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Compound nucleus fluctuation cross section in the intet-iiiediate coupling regime I /D ~ 1
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The compound nucleus fluctuation cross section in the intermediate absorption regime of I'/D & 1

is discussed within the optical background representation of Kawai, Kerman, and McVoy. A con-
straining inequality, involving m(Y'/5), a relevant parameter in the cross section formula, and other
statistical parameters that appear in cr, , is derived and ana1yzed.

A major problem which still confronts the statistical
theory of nuclear reactions mediated by the formation of
a compound nucleus (CN) is the analytical evaluation of
the averaged fiuctuation cross section, tr,", , in the inter-
mediate couphng (absorption) situation of F/D =1, with
D the average nuclear level spacing and I' the average nu-
clear decay width. Of course, o,", , has been extensively
discussed in the past, with analytical results usually ob-
tained in the domains I /D » 1 and I /D « 1. Only nu-
merical results based on Monte Carlo calculations are
available for I /D =1.'

Recently, Weidenmuller and collaborators2 obtained an
expression for cr~ which seems to be valid for any value
of I'/D. The method they employed, supersymmetry
averaging, enabled them to derive a triple-integral repre-
sentation of cr„. This makes a direct comparison with
the experimental data rather difficult. An analytical, al-
beit approximate, version of the results of Ref. 2 is cer-
tainly urgently called for.

On the other hand, several years ago Kerman and
Sevgen derived an expression for o,", using the optical
background representation of Kawai, Kerman, and
McVoy (KKM) (Ref. 4) which is also adequate in the in-
termediate couphng regime. Their formula, however,
contains precisely the parameter I'/D, which is not mani-
festly directly related to the optical transmission matrix.
This feature renders the Kerman-Sevgen cross section
model dependent. A question naturally arises as to
whether there is any way of eliminating or at least reduc-
ing this model dependence.

It is the purpose of this~aper to supply a constraining
relationship involving I /D on one hand, and other pa-
rameters that appear in o«on the other. This relation
appears more generally in the form of an inequality,

Re Tr(YS ') &n&2Re Tr(Y.—S '), (1)
D

where Y is a matrix (in chatutel space) that appears in o
(see below) and S is the optical S matrix. The lower limit
is attained under conditions of weak absorption and neu-
tral channels, whereas the upper limit corresponds to
strong absorption with strong Coulomb repulsion in the
channels contained imphcitly in the trace and/or slow en-
ergy variation of the elements of the F matrix.

The starting point in our discussion is the optical back-

ground representation of the S-matrix element S~ (Refs.
3 and 4),

S .g ggcgINl
CC CC (2)

flo.„=x„x,, +X„X,,+ —2 /Y ~ /2,r
D

(4)

where X and F matrices are defined by
1/2

2%x„=
ID

The optical transmission matrix, P, defined by

P= 1 —S'S,
turns out to be3

P=XTrX+X —2 1— YY
I7r:
D

In the limit of large m(I'/D) (strong absorption), the g's
acquire rapidly oscillating phases, which renders the F
matrix small, thus enabling the neglect of the last term in
(4) and (8), and accordingly only X is required for the ob-
tainment of both P and o,", . One can thus eliminate X,
by iteration, to obtain an expression for o„ in terms of
the elements cc' and P and its trace. The result is a series
expansion of cr~ in powers of (TrP) '. In the intermedi-

where the complex resonance energies, e„, are given by

s„=Eq—il „/2
and the form factors g&, are constructed in such a way as
to guarantee that the energy average of the sum-over-poles
term in Eq. (2), the fluctuating S matrix, S, is identically
zero. '3

Using the above property of the g,s together with gen-
eral analytic unitarity arguments, Kerman and Sevgen
were able to derive the following expression for

fl ( iSA i2)
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ate absorption case, ir(I' jD )=1, which is considered here,
both X and F are important, requiring, at least, a more
constraining relation besides the one supplied by unitarity.
In the following, we present general arguments in favor of
Eq. (1).

The expression for I'„, Eq. (3), is easily obtained follow-
ing KKM (Ref. 4):

I'„=—2lmI &)I
I vga& p+ v~ l((2) I (9)

where (p, II2) =1, and V(2y and V~ are coupling ma-
trices ampl discussed in Refs. 3 and 4. The Green's
function 9'y+' operates in the open-channel subspace, P
[Q=(1 P) a—nd represents the compound nucleus sub-
space]. Now using a spectral representation for 9~+),
namely

I .I take

Si(E')=(1+exp[[ I+—I(E')]ll( (E') [ ) 'exp(i5i(E')) .

Therefore

Si '(E')=(1+exp[[ I+—l(E')]II((E')I )

Xexp( i5—i(E') ),

yi(E')+—iv)(E')
cc (16)

which I write in the following form:

g 1, i5i(—E') i f—((E') is-i(E )'
S i E' =e +e

I further write a similar representation for the diagonal
elements of the Ymatrix.

CC

Ix(+)» '&x' 'I

E —E'+is

x(+) x (+)(+)gdEgt I cc
E —E'+is (10a)

(10b)

Expanding the 5i and q~ to first order in the off-shell en-
ergy difference E' E=Za—nd —the gi(E') and yi(E') to
second order, namely

5(0)+5(1)z

QI 7]I + QI Z(0) (1)

where relation (10b) is obtained from the condition
S =(X,' 'IX,'+') and the completeness relation satis-
fied by the biorthogonal states

I X,'+-') and (X,'+-' I, name-

ly

g(0)+g(1)z+g(2)z 2

y y
(0 ) +y ( ] )Z +y (2 )Zyl —yl yl yl

(17)

g f dE Ix,'-"(E))&x,'-"(E)
I
=1.

We obtain for I z

, gi (E')S~'(E')gi «')
I'„=——Im dE'

1r E —E +le

We obtain I by averaging Eq. (12) over the compound
states I2, getting, with the defining equation of the Y ma-
trix, Eq. (6), the following:

mI 1= ——Im
D

, Tr[Y(E')S '(E')]
E —E'+i e

(13)

In Eq. (11),we have used the KKM definition of g„„
g„,=@2m((M

I vga IX,'+')=v2m(x, ' 'I v~ I((2) .

(12)

enables us to calculate the principal value integral
for each of the diagonal terms in Tr+S ' straightfor-
wardly. We feel justified in using (17), since both Y and
S ' are energy-averaged (or ensemble-averaged) matrices,
and therefore their elements are expected to vary smooth-
ly with E. Since S i (E) is composed of two distinct
terms, Eq. (15), it is convenient to write

YS '=(YS ')i+( YS ')

with the first term associated with e' and the second
~ith e"-&.

The analysis of the contributions of the terms in
Tr YS ' arising from the nondiagonal elements of S
can be carried out along the same lines as above. It is,
however, expected that these terms are smaller than the
diagonal Y S ' ones, and we accordingly drop them.

The final expression we obtain for the principal value
integral of Eq. (14) is the following:

, Tr(Y(E')S '(E'))

Equation (13) can also be written as a delta-part contribu-
tion plus a principal integral, viz. ,

=Re Tr(YS ')
D

1 d, Tr[Y(E')S '(E')]

To proceed further, we have to have a picture of the ener-

gy variation of Tr( YS '). Let us now consider one ele-
ment of the trace and take S ' to be diagonal. At this
point, I remind the reader that all the formulae that have
been discussed so far refer to one particular partial wave,

g(1) 5(1)+21(y(2)+g(2))tz-=
(2)+g(2))1/2

(1) (1)+g(1)

2(y (2) +g(2) )
' 2

2(y (2)
+

((2))

and erf(Z; ) is the error function'

erf(Zi)= f e dX .
0

(20)

(21)

Of course„all quantities appearing inside the square

i nTr[erf(Z—()(Y. S ')1+erf(Z2)(YS ')2], (18)

~here
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brackets in Eq. (18) refer to a given partial wave and a
given diagonal element of YS

Clearly, when both Z~ and Z2 become very large,
erf(Z;) tends to unity and the two terms in Eq. (18) com-
bine to give for the right-hand side (rhs) i—n Tr(YS ),
exactly the same as the delta function contribution.
Under these conditions, Eq. (14) gives m ( I"/D )

=2ReTr(YS '). In the opposite limit, Zi and Zz~0,
we obtain ~(I /D) =Re Tr(YS '). For intermediate (and
necessarily realistic) values of Zi and Z2 for the different
channels, n(I /D) could take any value within the above
two extremes. Thus the inequality, Eq. (1).

The critical parameter that determines the values of the
Zi is 5'"/(g' +y' ')' [Eq. (19)]. When this quantity
becomes large and negative, we obtain large positive
values for the Z s. This happens if the elastic scattering,
described by S, in a given channel is dominated by strong
Coulomb repulsion, which renders 5' "=dsldE negative,
and the diagonal elements of Y have very slow variations
with energy [within our parametrization, Eq. (17), such a
variation is described by a very wide Gaussian] exempli-
fie by small y' '+ g' '. In general it is expected that, ow-
ing to the Coulomb barrier inhibition of charged particle
decay channels with strong Coulomb repulsion (heavy
fragments channels}, the upper limit is more likely to be
attained through the smallness of y' '+g' '. This latter
condition, namely very slow energy variation of the ele-

ments of the Y matrix, is guaranteed to be met, since, by
definition, all the parameters that specify the average
fluctuation cross section are energy-averaged quantities.

In a recent article, Dagdeviren and Kerman found,
within a schematic reaction model (with no Coulomb in-
teraction), that n.(I /D) is close to the value Re Tr(YS ')
in a wide range of values of the transmission coefficient
(up to 0.8). We feel that in more realistic situations
n.(I'/D) becomes larger than Re Tr YS ' (limited by the
upper value 2 Re Tr YS '}, even at intermediate values of
the transmission (-0.5). Thus a more careful application
of Eq. (1) is necessary in order to pin down the required
constraining relation among the parameters of o,", .

In conclusion, we have discussed in this paper the com-
pound nucleus fluctuation cross section in the intermedi-
ate absorption regime of I /D-1 using the optical back-
ground representation of KKM. A constraining inequali-
ty involving n(I /D) on one hand and Re Tr YS ' on the
other hand is obtained. Since both tr(I'/D) and the ele-
ments of Y are important parameters of the cross section
in the I /D-1 case, the derived inequality should be use-
ful in eliminating some of the model dependence, and in
supplying a useful criterion for the realistic model calcu-
lation and subsequent comparison with the data.
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