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Pauli-principle effects in pion scattering from the lightest nuclei
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%e investigate the effect of the Pauh principle in m-nucleus scattering. Descriptions are made in
terms of the optical potential based on the multiple scattering formalism and a prescription is given
for incorporating the Pauli effect. Detailed examinations are performed for m-d, -3He, and - He
scattering in the energy range T =50—300 MeV. The Pauh effect is found to cause an important
medium correction in both low and intermediate energy regions, and this aspect is emphasized for
the more strongly correlated nucleus. Attention is paid to the mN partial wave mixing. It is seen
that the mixing between the P33 and the other partial waves gives a non-negligible contribution
throughout the energy range considered.

I. INTRODUCTION

The advent of abundant experiments in intermediate en-
ergy physics has enabled one to extract a great deal of in-
formation and more quantitative studies have therefore
become possible in recent years

One of the remarkable advances of the theory in such a
direction was the description of the sr-nucleus dynamics in
terms of b, propagation in the nuclear medium. The suc-
cess is primarily due to the strong dominance of the 6-
isobar excitation inside the nucleus. Further development
along this line is now called for. One needs to look for a
model which has a wider apphcability, and one that ex-
plains the phenomenological aspects of the former theory
on a more microscopic basis. The common tool for the
studies of the pion-nucleus interaction is the optical po-
tential based on the multiple scattering formalism. To
step forward to investigate the higher order processes such
as the pion absorption in nuclear medium, one must stand
on the ground with minimum ambiguity. The construc-
tion of the fully refined first order optical potential is
necessary from this viewpoint.

Although there are many works on the detailed con-
struction of the pion-nucleus optical potential, it does not
som that a full and close investigation of the effect of the
Pauli exclusion principle has becmi reported. This well-
known principle, which forbids that two nucleons in the
nucleus be in the same state, gives indeed one of the medi-
um modifications that must be included in the first-order
theory.

The 5-hole model of Hirata, l.enz, and Yazaki might
be the first to incorporate this correction properly in its
framework. Yet the treatment may not be sufficient in
the following respect. The dominance of the Ps3 channel
is an essential assumption of the formulation and the
problem is solved separately for this channel and other
background channels. In this manner the mixing of the
P33 and the background waves due to the Pauli effect is
lost. Even in the energy region where the F33 wave
governs the interaction, it is clear that this mixing is
small. Such a contribution may change the quantitative
discussion of the spreading potential introduced in that
model.

The study of the Pauli correction, in which all the AN
partial waves are handled equally, was pursued by de
Kam. In his work on sr- He scattering, it was thus possi-
ble to extend the calculation also to the low-energy re-
gime, where it was found that the role of the Pauli princi-
ple is especially important. It was also pointed out that
the ordinary nuclear matter calculation for the estimation
of the Pauli effect in the pion scattering from light nuclei
is not appropriate. The main reason for this is that the
strong spin-isospin dependence of the trN interaction can-
not be reflected in such a scheme. Indeed the shell-model
picture is taken in this approach as well as in that of the
6-hole model.

Although in de Kam's work, the significance of the
Pauli correction was stressed and the inixing of the ele-
mentary srN partial waves due to the Pauli principle was
argued, the procedure fully makes use of the closed-shell
structure of the target nucleus. Hence the application to
other non-closed-shell nuclei is not possible. Also the
treatment of the partial wave mixing does not seem clear
enough.

In this paper, we would like to reinvestigate the Pauli
exclusion principle in an extended way. Since the Pauh
correction is handled on the same footing for each trN
wave, our calculation covers a wide energy region. We
performed the computation for the incident pion laborato-
ry energy in the range from 50 to 300 MeV. In our for-
mulation we consider the relevant Pauli-violating states
explicitly and the targets need not be closed-shell nuclei.
As applications, m-d, He, and He scatterings are investi-
gated. We also show that in our framework, the partial
wave mixing due to the Pauli principle appears in a sim-

ple and natural fashion.
Our paper is orgamzcd as follows: In Sec. II we present

our formalism. Actual calculations are done in Sec. III,
and there we discuss the results. We summarize our work
in Sec. IV.

II. PAULI CORRECTION IN THE FIRST-ORDER
OPTICAL POTENTIAL

To present the prescription for the inclusion of the
Pauli-principle effect into the first-order optical potential,

33 1393 Qc1986 The American Physical Piety



R. NAGAOKA AND K. OHTA 33

T=V+V T, (2.1)

we start with a brief survey of the multiple scattering for-
malism. As is well known, we are provided with two ver-
sions of the multiple scattering theory, i.e., the Watson
and the Kerman-McManus-Thaler (KMT) (Ref. 6)
theories. They are different in form but are equivalent in
content. Comparison between the two is instructive from
the practical point of view and, in fact, there is an abun-
dance of hterature. Here we make a concise review
and comparison of the two theories and will try to make it
clear how antisymmetrization is treated in ~eh case.

The problem to be solved is the scattering of a particle
(in our case the pion) from a collection of A identical par-
ticles (the nucleus). In the usual notation, the overall
transition amplitude T is obtained by solving the many-
body Lippmann-Schwinger equation

(2.9)

UKMg ——(A —1)r+ (A —1)i+(A —1)r+
e

By solving the equation

(2.10)

UKMT + UKMT
e

(2.11)

for T', one is able to obtain T from the well-known rela-
tion

does not have a subscript i to specify any particular nu-
cleon. As a consequence of working in the antisymmetric
subspace, one finds the overall transition amplitude T in a
more sophisticated way. The KMT optical potential
UitM~ is defined by

where
T= T'.A

A —1
(2.12)

(22)

e =E—Ho+i5,

HP ——HA+X .

(2.3)

(2.4)

In the above equations, E denotes the total collision ener-

gy. The many-body Green's function for the noninteract-
ing projectile nucleus system ruled by the Hamiltonian Ho
is expressed by 1/e. Ho is composed of the target nucleus
Hamiltonian Hq and the projectile kinetic operator E.
The projectile-nucleus interaction V is the sum of the
two-body potential U; between the projectile and the ith
nucleon. M in Eq. (2.1) is a projection operator onto the
antisymmetric subspace of the Hilbert space. The opera-
tor M is inserted in Eq. (2.1) since T and V are both sym-
metric operators and thus do not change the antisym-
metry of the states on which they should operate.

The Watson formulations works with a scattering
operator t; defined by

«'=Ut+Ut 'e
Here, Q is the projection operator with the definition

(2.5)

(2.6)

with this U~,

and P projects onto the ground state of the nucleus. The
optical potential Ua. is then expressed in terms of t; as

A

Uii =g r, +gt, +.rj+.
i =1 i~j i+j ~k

(2.7)

At this point, let us introduce another operator «de-
fined by

1t;=v;+v; —t; .'e ' (2.13)

In what follows, we will drop the subscript i from t;, t;,
and U; as well in anticipation of forming the matrix ele-
ments with the antisymmetric ground state. We note that
the analogous operators t, v, and t are complicated many-
body operators on account of 1/e, and as seen from the
definitions, the essential difference lies in their particular
choice of the intermediate states.

The relation between t, r, and r can be obtained by
ehminating U from Eqs. (2.5), (2.9), and (2.13), respective-
ly:

(2.14)

1 —W&=t—t
e

(2.15)

(2.16)

(2.17)

The operator 1 —W in the above two equations projects
onto the subspace of the Pauli-violating states, i.e., the en-
tire set of states other than the antisymmetrized ones.
These equations will be the basis of our following argu-
ment.

Now let us restrict ourselves to the consideration of the
first-order optical potential. From the above prepara-
tions, we first show that the two formulations give the
identical transition amplitude within the first-order ex-
pansion.

From Eqs. (2.7) and (2.10), the two first-order optical
potentials are

T= Uw+Uw —T .
I'
e

(2.8) The relation between the operators t and ~ is given by

In the KMT formulation, 6 on the other hand, all the
descriptions are made in the antisymmetric subspace of
the Hilbert space. Hence the scattering operator given by

t=w —v—t .
e

(2.18)

Expressing r and r in Eq. (2.18) in terms of Ua" and
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U~~iqrr of Eqs. (2.16) and (2.17) yields target nucleus under consideration. %ith these states we
can derive the following equations from Eq. (2.14}:

(1) ~ (1) ~ (1) ~ U(1)U = U + U

whereas from Eqs. (2.11)and (2.12) we have

(2.19)

Tmn=
& &

UKMT+
& &

UK.MT
(1) A (1) A (1) A —1 P (1)

A e

(2.20)

Ehmination of U~KM'T from both equations now leads us
to

[ U(&)] U
1 g U

1 [U(l)]
A, 0 e

[Ug'].,= U.,——g U„—,[U~'&]„,
A b o e

where

Ug, ——A(a
i
t

i b),
[Ut'~]„=~(a g~b),
—,= &a

~

1/e
(
a & .1

(2.24)

(2.25)

(2.26)

(2.27)

{2.21)

t (c0)=v +v 1 t' ( ),
to —K H+i5— (2.22)

where t0 is the total collision energy for the two-body sys-
tem. E and H are the kinetic operators for the pion and
the nucleon, respectively. There are several procedures:
(i) The replacement of t by t t'~ in Eqs. (2.14) and (2.15).
This does not affect any step leading to Eq. (2.21}and the
amplitudes of the two theories coincide. We see from the
definitions that the operator t would be more readily ap-
proximated by tt than are r and t (ii) Th.e impulse ap-
proximation in the KMT theory, r=t . Formally, this
amounts, in addition to (i), to further setting &=1 in Eq.
(2.15). It corresponds in the Watson theory to take the
ground state alone as the intermediate state in Eq. (2.14).
Indeed, the relation {2.21} as well as (2.18) still holds in
this approximation and the transition amplitudes in both
approaches are identical. (iii) The impulse approximation
in the Watson theory, t ~tt . The KMT formalism has
no counterpart for this. The contents of the two impulse
approximations therefore differ and the two amplitudes
actually have the following relation,

T (1)imp T(1)imp T(1)im T(1)imp
W KMY" + 8'

A e
(2.23)

Here the amplitudes in the impulse approximation are
denoted by T™and T~~~

I et us turn to the discussion on the Pauh correction. If
we take the Watson formulation, the basic equation would
be Eq. (2.14}. A matter of concern is the treatment of the
operator 1 —W which projects onto the entire set of the
Pauli-violating states. Let these Pauli-forbidden states be
expressed as

ia) (a =1,2, . . . ,N),
and the ground state as

~
0). N will depend on the actual

which simply states that T~zM'T is equal to Tttt' . This re-
lation is also mentioned in Ref. 8.

Let us also consider some further approximations often
used in the actual calculations. To construct the optical
potential from the elementary pion-nucleon interaction in
free space„one needs to relate the operator t or r to the
two-body AN t matrix

Equations (2.24) are the channel-coupled integral equa-
tions for the "transition optical potentials" defined among
the various fictitious states. There are, in principle, an in-
finite number of nonphysical states of broken symmetry.
In our actual calculations, however, the relevant Pauli-
violating states will be reduced to some finite number. A
detailed inquiry about the proper and approximate selec-
tion of the Pauli-violating states associated with our
specific problems will be made in Sec. III. Another point
to be noted here is that the integral equations (2.24),
which result from the Pauli correction, are bound to mix
the elementary mN partial waves. Thus in the present
framework, the mixing effect due to the Pauli principle is
automatically incorporated in the solution [Us" ]00.

The above procedure for the Pauli correction can be ac-
comphshed just as well in the KMT formalism starting
from Eq. (2.15). One may say the calculation in the KMT
theory is more simplified to the extent the ground state
does not appear in its intermediate state. Actually, we
checked numerically the equivalence of the two ap-
proaches. We will nevertheless carry out our calculations
in the Watson approach. The reason is that in the KMT
approach, the treatment of the Coulomb force is slightly
difficult. As one sees from Eq. (2.12}, the transition am-
plitude is obtained in the KMT theory through multipli-
cation of the scaling factor 3 /(3 —1) to the quantity T'.
Hence it would not be correct to add the Coulomb poten-
tial Vc to UKMT in Eq. (2.11) when we solve for T'. We
wiB show, at the end of Sec. III, the associated numerical
error when calculated in this way. [We note that even if
V, is multiplied by (A —1)/A when added to UzMz, it
would still not be the right procedure due to the iterative
character of Eq. (2.11).] We will not go into further de-
tails on this point (see Refs. 8 and 9).

III. APPLICATIONS TO
m-d, 'He, AND 'He SCA i-I BRING

The common feature of d, He, and He is that, in the
shell-model picture, all the nucleons are in the same s or-
bit. The single-particle states differ in their spin-isospin
part. This gives us a simplification in investigating a
more definite recipe for the proper choice of the Pauli-
violating states.

The fact that we are concerned with the first-order op-
tical potential gives us another simplification. In the in-
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dependent particle picture, we see that all the unphysical
states in Eq. (2.24} are those that differ from the ground
state in one of the single-particle states alone.

With these two elements, we may assume that we have
to only deal with those Pauli-forbidden states generated
by the modification in the spin-isospin part of the ground
state wave function. Modifications come from the spin-
isospin flip of the single interacting nucleon. We can jus-
tify this idea also from the following respect. For the s-
shell nuclei, the states with different spatial structure
presumably cost high excitation energies, while those that
are merely different in spin-isospin part are nearly degen-
erate in energy. Since the degenerate states should have
much greater contributions, the above-stated assumption
can be confirmed. We notice that the present criterion for
the Pauli-violating states is essentially equal to that of de
Kam et al.3 What differs is our explicit treatment of the
Pauli-forbidden states in the integral equation (2.14). This
necessitates us to deflne the unphysical transition optical
potentials. The present approach makes it possible to
choose also non-closed-shell nuclei as the target.

In the following, we divide in subsections and consider
several specific problems. Our computational results will

be shown simultaneously. In the last subsection D, we
show the numerical results of the additional respects men-
tioned in Sec. II.

states. Under the prescription given above, we look for
the spin-isospin functions of broken symmetry. We im-
mediately find that the following two:

(1) S=T=O,
(2) S=T=1,

are the only possible combinations. Here S denotes the
total spin for the two-nucleon system. We then combine
these with the spatial part of the ground state. In the
present calculation, we will neglect, for simplicity, the
minor D component in the spatial wave function. In-
clusion of this component would complicate our inquiry.
Namely, it can couple to S=1 to yield additional ficti-
tious states with J=2 and 3, although these contributions
should be very small. The configuration mixing in the
nuclear ground state is indeed one of the factors that
renders the Pauli correction a more intricate task. Such
an aspect should certainly be more concerned with heavier
nuclei. We may suppose that the ground states of the
light nuclei such as 3He and He are also well approximat-
ed to be the purely symmetric S state. Hence we will keep
the above simplifications throughout the following sub-
sections.

Now our Pauli-violating states for the deuteron will be
the following two states:

A. e-d scattering

The scattering of pions from the deuteron has been
studied intensively, and there are numbers of more sophis-
ticated three-body-type calculations. ' The main object
here is to check and see how well our naive optical poten-
tial approach can describe the m-d scattering, with the
special attention to the Pauli correction. ' Under this rel-

atively simple system, we can also clarify our manipula-
tions.

The ground state configuration of the deuteron is
J T= 1+0. Here J and T stand for the total angular
momentum and total isospin, respectively. The totally an-

tisymmetric wave function is constructed from the sym-
metric spatial part and the antisymmetric spin-isospin
part. The spatial part consists of the S state with a small
D component.

Let us now see what are the relevant Pauli-forbidden

(1) g, X IS=J=T=O
(2) f, X iS=J=T=1& .

Here f, expresses the spatial part and the kets are the
spin-isospin parts. We will denote the above two states by

~
1& and

~
2&, respectively. ~0& is always reserved to ex-

press the ground state. The next step is to construct the
transition optical potentials U~ of Eq. (2.25) with these
three states.

Let us first point out some general features of the tran-
sition optical potentials. From the definition, U,b is the
matrix element of the operator t, which in the actual cal-
culation is replaced by the AN t matrix t "'. Therefore
U,b is essentially the first-order optical potential in the
Watson impulse approximation. In the momentum space
representation, U,b is decomposed into the partial waves

&r.m'I «k'k &}lib~ &=+&1~'T'MT IIM, &&Im'J'Mi lJ~, »~ «')

(3.1)

where k and k' are the initial and final pion momenta in
the m nucleus c.m., respectively. I b and I denote the set
of qmuitum numbers needed to specify the initial and f-
ina target system:

I'b (JMJ, TMT ), ——

I,=(J'Mg, T'MT ) .

In Eq. (3.1), l denotes the orbital angular momentum for
the pion-nucleus system. I couples to J to yield the total
angular momentum j. The isospin component of the pion
is expressed by m;, and I signifies the total isospin for the
scattering system. The operator t ' has the isoscalar and
the isovector part and each of them is further decomposed
into the spin-non-flip and the spin-flip part. Correspond-
ingly, the reduced matrix element Ug of Eq. (3.1}can be
expressed as the sum of these four parts:
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where

V~ =&r T~jzU(s)I (g)l

V,b
——5j JU

(v)I (u)l

8""=5 ( —)
' J'J

2

s+J-~/2- - J'
g (u)tj (

)Sc+~ 'l—'2y y
2 2

1
(s}lj'Ng g

2 C

1
(y)lj

SC

J' J 1
t() (s)lj ( )I +J+jI 2 ~ f(s)l

Tl
T -I—1/2

tsr r ——( —} ' 6T'T
2

J 1

Wgsg
(u)lj ( )I+J+j I 2 ~ f(u)l

1 I j
l

(3.3)

(3.5)

(3.6)

(3.7)

(3.8)

In Eq. (3.2) V,'b and V,'b are the isoscalar and isovector
spin-non-flip potentials, while W",f)'j and W,'bu)'j are the
corresponding spin-flip potentials. In Eqs. (3.3}—(3.9), we
have explicitly written down the usual spin factors that
appear irrespective of a particular calculation. a in these
equations denotes (2a+1)' . The quantum numbers S,
and T, are the total spin and isospin for the residual core
of the nucleus composed of A-1 nucleons. For the deute-
ron, S, and T, are obviously both one halves. When
more than one pair of S, and T, are involved, the sum
over them with proper weights is implied in Eq. (3.2).
Note that the optical potential constructed between the
states with different core structure vanishes. This follows
since in the context of the single scattering approxima-
tion, the residual core is always left unchanged.

(s)l U(u)l f(s)1 and f(u)l tn Eqa
(3.3) and (3.4), and (3.7) and (3.8} depend on the particular
type of the calculation chosen. We constructed these in
the momentum space, including the six components of the
s and p waves of the nNinte. raction as the input. We
adopted the phase shifts of Ref. 11 for the on-shell part,
and its off-shell extension was made with the Gaussian
vertex functions. In replacing the operator t by t ', we
treated carefully the transformation of the n.N amplitude

102 I I I I I I I

d (a)-
A21Q

1Q1 10$

L 1O1

O

O 82 MA'

~ ]Q)

C

C"
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U

101
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e, (deg)
60 120

ec ~ (deg)

FIG. 1. The differential cross sections for ~+-d elastic scattering at 4',a) T =6S, 82, 116, and 142 MeV; {b) T = 181, 2S4, and 292
MeV. The sohd and the dashed curves represent, respectively, the calculated results ~ith and without the Pauli correction. The data
at 65 MeV are from Ref. 14. The cross-shaped data at 142 and 254 MeV are from Ref. 15 and the rest are taken from Ref. 16.
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I

F00 2tXj
Tm(Me V)

I I

d (b)

I

)QQ

I I

2OQ
Tm (MevI

FIG. 2. The integrated (a) elastic and total (1) reaction cross
sections for ~-d scattering. The meaning of the curves is the
same as Fig. 1, The data for 0~ are from Ref. 17, the data for
Oq and 0, are from Ref. 18.

U=lU~1

U~ ——Ua, = Ug (a,b =0, 1,2) .
(3.10)

Here, we will suppress the subscripts Ij,I, for simplicity.
From Eqs. (3.3)—(3.9) its explicit form wiH be

U(s) ) ~(s)

(s) (s)~W)0 u
2

~2(u(P)+~tu) ) ~(v) U"' u '"~N))

+U(v)+ ~(v)

(3.1 1)

between the nN c.m. frame and the m-nucleus c.m. frame.
The nN collision energy was determined by the three-
body kinematics which takes into account the recoils of
the struck nucleon and the residual core. The binding ef-
fect is another subtle problem. We have tentatively as-
sumed no constant shift in the colhsion energy. The nu-
clear internal motion is incorporated by performing the
Fermi integration.

Every transition potential is now expressed by a hnear
combination of u"" u'"' tu"'~&, and tuj"qi~. We expect
that such an approach should be sensitive to the strong
spin-isospin dependence of the interaction. We also note
that all the AN partial waves are equally treated.

Let us return to the problem on the deuteron. With the
three states involved, we can define a 3X3 matrix con-
structed from the transition optical potentials;

With these transition optical potentials, one proceeds to
solve the channel-coupled equation (2.24) for [U&']00.
For the numerical computation of the integral equations,
we applied the matrix inversion method developed by
Haftel and Tabakin. ' We note also that, in our calcula-
tions, the Coulomb force was treated according to the
matching method of Vincent and Phatak. '

We computed at the energies where the experimental
data are available. ' ' The nuclear ground state was
described by the wave function of the Paris group. '9 The
S component accounts for 94.2% of this wave function.
The results for the differential cross sections are shown in
Fig. 1. One sees that the results are generally in good
agreement with the experimental data. We also notice
that the effect of the Pauli correction is not so drastic.
The magnitude of the correction is typically 15% to 20%.
The deuteron is known to be a loosely bound system and
one indeed expects the Pauli effect as well as the higher
order effects to be less important. The general trend
shown in Fig. 1 is that the Pauli effect lowers the cross
sections in the low energy side, whereas it increases them
as one goes over to the resonance region, making better
agreements with the data. As one goes higher in energy to
the off-resonant region, our two results both disagree with
the data in the backward angles, while the aspects in the
forward angles remain the same. This is clearly seen at
292 MeV. Our calculation fails to explain the upward
shift of the data. At these high energies, large momentum
transfers involve at backward angles (q —3.5 fm ').
Hence, even for this weakly correlated system, the first-
order theory may lose its validity. Another point is the
absence of the deuteron D wave in our calculations. This
small component is known to have a considerable interfer-
ence with the S wave for large q's. Indeed, we observe a
quite different behavior in a complete calculation done by
Rinat and $tarkand.

The results for the integrated cross sections are shown
in Fig. 2. We see that the results reproduce the features of
the experimental data' ' fairly well. The trend we found
in the angular distributions appears all the more clearly.
At 80 MeV, the Pauli effect lowers the total cross section
by 20%, and the elastic cross section by 9%. At the reso-
nance, the full calculation increases the total cross section
by 6%, and the elastic cross section by 18%. The full cal-
culation underestimates the empirical total cross section
throughout the energy region considered. The difference
is 10 to 15 mb. This is reasonable in view of our neglect
of the D-component in the wave function, and the absence
of the absorption channel.

B. e-'He scattering

As we mentioned, the previous studies of the Pauli
correction made in the 6-hole model and by de Kam are
both on He. Although Landau works on He, including
the Pauli principle, ' the nuclear matter approach is taken
and the Pauli effect may not be satisfactorily evaluated.
Thus it will be of particular interest to apply our pro-
cedure to this target.

The ground state configuration of He is J 'r= —,
'

With the simplification stated in subsection A, we assume
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the total antisymmetry of the ground state wave function
to be achieved by the symmetric S state of the spatial
part, and by the antisymmetric spin-isospin part. This is
expressed by

~
()} y X (@1/2 1/2 @1/2 1/2)

2

where

e$~~ = ~(S, —,')S,(T, I/2)r& .

(3.12)

(3.13)

The meaning of the ket is self-evident. Two nucleons in
He couple their spins (isospins) to S, (T, ), which then

couples to the spin (isospin) of the third nucleon to make
the total spin S (isospin T). In the He ground state, two
integral values 0, 1 are therefore possible for S, and T, .
Under the recipe given, we see from Eq. (3.12) that the
following three states are the only appropriate Pauh-
violating states for He:

(@'"'"+@'"'")l

2

~
2) y XqP/21/2

~
3 ) y X @1/23/2

(3.14)

(3.1S)

(3.16)

In the present scheme, the residual core is never affected
and there are no contributions from any other fictitious
states.

Since the isospin of the He ground state is nonzero, the
scattering of positive and negative pions have different as-
pects. Namely, the total isospin I for the pion-nucleus
system is merely —, for m+, while for n both —,

'
and —,

'

are involved. Thus in the case of n. , the channel-coupled
equations (2.24) are solved twofold for each of these
values.

Let us construct the matrix U of the transition optical
potentials defined in subsection A. From the above in-
quiries, U will now be a 4)& 4 matrix. For I = —,',

+ 3itin(s) & (s)

+ T(U W 1/21/2 )

—
&

(W i/2 1/2
—»'"')

Uio

Uoo

Uzo

U2o —U3o

T(w3/21/2+2w3/21/2) U20 U
is) +3/ 10/3w (&~)

+2(u'"'+ ~10/3W3"/23/2 )

(3.17)
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U3o
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+W 1/21/2 ) U30 + i]'2 i/2
(s) (s)

+ 1(U +Wi/21/2)

In Fig. 3, we show the calculated differential cross sec-
tions. For comparison, the available data are also plot-
ted. ' ~e employed two realistic trinucleon wave func-
tions for the target nucleus. One is of Hajduk er al.24 and
the other is of Muslim and ~m.23 These wave functions
have analytical forms obtained by the fit to the exact solu-
tion of the Faddeev equation. Both adopt the Reid soft
core potential for the NN intenction. As expected, in the
energy region considered, our results turned out to be vir-
tually identical for either of these wave functions. The S
component accounts for nearly 90% and we renormalized
the S-wave part to unity. We see in Fig. 3 that the results

generally reproduce the qualitative features of the data, al-
though the fit is not as good as for the deuteron. One
supposes that the higher order effects will be more impor-
tant for the more strongly correlated system. Yet we no-
tice the same trends of the Pauli effect we previously ob-
served. For He, they are seen to be emphasized. m+

scattering at 45.1 and 65 MeV show clearly the effect of
the Pauli principle in the low energy regime. The
Coulomb-nuclear interference peak near 30 is lowered by
25% to 40%%uo, the location of the minimum is shifted for-
ward by -5', and the height of the minimum is further
lowered by 15% to 20%. All these changes. lead to the
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FIG. 3. The differential cross sections for m+-- He elastic scattering at (a) T =45, 65, and 97 MeV; (b) T =120, 156, and 208
MeV. The meaning of the curves is the same as Fig. 1. The data at 45 and 65 MeV are from Ref. 22, and the rest are from Ref. 23.

better fit to the data. For n, similar improvements are
also seen in the forward angles. However, discrepancies
are found between our low energy results and the data in
the backward angles. We notice the similar underestima-
tion of the data in the calculation of Landau referred in
Ref. 22. Above -100 MeV, calculations overestimate the
data especially in the forward angles. These tendencies
are also seen in the results of Mach et ul. 2 Near the reso-
nance, we see that the inclusion of the Pauli principle
seems to worsen the fit to the data.

The integrated cross scetions are shown in Fig. 4. As a
feature common to the deuteron, the resonance peaks are
sharpened with the inclusion of the Pauli principle. This
is reasonable since the Pauli principle limits the decay of
the 6's in the nuclear medium. Another thing in common
is that the difference between the two calculations tends to
diminish as we go higher in energy from the resonance
peak, which is also physically predictable. We notice,
however, that our results largely overestimate the data for
both n+ and n

Lastly, we checked the dependence on the use of dif-
ferent wave functions. Since we have the exact wave
function at hand, it is interesting to compare the results
with the ones calculated with the simple oscillator func-

tion frequently used for the S-shell targets. This is shown
in Fig. 5. The oscillator parameter was determined from
the rms matter radius (r2) '/ = 1.650 fm of He obtained
in Ref. 27. In Fig. 5, the overall increase of 12%%uo to 18%
is found with the use of the oscillator function. At 156
MeV, however, we see a marked difference in the back-
ward angles. This indicates a caution for the use of the
oscillator function where high momentum transfers are
inveNcd.

C. m-~He scattering

As our third application, the scattering from He is in-
vestigated. We expect that the Pauli effect is most impor-
tant for this tightly bound system. We follow the pro-
cedures taken in the devious subsections. The ground
state configuration of He is J~T=0+0. The wave func-
tion is assumed to be a product of the symmetric S state
of the spatial part and the antisymmetric spin-isospin
PLtt~

~
0) y X I

g~1/21/2]00 [y@1/21/2]00]
2

(3.19)
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Here, I denotes the spin-isospin function of a single nu-

cleon. 4~' ' is the spin-isospin function of the three-
nucleon system (the residual core), and is defined in sub-

sT sTsection B. X couples to 4„' ' to form [X4„' '] . The s
and t are the spin and isospin of the two-nucleon system
and the meanings of the rest of the notations are unal-
tered. We note that the spin-isospin part in Eq. (3.19) is
the only possible totally antisymmetric combination. (For
details of the symmetry of the four-nucleon system, see,
e.g., Ref. 28.} In our framework, the residual core always
remains unaffected and the spin, isospin flips of the active
nucleon give us the following six "bases" for the construc-
tion of the Pauli-violating states:

FIG. 4. The integrated cross sections for m
—+-3He scattering.

(a} m+-3He elastic and total cross sections; (b} m+-3He reaction
cross section; (c} m -3He elastic and total cross sections„' (d)

e -3He reaction cross section. The meaning of the curves is the
same as Fig. 1. The data are from Ref. 23.

p @1/2 1/2]01 [y@1/2 1/2]10 p @1/2 1/2] 11

[y@1/2 1/2]01 [yg)1/2 1/2]10 [y@1/2 1/2]11

There are eight bases all together. The following three
states
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(3.21}

~
a ), (a =0, 1,2,3} . (3.23}

~
1 ) 1(l X I

[y@1/21/2]01 [g@l/21/2]01
I (3 20}

2

~
2) y X {[y@1/21/2]10 [y@1/21/2]10I

2

~
3) 1(l X I

[y@1%1/2]11 [+@1/21/2]11
I (3 22}

2

in addition to the ground state
~
0) make half of the eight

independent states formed by these bases. The remaining
four states are obtained by changing the signs of the
second terms in the parens. Let us denote the correspond-
ing four states by

U~ ——U~ ——A (a )
t '

(
b ) =0, (3.24}

which follows, simply because the operator t ' does not
influence the residual core. Consequently, the states

~

b )
never couple with the states

~
a ) in the integral equation

(2.24}. We therefore need only to treat the four states

~
u ), (a =0, 1,2, 3} in the channel-coupled equation to ob-

tain [Uq"']00. The matrix U of the transition optical po-
tentials for He will now be the 4)&4 matrix

In the present scheme, the above seven states exhaust the
possible fictitious states. We now consider the transition
optical potentials. Here we notice the following relations:

1Q
PE2

2 ]Q2
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C 1Q'
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E 1Q"—
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)Q2

]Q1 )Q1

1Q0 1 0

1Q 1-

I i I I I I

6Q &2Q

8 (deg}

(b)
l I I I 1 I I I

Q 6Q ~2Q

ec m(dag}

FIG. 6. The differential cross sections for m+-- He elastic scattering at (a) T =S1 and 75 MeV; (b) T =110, 150, and 180 MeV.
The meaning of the curves is the same as Fig. 1. The cross-shaped data at 51 MeV are from Ref. 22. The rest of the data in {a) are
from Ref. 29, and the data in (b) are from Ref. 30.
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U(s) Uio

U(s)+ U(v)

U2o U3o

~(s)+~(s) (3.25)

I (u){$)+u){ )$) ~2(U{$)+u){$)) U{$)+u){$)

+U(~)+ ~(~)

We described the target by the simple oscillator func-
tion. The oscillator parameter is determined from the rms
matter radius (r )'~ =1.481 fm, given in Ref. 27. The
angular distributions are shown in Fig. 6, together with
the available data. z 3 We see that the general tenden-
cies observed in the previous two applications are now
moreover stressed. In the low-energy region, discrepan-
cies from the data are found without the Pauli effect.
They considerably overestimate the data both in the for-
ward and the backward angles. The predicted position of
minima are clearly out of place. As before, the improve-
ment results with the inclusion of the Pauli effect, but to a
larger extent. In the n+ result at 51 MeV, the full ac-
count of the Pauli principle reduces the cross section
roughly by 50% around 30' and by 20% in the backward
angles. The position of minimum is shifted forward by
about 5'. Expectedly, the Pauli effect turns out to be a
significant medium correction in describing the low-
energy phenomena of the strongly correlated system. The
Pauli effect is appreciable in the intermediate energy as
well. Over 100 MeV, it increases the cross section, wor-
sening the fit to the data. Near the resonance, the in-
crease in the cross section is -25% in the forward angles,
even 50% to 100% in the backward angles. In the back-
ward angles, the calculations disagree with the data in
their shapes, but it may be attributed, in part, to the use of
the oscillator function, as was previously discussed.

The inclusion of the Pauli effect leads to the mixing of
the nN partial waves. To see the importance of this, we
performed an artificial calculation that suppresses the
mixing. Namely, the channel-coupled equations (2.24)
were solved for each n N wave. The results for 75 and 150
MeV are shown in Fig. 7. We observe that the mixing ef-
fect is appreciable. We mention that such an effect is pre-
viously studied by de Kam and that most of the results
obtained here for m- He scattering agree closely with his
results, despite the different procedures.

The interference between the dominating F33 channel
and other weak background channels is unavoidable even
if it were not for the Pauli effect. To see its role, we per-
formed also a calculation in which the amplitude is ob-
tained for the F33 separately from other channels. The re-
sults are compared in Fig. 7. Contrary to the mixing ef-
fect due to the Pauli principle, we notice a considerable
destructive feature of the interference at both energies.
We mention that this shadowing of the P33 amplitude 1s

properly included in the 6-hole model of Ref. 2.
The integrated cross sections are displayed in Fig. 8.

vl ]Qz &

E

m 1Q

I l I l l

&80

FIG. 7. The calculated differential cross sections for n. - He
elastic scattering saith variations on the inclusion of the Pauli
correction. (i) The suppression of the mixing of the mN partial
vraves due to the Pauli effect (the dash-dotted curves). (ii} The
separate treatment of 833 channel from the other background
channels (the dotted curves). (iii} The full calculation (the solid
curves). The data are from Refs. 29 and 30.

We can see similar aspects as for the deuteron and He, in
an emphasized manner. Before going to the Pauli effect,
we show the results without shadowing. They differ from
the full calculations strikingly. This indicates that sha-
dowing is an important effect to be taken into account
prior to any further corrections Ha. ving the Pauli effect,
we can see that the resonance peak is shifted slightly to
the high energy side (-6 MeV). This is plausible for the
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FIG. 9. Comparison between different treatments of
Coulomb force in m-+- He elastic scattering. The dashed curves
correspond to the approximate procedure in the KMT frame-
work. The solid lines are the results obtained in the Watson for-
mulation. Both include the Pauli correction. The data are from
Refs. 22 and 29.
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same reason discussed earlier. As compared to the data,
our results are markedly overestimated. We find such
trends in many other calculations. We expect, as seen in
the work of Hirata et al. , higher order corrections not
present in our calculation to reduce the cross section to a
large extent. Again, the results for o,~, o«„and o, are
very similar to those of de Kam. In the reaction cross
section, the calculation without the Pauli correction seems
to agree well with the low-energy data, as in the case of
the deuteron. This is accidental in view of the absence of
the absorption channel in our calculation. The experi-
mental data for the absorption cross section in this energy
range lie between 30 to 80 mb. '

~00
l

300

FIG. 8. The integrated {a) elastic, (b) total, (c) reaction cross
sections for m- He scattering. The meaning of the curves is the
same as Fig. 1 and Fig. 7. The data are from Ref. 30.

D. Some additional comparisons

Up to this point, all the computations have been per-
formed in the Watson formulation. Apart from the
Coulomb interaction, the obtained results can be equally
achieved in the KMT framework. In particular, what is
referred to as "calculation without the Pauli correction'*
simply equals the KMT impulse approximation. The
complexity in the KMT approach of handling the
Coulomb interaction forced us to work in the Watson for-
malism, as we have already stated. The results obtained
just by adding the Coulomb potential to the KMT optical
potential are compared in Fig. 9 with the correct Watson-
type calculations. Both include the Pauli correction. The
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102, the order of (i), (ii), (iii). This may be plausible since this
order indicates the degree at which the fictitious states are
contained in the optical potentials.

IV. SUMMARY AND CONCLUSIONS

C
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0 60 120
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FIG. 10. Comparison of three different types of the first-

order calculation in m--4He elastic scattering. The dotted
curves correspond to the impulse approximation in the %atson
formalism. The meaning of the dashed and the solid curves is
the same as Fig. 1. The data are from Refs. 29 and 30.
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comparison is made in the low-energy region since this is
where the role of the Coulomb force is especially impor-
tant. Appreciable differences of 15/o to 40% are ob-
served in the forward angles, although the difference was
negligible for higher energy results. Yet the discrepancies
seen here indicate that in dealing with the low-energy phe-
nomena of light nuclei where (A —1)/A is not close to
unity, one must be careful with the treatment of the
Coulomb potential.

Next, we examined the impulse approximation of the
Watson formulation, i.e., t=rr' [(iii) in Sec. II]. This
amounts, in our notations, to taking Uoo directly as the
optical potential in place of [Uz"']00. The results are com-
pared in Fig. 10 to the results from the two approximate
schemes (i) t=-t and (ii) ~=r employed in this sec-
tion. Although the relative fit to the data are contrary at
low and intermediate energies, it is interesting to see that,
at both energies, the results for the three calculations lie in

We have given a prescription to incorporate the Pauli
correction into the first-order pion-nucleus optical poten-
tial. Unphysical transition optical potentials were intro-
duced among the various Pauli-violating states. Our opti-
cal potential appeared through the channel-coupled equa-
tion formed with these transition optical potentials. The
solution of the channel-coupled equation also refiected the
mixing of the irN partial waves due to the Pauli principle.

Our technique does not restrict the target nucleus and
we made applications to m-d, He, and He scattering.
There, a criterion was given to select the relevant Pauli-
forbidden states. The recipe was to find the fictitious
states that differ from the ground state in the spin-isospin
structure. This simplifying assumption came primarily
from the fact that we deal with the single scattering pro-
cess and that for the s-shell targets, all the nucleons are in
the same spatial orbit. Then we explicitly enumerated, for
each target nucleus, the possible Pauli-forbidden states
and constructed the corresponding transition optical po-
tentials.

We displayed our numerical results in the form of dif-
ferential and integrated cross sections, and compared
them to the experimental data. We found that the Pauli
effect modifies the cross section both qualitatively and
quantitatively, and gives an important correction to the
low and intermediate energy m-nucleus interactions. The
common features were observed for the three targets con-
sidered, and the degree of modifications were larger for
the more strongly correlated system. The trend was that,
in the low-energy region, the Pauli effect reduces the cross
section and partly improves the fit to the data, while in
the resonance region, it is just the contrary. In particular,
our result for m- He turned out to be very similar to those
previously obtained by de Kam, although a different pro-
cedure is taken. We suppose that the remaining
discrepancies are attributed to the effects not present in
our framework.

Note added: We are grateful to M. Thies for informing
us of his work with T. Karapiperis and M. Kobayashi on
the study of the Pauli correction. We found that our re-
sults for partial wave mixing due to the Pauli effect (the
difference between the solid and the dash-dotted curves in
Figs. 7 and 8) are in good agreement with their con-
clusions on e- He scattering. The comparison to their ap-
proach is not discussed in this paper.

The numerical calculation was performed at the com-
puter center of the University of Tokyo, supported in part
by the Institute for Nuclear Study of the University of
Tokyo.
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