, was taken to be
of the same form as V» with the overall strength scaled
down as determined by the multipole analysis of Berands
and Donnachie. ' That is, using the notation of Ref. 11,

Eo+(n n)
IS23 I

=
I S131

Eo~(m p}

55—
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FIG. 1. Comparison of the s-wave mixing angle for two po-
tentials with different off-shell ranges but common eigenphases.

phases of the solid curve. The resulting change in e is al-
most negligible.

Before analyzing the two-channel system in more detail,
we will consider the effect of the yn channel. This can be
done for the l =0 partial wave, the dominant one at very
low energies, by adding a third coupling and wave func-
tion, $3(yn}, to Eq. (2). g3 will satisfy a similar equation
to g~ and g2,

~'6+k'36+I 3V»Pi+I 3V2342+I 3V»A=o

where p3 —ErE„/(Er—+E„).
Since the yn channel is much weaker than the other

two, there is very little back couphng. The amplitudes f»
and f23 are very, small, and f~3 is essentially just a Born
term. Thus the above procedure is expected to be a
reasonable approximation for including the third channel.
In essence, the potential V&3 determines the imaginary
part of S», with adjustments to the other components of
S determined by the strong 2X 2 interaction and unitarity.
We are using this system to determine how large these
corrections are.

The three channel potential, V, will have the form

The potential strength of V23 was adjusted until the above
condition on the amplitudes, or S matrix elements, was
satisfied. Due to the weak nature of this channel, the oth-
er amplitudes displayed little sensitivity to variations in
the magnitude of V&3. Finally, V33 which represents
yn~yn scattering, is extremely small and was chosen to
be equal to V» times the ratio lfine structure constant
(a)/strong couphng constant]. The primary aim of this
exercise of including the yn channel is to estimate the ef-
fect on the eigenphases and mixing angle of the two-
channel (n p, m n} system. To this end, an accurate po-
tential is not absolutely necessary. As we shall see, the ef-
fect of the third channel on the two-channel problem is
small, reducing the importance of accurate potentials.
Nonetheless, the above potentials reproduce the total cross
sections reasonably well. (See Table I.) These potentials
can now be used to generate a 3 g 3 5 ' matrix.

There are various ways to parametrize a 3X3 sym-
metric unitary matrix. Six real variables are required
[3(3+I)/2], but the functional form is not unique. The
choice of Waldenstrs)m (Ref. 11) is to use three elastic
phases and three inelastic parameters. This is useful in
examining bounds on cross sections and amplitudes im-
posed by the constraint of unitarity. In this paper we
choose a different parametric form, one that reduces, for
V~3

——V23 ——0, to the form of Eq. (1}. By slowly turning
on the photoproduction interaction, the variables which
parametrize the S matrix will vary continuously. This
type of choice offers a convenient transformation between
the two-channel and three-channel analysis.

Generalizing the form of Eq. (2) to three channels re-
quires three eigenphases (5&,52, 53) and three 'mixing an-
gles (e,p, y ) Scan be wr. itten as

p
K n

m' p

2i51
e 0 0

S '~'=M3t(e, P, y) 0 e ' 0 M3(e, P, y),
2i53

where V(), V)z, Vg), and Vgg are determined as before.
Time reversal invariance requires VJ ——V&,-. V&3, the larg-
est of the new interactions, is taken to be the same form as
the isospin potentials. The strength and range were ad-
justed to fit the Panofsky ratio at threshold and the exper-
imental yn~m. p integrated cross section at T =27
MeV assuming only s waves contribute. These values are
listed in Table II along with the m.-N potential parameters
determined in Sec. III by fitting to the data. We note that
we were able to obtain the energy dependence of f,3 by
using an off-shell range of 200 MeV/c, which is of the
same magnitude as that of the S~~2 channel.

l~t
where M3 ——Oje ' and OEO(3). However, since we are
just considering the S matrix and its eigenvectors, the
three phases A,; have no physical significance. The choice
in this paper is to set A,; =0, thus M3 EO(3) with no loss
of generality.

If one makes this choice of parametrization, the eigen-
phases are uniquely determined (up to 2n.n) since they are
just the phases of the eigenvalues of S. There is an arbi-
trariness, however, as to how the mixing matrix
M3(e,p, y } is to be parametrized. Any parametrization of
the group O(3} will do, so we need to consider the system
at hand. In the limit of V~3 ——V23 ——0, the y-n channel is
decoupled;
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T (MeV}

TABLE I. 5 matrix parameters {for I =0 partial wave).

Three-channel S matrix (n p, n n, yn)
P y &7&(yn ~-p) ph fCEx (fm)

10 —2.27 4.68
30 —3.90 6.46
50 —5.15 7.35

Threshold Panofsky ratio =1.56

0.29
—0.01
—0.56

56.1

54.9
54.6

31.1
26.3
24.3

—3.07
—4.04
—5.22

102
131
126

—0.206 13—0.008 45i
—0.185 16—0.007 98i
—0.17392—0.006 28i

T {MeV}
Two-channel truncated S matrix (ii p, ii n)

53/2 g3/2 5) /2 g f /2 s111{2E}

10
30
50

—1.92 0.9995 4.27 0.9989 0.9016—0.0028 i 57.81
—3.54 0.9992 6.03 0.9983 0.9267—0.0026i 56.03
—4.82 0.9990 6.92 0.9981 0.9325—0.0024i 55.59

T {MeV)
Two-channel S matrix (m p, n n)

Sin &i/2 e fcsx (fm)

10
30
50

—1.92 4.26 57.74 —0.206 29—0.008 42i
—3.55 6.01 55.98 —0.18540—0.007 98i
—4.83 6.91 55.55 —0.174 18—0.006 33i

lim M3(e P y)~M3(e, 0,0)= Mz(e)
Vf 3 V23 -+0

0

0
0

0 1

This suggests using the same e as before to mix the (now
modified) isospin —', and —,

' states. This angle should be
the largest of the three, since the hadronic interaction
( V», Vi2, V22) is much stronger than the electromagnetic

couplings ( Vi3, V23). For the (ir p, m n, yn) system (total
charge=0), Vi3 is much larger than V23, so one would ex-
pect the eigenstate of the full Hamiltonian in which the
yn state is dominant to be primarily mixed with mon.

Thus for this system the next largest mixing angle is ex-
pected to be between the n n and yn physical states.
Directed by these physical motivations, we will use the
following form for the mixing matrix M3..

M3(e,P,y) =
cosy 0 siny

0 1 0
—s1Qy 0 cosy

cosa sine 0 1 0 0
—sine cose 0 0 cosP sinP

0 0 l 0 —sinP cosP

The last rotation (y) is chosen to ensure Mi(e, p, y) spans
the space of O(3), and for e=0 would be orthogonal to p.
One could also choose y along the "l" axis which would
correspond to a type of Euler angle parametrization. The
results of this parametrization for the 1=0 channel are
included in Table I.

These results can also be expressed pictorially as shown
in Fig. 2. In this figure the three eigenstates are drawn as
vectors in the space of physical states. That is, the axes
are labeled m p, m n, and yn, which correspond to the
physically observed states. Eigenstates of the full interac-
tion (for a particular value of J ) labeled v3/z vi/z and

v0, are unit vectors in this space, whose projection on the
axis indicates the amount of physical state in the eigen-
state. The eigenvectors vq/2, vi/2, and vo form an ortho-
normal basis themselves, and the nuxing matrix is just the
rotation matrix that transforms from the physical basis to
the eigenbases

&3/2 p

V]/2 —Af3 S n0

ynV0

At T =30MeV, reobtain

0.574 0.762 0.299

M3 —— —0.818 0.515 0.255

0.040 —0.391 0.919

or

+0299~yn&

43/2 0.99
~

'ir p&+0 93(&2/3)
~

'ir'n&
3
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lt, ~= —1.00(v'2/3)
~

~-p)+0.89
~

~'n)1

3

+0.255
i yn),

go=0.04
~

~-p) —0.391
~

~'n)+0. 919
~
yn)

for the si/2 channel. Under true isospin symmetry and no
photoproduction interaction, vo is along the yn axis, v3/p
and vi/z lie in the fr p-n. n plane, and @=el. Mass differ-
ences and electromagnetic couplings cause the vectors to
move in a continuous manner while remaining orthogonal,

in this space. This type of diagram offers a visual repre-
sentation of the ir p,m. n, yn system and the amount of de-
viation from pure isospin symmetry. One could also pro-
ject these eigenvectors onto an isovector basic (i.e., v;
under pure isospin symmetry). An equivalent diagrain
and analysis can be drawn for the m+n, m p,yp system as
well. Note that the vectors v; do not depend on the choice
of parametrization of M&, but only on the basic interac-
tion of which the v; are eigenvectors.

Comparison with the two channel system is best done
by examining the S matrix with and without the Viq and
V&3 coupling {for Ti,b

——30 MeV):

(0.982 53,0.10488) (0.0066, —0.1539) (0.98001,0.10489) (0.0066, —0.1536)
(0.0066, —0.1539) (0.987 88, —0.0196) (0.0066, —0.1536) (0.987 88, —0.0196)

(with the former for the two-channel S and the latter for
the truncated two-channel S). Even though the y-n chan-
nel accounts for 12% of the total cross section, the 2X2
submatrix corresponding to the {ir p, ir n) states does not
change significantly. This is due to the weakness of the
interaction, and/or the low energies. Since under these
conditions

ISis I'=4k'Ifii I'«I
the reduction of Sii and Si2 imposed by unitarity is very
small. Most of the "loss" comes from ReSii, fii and

fiz ——fcEx do not change significantly. The effect of this
third channel on the charge exchange amplitude, fcax,
can be seen to be only -0.15% from Table I. One can
then limit the analysis to the m-nucleon system which is
represented by a 2X2 slightly nonunitary S matrix for
each Ij channel. To quantify the degree of "two-channel"
inelasticity we define a truncated S matrix, S, as follows:

1 /2

p yn

mn
yn

where S describes the (m p, m n) system.
S is not unitary, but symmetric, and can be represented

by six real parameters. The parametric form of Eq. (1)
can still be used but with complex variables. That is, the
six real quantities that describe S can be chosen to be two
complex eigenphases and one complex mixing angle. In
Table I we present the values of these parameters for vari-
ous energies, and it can be seen that the inelasticities due
to photoproduction are very small (rl &

-0.9997,rli
=0.9990, sin2e-0. 911—0.0014i). The errors introduced
by using three real parameters are less than 0.5% for the
eigenphases. The violation of unitary can also be ex-
pressed in a 2X 2 matrix form:

0.995 ( —0.00007,0.00038)
( —0.00007, —0.00038) 0.999

and is about 0.5% violation. In summary, the errors due
to the exclusion of photoproduction by using a truncated
S matrix, S, are very small for 30' T ~70, and the pa-
rametrization of S (53/i 5i/2 e) using real parameters is
accurate to within 0.5%. In the following analysis in this
paper we will parametrize S according to Eq. (1), with
real parameters.

III. DATA ANALYSIS

FIG. 2. Diagram of the eigeiivectors of the m p, ir n, yn sys-
tem at T =30MeV (s waveonly).

Since only very limited charge exchange data have been
available until recently, the standard procedure has been
to perform a phase shift analysis on both m+p and vr p
elastic scattering and make use of isospin invariance to
predict the change exchange amplitudes. The usual prob-
lems exist for phase shift analyses, principally that data
sets taken from the literature tend to be inconsistent,
which means that unspecified systematic errors are
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present. Because the data presented to the X analysis
manifestly violate the assumed conditions for statistical
treatment, the mathematical framework of such tests is
rendered almost useless. Of course one continues to use
the methods in spite of this, having no good way to
choose between contradictory data sets.

The existence of new high-quality charge exchange data
has altered this situation drastically. Assuming isospin
invariance in the strong interaction, there is now a redun-
dancy available to check the consistency of data sets.
First, we must determine that the charge exchange data
form a consistent set. Using the measurements of
Fitzgerald et al. ' (seven energies, three forward angles
per energy), Salomon et al. ' (integrated charge exchange
at two energies), and Duclos et al. ' (1SO' charge ex-
change at three energies) we have a data set consisting of
26 points. Expressing the CEX amplitude as an s- and
p-wave polynomial in pion-nucleon center of mass
momentum, it is easy to show that a X fit of less than 1

per degree of freedom is possible. Thus at least the data
set is not internally inconsistent. %e have chosen to apply
the formalism presented in Sec. II to these data, as well as
the elastic scattering data, but the X criterion was applied
only to the CEX data.

Since the charge exchange amplitude determines only
the difference between the isospin —', and —,

'
amplitudes,

we started with a representation of the current isospin —,
'

amplitudes. The P33 phase shift was kept fixed, but the

S3/2 and the P3~ were allowed to vary slightly to improve
the fit to the charge exchange data.

The resulting phase shifts are shown in Figs. 3—5.
Most of the values are in reasonable agreement with previ-
ous determinations. Note that the P3~ does not agree very

"0.5

-1.5—

I
2.5—

CO

oO

2.0—

1.5—

1.0—
--r -(

10 20 30 40 50 80 70 80 QO 100
T (Mev)

FIG. 4. Spin 2 p-eave pion-nucleon phase shifts. The cir-

cles are from Ref. 15, the triangles from Ref. 16, the boxes from
Ref. 17.

well at high energies. The charge exchange data favor
this large P3&. However, using the dashed curve in Fig. 4
for 5p, and including d waves from Ref. 15, we were

31

also able to obtain a low g2/N for the charge exchange
data. An analysis was done for each of these conditions,
one using just s and p waves with P3~ represented by the

Q)I
-0.5—
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QlI'U
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CbI
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FIG. 3. Spin —, p-~ave pion-nucleon phase shifts. The cir-

cles are from Ref. 15, the triangles from Ref. 16.

0 ) I I

0 10 20 30 40 50 80 70 80 Qo 100
T„(Mev)

FIG. 5. s-weve pion-nucleon phase shifts. The circles are
from Ref. 15, the triangles from Ref. 16, the boxes from Ref.
17.
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solid line in Fig. 4 and another using the dashed line for
P3& plus the d waves from the analysis of Ref. 16.

Comparisons with m+p elastic scattering are given in
Figs. 6—9. It is seen that, in most cases, agreement and
consistency are good. Notable exceptions are the forward
angles at high energy and the comparison with the Frank
et al. ' data at 29.4 MeV. Part of the discrepancy at the
high energy is caused by the large P3~ phase. Reducing
this phase shift and including the d waves increases the
back angles, and decreases the forward angle cross sec-
tions by 5% and 7%, respectively, at 67 MeV.

Using these isospin —,
'

phase shifts, the isospin —,
'

values
of the range and strength were varied to give a best fit to
the CEX data. A basic ambiguity comes about from the
range of the S&&2 potential. It has long been recognized
that this phase shift deviates strongly from a pure scatter-
ing length approximation even at low energies. This is an
indication that the interaction range is large. One would
like to determine the charge exchange scattering length
(i.e., the combination of the two isospin scattering lengths
which would represent charge exchange scattering if iso-
spin were strictly conserved) from this data. In principle
one can compare the s-wave amplitude to the p-wave am-
plitude very accurately at the forward angle cancellation
point, and in fact this comparison is independent of data
normalization errors, to first order, since only the energy
of the minimum need be known accurately. To see how
this works ideally, consider the real part of the non-spin-
flip charge exchange amplitude to be parametrized in the
scattering-length —scattering-volume form valid at low en-

ergy

I I I I I ! I
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FIG. 7. Comparison with the data of Frank et ai. (Ref. 19).

f(8}=a+ck2cos8 .

Since a and c have opposite signs, it is only necessary
to know (1} the value of c and (2) the energy at which

f(0)=0, to determine a, the desired quantity. The value
of c is dominated by the P» phase shift and is reasonably
well known from higher energy data At so.me level the
limits of accuracy will be determined by the uncertainties
ln c.
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FIG. 6. Comparison of m+p cross sections from the present

calculation with the data of Bertin et al. (Ref. 15) and Knapp
and Kinsey (Ref. 18).
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FIG. 8. Comparison with the data of Ritchie et a1. (Ref. 20).
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This simple picture is destroyed, however, by the fact
that the S~~z amplitude has a large effective range, forc-
ing us to modify the simple form and to write

f(0)=a +bk +ckz cos8 .

At zero degrees a will be compared with the sum of b and
c. Thus, there is an ambiguity corresponding to different
values of a and b but with the same sum for a+ bk;„.
This effect is clearly seen in the X contour plot of Fig.
10, where at the minimum point, X /N =22/26, from the
data sets of Refs. 12—14. The horizontal axis represents
the range parameter for the S~&2 potential, and the verti-
cal axis could well have been the strength of this potential,
but we have chosen instead to label it by the value of the
CEX scattering length that would be obtained with equal
masses and no Coulomb field so that a direct comparison
can be made. It is clear that, if this effective range ambi-
guity did not exist, the scattering length could be deter-
mined very accurately ( —+0.001 fm). As things stand,
with the charge exchange data alone the best that can be

doilC 18

a = —0.193+0.005 fm .

Converting to the usual normalization and units (inverse
pion masses), the odd scattering length ( a

&

—a 3 } is
a =0.290+0.008 p '. We defer a more detailed discus-
sion of this value to later in the section.

Since we have determined all of the pion-nucleon phase
shifts and we have a way of correcting for Coulomb ef-
fects, we are now in a position to predict the n -p scatter-
ing cross section. This is of particular interest since the
latest, and presumably highest quality, data recently pub-
lished by Frank et al. '9 disagree rather strongly with
phase shift predictions based on previous data. One is
faced with the apparent dilemma of having to deny all of
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FIG. 9. Comparison vrith the data of Blecher et ai. (Ref. 21),
Auld et aL (Ref. 22), and Croute et al. (Ref. 23).
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FIG. 10. (a) Contour map of the g~ surface from corn.parison
mth charge exchange data shooting the ambiguity between "a"
and the S~/2 off-shell range. The minimum value of g is 23.7
for 26 data points. (b) Similar contour map fitting the three
highest energies of the Frank data. The minimum value of g is
197 for 82 data points.
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the existing previous data in order to accept the data of
Ref. 19 or else discard what should be the best data avail-
able. As we shall see, this apparent problem is mostly an
illusion.

The first step is to compare our predictions based on (1)
average —, phase shifts, (2) isospin invariance (with our
correction for known isospin breaking effects assumed to
be adequate), and (3) the recent charge exchange data,
with the Frank et al. '9 ir -p data. This comparison is
shown in Fig. 11. As may be seen, the agreement is re-
markably good, especially for the three highest energies.
In fact, for these three energies the representation is good
even in a X2 sense, probably somewhat better even than
the ir+p data on which it is based. The X2/N for the 49.6,
69.6, and 89.6 MeV data sets are 103/28, 66/27, and
51/27, respectively (statistical errors only). Does this
mean that the rest of the existing data on low energy n p
scattering are wrong7 To answer this question we shaw
the comparisons of our predictions with the other existing
sets of n p data. Figure 12 shows comparisons with
three sets of data. These data are in as good an agreement
with our predictions as they could be with any smooth
curve or with each other.

If we compare with the data of Crowe et al. ,
ii howev-

er, the situation is very different. (See Fig. 13.) The small
error bars quoted cause a strong disagreement with the

1.0

0.7—
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FIG. 12. Comparison of our predictions for m p scattering
mth three early data sets: Knapp and Kinsey (Ref. 18), Cundy
et al. (Ref. 24), and Donald et al. (Ref. 25).

prediction. Since this is all of the differential cross sec-
tion data usually used below 98 MeV, it seems that one
data set was detenu'tnining, almost entirely, the isospin —,

phase shifts. Perhaps it is warth noting that these data
were taken incidentally to the main experiment, which
was to measure n+ ~He elastic scattering, and that the en-
tire published description of the hydrogen data experi-
ment is contained in a single paragraph. It might also be
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FIG. 11. Comparison of the prediction of the present calcula-
tion for m p scattering with the data of Frank et al. (Ref. 19).
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FIG. 13. Comparison of our predictions for m p scattering
arith the data of Croute et al. (Ref. 23).
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noted that, when published, it disagreed with all previous
phase shift analyses. Extending our calculations up to 98
MeV and comparing to the data of Edwards et o/. , we
obtain fair agrecmnent at the forward angles but are low by
about 20% at the larger angles. This energy is beyond the
limits of the model, especially for the Pii phase shift.
Even so, due to the small difference in energy between
these data and those of Ref. 19 there would appear to be a
discrepancy.

Given the conditions mentioned above we see no reason
not to have confidence in the three highest energies of
both n+p and n p data taken by Frank et ol. '9

The data at 30 MeV are much harder to understand.
Note that both sets of data (m

—+) are consistent with the
same renormalization of 20—30%, i.e., borh data sets lie
below the present predictions. We now argue that it is
very difficult (impossible?) to imagine changing the strong
interaction phase shifts in any way so as to fit both data
sets.

This statement is based on the observation that the
charge exchange measurement flxes the difference be-
tween the isospin —', (f3) and isospin —,

'
(f&) amplitudes.

Thus if one changes f3, e.g.,

then, in order to keep the same charge exchange ampli-
tude ( —fi f&

) invari—ant, one must change fi according-
ly,

fi~fi+5.
It follows that the m amplitude changes by the same
amount. Consider, for example, the 29A MeV m p data
at 50'. Here the spin flip portion of the cross section is
negligible (0.013 mb/sr compared to 0.580 mb/sr). The
Coulomb amplitude is 0.099 fm and the real part of the
strong amplitude is 0.158 fm. In order to reduce the cross
section to the observed value of 0.45 mb/sr, the strong
amplitude would have to be decreased to 0.113 fm, a
change of —0.045 fm. Applying this same change to the

p amplitude, which is —0.027 fm, and including the
Coulomb amplitude ( —0.099 fm), one arrives at a non-
spin-flip cross section of 0.292 mb/sr, which is much
larger than the data (-0.2 mb/sr) even without the 0.087
mb/sr spin-flip cross section. The basic reason for this
behavior is the interference of the Coulomb amplitude.
Since it enters with the opposite sign in the two cases, im-
proving the agreement with one cross section will always
make the other worse.

We should emphasize that the previously mentioned
value for the odd scattering length (0.290+0.008 p ')
was determined from a gz search on the data set of Refs.
12—14 only. We have also done a similar search on the
three highest energies of the Frank data. Although this
elastic m p scattering is not expected to have a strong
dependence on the odd scattering length, having fixed the
I=—, phases, a large sensitivity can be seen in Fig. 10(b).
Here, X;„occurs for values of n =225 MeV and
o = —0. 1895 fm or a =0.284 p ', with a value of
X /N =2.4. This provides an additional numerical state-
ment of the consistency of the high energy Frank data

with the charge exchange data.
Our value for the odd scattering length, 0.290+0.008

p, ', can be compared with other analyses. In their com-
pilation of pion nucleon parameters Pilkuhn et al.
list results from various groups but recommend
0.290+0.01/ —0.02 p '. However, there are a number
of lower values clustering around 0.26—0.27 p ' (see Ref.
13). Some of these use pion-nucleon data which do not
include the latest scattering measurements. %'e note that
previously the analysis of mr+ and n scattering data gave
values near 0.26 p ', but the data of Frank et al '9 .give
substantially the same value (0.284+0.005 p, ') as the
charge exchange.

The analysis of the recent charge exchange experiment
by Salomon et ol. ' obtains two values around 0.26 p
However, these values are extracted from the phase shifts
at finite energy, i.e., assuming that the scattering length
limit has been reached and that the charge exchange cross
section is a constant from 27 MeV down to zero energy.
Using our energy dependence for the s-wave phase shifts,
their values and ours are consistent. In fact their integrat-
ed CEX cross section was included in our analysis.

A persistent discrepancy has existed for many years be-
tween the odd scattering length obtained from pion charge
exchange and that obtained with the use of the Panofsky
ratio s (P). In order to make this comparison one must
know the value of P and the zero energy limit of the cross
section for n +p~n+y (with Coulomb effects re-
moved). In practice this limit is obtained from detailed
balance and measurements of R {the ratio of
y+n~rr +p to y+p~m+n) from deuteron targets and
the extrapolation of the photoproduction cross section on
the proton. While there may be some problem with extra-
polating R to zero energy (Coulomb and deuteron effects
must be removed), we will assume (along with Ref. 28)
that the number R =1.34+0.02 is correct. The value of
P is accurately known to be l.546+0.009. '

The relevant photoproduction cross section is consider-
ably less well known. The needed quantity is actually the
cross section with the phase space ratio removed:

o'(q )= "o(yp~m+n) .
Qe

In Fig. 14 the quantity cr' is plotted as a function of pion
momentum. The data are those of Adamovich et al. ~

The dotted curve is their fit based on a polynomial in pion
momentum which represents these points and higher ener-

gy data as well (which is mainly P wave). This is essen-
tially the same extrapolation as that used to get the zero
energy value of the cross section (193 pb) or equivalently
Eo+{n+)(0.283 p, ') used in Ref. 28 to get a& —a3
=0.263+0.005 p

The solid curve shows our calculation for the cross sec-
tion using a range of 200 MeV/c for the Vi3 coupling po-
tential and a strength adjusted to give a correct Panofsky
ratio. For these low energy data points we obtain a better
X /N than Ref. 29. Note that we fit the recently mea-
sured point of Salomon et al. ' at 27.4 MeV. Since our
calculations are s wave only and we have not performed a
multipole analysis, our results may be too high at q =0.4
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+
b

)

0.4$00 0.3

fm '. Two different analyses by Berends et al. '0'3'

(based only on data) give a very similar energy dependence
but a slightly smaller magnitude. This energy dependence
is perhaps the most interesting aspect of the work. We
find that it comes about naturally from the inclusion of
the finite size for the pion-nucleon system of the order of
1 fm. It is not clear if this should be interpreted as a bag
size or if it is due to the pion cloud, but in any case it is a
fundamental length scale of the pion-nucleon system. We
note that a m-nucleon scattering mechanism in which the
pion scatters off of the pion cloud of the nucleon can
proceed only through the I= —,

'
channel. This is because

the rr-m interaction at low energies is primarily I=0 (the
I =2 scattering length is an order of magnitude smaller).
The photoproduction reaction can also proceed via the
pion cloud. Therefore, in this simple picture, the Siq2
and y-n potentials would have roughly the same range
(about 1 fm, or a-200 MeV) and both be longer than the
I = —, channel, which might correspond to a "bag-size"
length scale.

Another recent value of cr' [Eo+(mr+)] at zero energy is
that of Noelle and Pfeil:s 223 pb (0.298 p '). This is to
be compared with our values of 232+13 pb (0.304+0.008
p '). Thus we are in agreement with photoproduction
cross sections from Ref. 32.

0.2
q(fm-'}

FIG. 14. Comparison of our calculation with measured pho-
toproduction cross section and the analysis of Berends et uh.

The arrows correspond to the uncertainty quoted for our ex-
tracted value of the odd scattering length. The open circles are
from Ref. 29, the solid circle from Ref. 13, and the square from
Ref. 30.

Our conclusion with respect to the Panofsky ratio is
there is no discrepancy within the quoted errors (even not
including errors in R) if recent photoproduction analyses
are used.

At T =45 MeV, where the minimum of u(0) occurs,
the d-wave contributions (taken froin Ref. 16) are about
2% of the s-wave amplitude calculated here. Including in
these amplitudes and redoing the 7 search on the charge
exchange data, we find that the minimum occurs roughly
at the same position in the a —aii& plane of Fig. 10. We
were able to obtain Xm;„/%=1.0 by lowering 5» to the
dashed curve in Fig. 4, which slightly improves the high
energy n.+-p results.

We conclude this section with a remark about the po-
tentials used. Table II lists the parameter set. Each po-
tential has a one term separable form except for Vp„,
which is the sum of two terms. Two terms were necessary
to obtain the energy dependence needed to fit the charge
exchange data. The values of the off-shell ranges need
some qualification. These ranges are determined with
respect to the potential model used here, which is energy
independent. The low energy data used in this analysis
from two particle scattering, pion and nucleon, are not
particularly sensitive to off-shell properties, as demon-
strated in Fig. 1. The data do determine the energy
dependence of the phases, so a phase equivalent potential
with an energy dependent strength and different range
could be tailored to fit the data equally well. These
ranges, therefore, are a rough measure of the deviations
from the scattering length limit. The long Si&2 range
derives from the energy dependence necessary to match
the data, and is perhaps accounting for complicated con-
tributions to this amplitude (crossing symmetry, etc.)

Note that to obtain the same phase shift dependence with
a local Yukawa potential, we found that an off-shell range
for the Si~ potential of a=200 MeV was necessary.

The Pi i phase shift determined in this analysis
(0& T~ & 80 MeV) is significantly less than the Amdt or
Karlsruhe values. We reemphasize that this analysis is
valid only up to 80 MeV, and the crossing at 95 MeV can-
not be considered accurate. The recent charge exchange
data favor this small Pii phase, and the Frank data are
not inconsistent with this result. We found a very strong
Pii dependence in the X analysis of the charge exchange
data.

It is encouraging that in this energy region, only two
potential parameters per channel (except the Pii) are
needed to reproduce such a wide variety of data. Perhaps

TABLE II. Potential parameters, scattering lengths, and volumes for final fit.

~3/2

~ {fm)a'
a (MeV/c)

—0.19 0.14

325 300 300

0.32 —0.93 0.08

al
+0.191 p

Q3 ~33 03)
—0.098 p ' 0.194 p —0.033 p —0.014 p —0.054 p

Eo+(m )
—0.0350 p
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parametrizing the potentials is more efficient than
parametrizing the amplitudes or the E matrix in the ener-

gy range considered here. The separable form chosen in
this paper was motivated by its apphcations to nuclear
physics, but a potential based more on underlying physics
could be employed.

700

500

300

200

100

IV. PION SINGLE CHARGE EXCHANGE

Using the formalism presented in Sec. II and the data
analysis of Sec. III we are now prepared to calculate the
charge exchange cross sections needed for pion single- and
double-charge exchange on nuclei, i.e., besides the mea-
sured ~ p mn we need m+n mp, mn m p, and
mop +tr+-n Th.e last two are needed for the calculation of
pion analog and nonanalog double charge exchange and
can be obtained from detailed balance. To calculate
n+n +n p -it is only necessary to change the masses and
Coulomb potential in the coupled channel system. One
does not expect much difference in these cross sections at
resonance energies, but at low energies, especially if a
sharp structure occurs (like the sharp minimum around 46
MeV), then these known isospin breaking effects will play
an important role.

Figure 15 shows what happens to the position of the
minimum for these various reactions. We note that the
n+n~n. p minimum occurs lower in pion laboratory ki-
netic energy than that for the rr p-+m n by about 1.5
MeV. This is interesting in view of the fact that the
minimum in the lightest nuclear system measured ( I.i) is
shifted to lower energies also, and the present calculation
presumably explains some of that effect. The sensitivity
to mass differences is also displayed.

Corresponding effects in the angular distribution at 50
MeV are seen as well in Fig. 16. Note that certain nuclear
cases strongly select the non-spin fiip (NSF) [e.g. ,
'4C(mr+ tr )' Nz» is completely NSF, ' C(m+, n )' Ns,
has only —,

' SF], while others are all spin fiip [e.g.,
'sC(tr+, tro)'4Ni &s]. Conclusions drawn from the shape of

50

30E
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b

10

I I I I I

20 40 60 SO 100 120 1400

8,
FIG. 16. Comparison of the angular distribution at SO MeV

for e p~n n and n+n~e p. Only the non-spin-flip cross sec-
tion is shown.

the forward angle angular distribution depend crucially on
starting from the correct free process.

Even the integrated cross section will show strong ef-
fects if the energy is low enough. Figure 17 shows the re-
sults extended down to 100 keV where order of magnitude
changes occur. At energies above 800 keV the process
with the larger final phase space gives the larger cross sec-
tion, but below that energy the Coulomb effect becomes
dominant. Note that even at 10—20 MeV deviations from
the isospin predictions are significant.

We present a polynomial representation of these ampli-
tudes which gives a reasonable representation of the data
around the minimum (-30—60 MeV). These amplitudes
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I I f I II l I I I IIIII I I I I II+
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FIG. 1S. Comparison of the 0 differential cross section for
n+n~e pand m. p~n n.

T~ (MeV)

FIG. 17. Comparison of the integrated cross sections for
n p~n n and n+n~mop The data . points are as follows:
open circles, Ref. 13; open squares, Ref. 33; open triangles, Ref.
34. Only the data from Ref. 13 were included in the fit.
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have the form V. CONCLUSIONS

fNF(~)=fo+fi cos~

fsF((l) =fi sin8,

~(~)= 10' If NF((9) I
'+

I fsF(e) I
'1 .

The f 's are given in fm and the factor of 10 converts to
mb/sr.

The values off are as follows:
1T P~P' n:

fo = —0.1983+0.0810k —0.0068i,

fi 0——655.4k 0 —034.k +0 432.5ik

f i
——0.3826k +0.2025ik

7T n~& P:

fo 0 2—0——00. +0 0848. k 0 0—054.i,
f) ——0.7037k —0. 119k +0 5016i.k

ft ——0.3905k +0.241 lik

where k is the charged pion momentum in the center of
mass in units of fm '. The amplitudes can also be writ-
ten in a separable form:

f =A,o(~s)+i&i(v s )k k',

where k' is the tr momentum in the center of mass and
Ws is the total invariant energy for use as a charge ex-
change operator. In this form, the A, 's are nearly the same
for the two systems.

Within the coupled channel potential model framework
we can conclude the following:

1. The available single charge exchange data for
T (80 MeV is self-consistent, and furthermore is con-
sistent, using isospin invariance, with most m+p and m p
elastic scattering data in that energy region.

2. The yn channel can be ignored when parametrizing
m p elastic and charge exchange for 20 MeV~'r (70
MeV to the level of 1%.

3. Isospin breaking effects due to the Coulomb interac-
tion and mass differences must be included in any data
analysis containing pion charge exchange near 45 MeV.

4. The values of at —a3 from low energy charge ex-
change and elastic scattering data are consistent and in
agreement with recommended values from dispersion rela-
tions. They are also in agreement with the determination
from the Panofsky ratio if the appropriate extrapolation
to zero energy of the photoproduction data is used.
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