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Coupled cluster description of pion-nucleon systems
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The (nonperturbative) coupled cluster method is applied to the pion-nucleon system. After solv-

ing the vacuum and one-nucleon problem, a res.donable description of the deuteron is obtained.

I. INTRODUCTION II. THE MODEL

The assumption that the forces between nucleons are
mediated mainly by mesons has survived all more sophis-
ticated theories, such as quantum chromodynamics
(QCD). This is why there still are many papers based on
this model'z However, even within this picture approxi-
mations have to be made which cannot easily be con-
trolled. The validity of perturbation theory certainly is
questionable in view of the large coupling constant.
Therefore nonperturbative methods have a certain appeal.
One of the methods which has been considered is the cou-
pled cluster method (CCM).s'~ It has been successfully
used in various many body systems. More recently it has
been formulated specifically for the meson-nucleon sys-
tem. ' In this case the vacuum corresponds to the closed
shell many body problem, the wave function being written
in exponential form; the one, two, etc., nucleon problems
correspond to the one, two, etc., valence problems. The
mesonic degrees of freedom can be systematically elim-
inated such that one ends up with a many nucleon theory
with effective interactions. In Ref. 5—thereafter quoted
as I—these ideas have been presented explicitly. We refer
the reader to this reference for further details. Here we
present the results for the vacuum, and the calculations of
the one and two nucleon masses and the deuteron binding
energy. The meson mass enters on a higher level of CCM
approximation such that it is justified to put the bare
meson mass equal to the physical one. The vacuum is not
merely a luxury: the contributions to the wave functions
have a definite influence on the other quantities. The vac-
uum energy by itself, of course, is of no interest.

The main problem we encountered is the nteessity to
regularize. Unfortunately there is still no method to
reconcile the (perturbative) renormalization schemes with
the (nonperturbative) CCM. So we were forced to intro-
duce a (standard) form factor into the pion-nucleon Ham-
iltonian. We note in passing that in 1+ 1 or 2+ 1 di-
mensional field theories these difficulties either do not
occur ' or can be removed.

The Hamiltonian density used in this paper is of the
standard isospin invariant form with free (relativistic)
mesons, free (relativistic) nucleons, and y5 pion-nucleon
interaction with form factors:
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III. CCM FOR THE PION-NUCLEON SYSTEM

As details of the general scheme can be found in I, we
note here only those facts specific to the model under dis-
cussion. The first step is the calculation of the ground
state (=vacuum). It is given in the form
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Here Po ——bare vacuum and

(3.1)

s= gs„ (3.2)

n labels the number of nucleon-antinucleon pairs created
out of the bare vacuum; rn labels the number of mesons;
explicitly

X ft(x)yss't Pt(x)P;(x') . (2.3)

We follow the usual summation convention; t, t' label the
isospin, st are the isospin matrices, and E(x —x') is the
form factor for the meson momentum of the nucleon-pion
vertex; in momentum space we use the form6

rti—F( le I
)= (2.4)

with the cutoff parameter A, ; m/M is the (bare) pion-
nucleon mass ratio and g the (bare) coupling constant.
We shall fix the parameters later.
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exp( —S)H exp(S)
~ $0)=E„~$0) (3.4)

and project onto a complete orthonormal set of Pock
states: ($0), atfgo), anat)$0), atatbt[$0), etc. [see

Here the summation over spins and isospins is implied; b
creates mesons, a t nucleons, and a t antinucleons.

The equation for the vacuum problem is then obtained
via standard procedures: write the Schrodinger equation
with (3.1}in the form

also I Eq. (3.2)]. The one nucleon problem is solved with
the ansatz equation

~
fi(p)) =exp(S)(1+F"')a (p)

~ $0), (3.5)

[see I, Bq. (3.3}] where F'"= gF~" is of a structure
similar to S„.It changes the nucleon with momentum

p and creates nucleon-antinucleon pairs and/or mesons
[see I, equations after (3.3}]. Similarly, the two nucleon
wave function is written as

~
Pz(a) ) = f dpi f dp2exp(S)(1+E"'+ —,

' E"':+E' '}a (p, )a (pz}
~
tt)0)&pip2), (3.6)

[see I, Eq. (3.9)]. E' ' now changes two nucleons. The
tricks to be used to eliminate the vacuum from both equa-
tions and the one body part from the two body equation
are described in I (and in former papers on many body
theory"'e). All these techniques are straightforward.

IV. TRUNCATION AND TECHNICALITIES

V. NUMERICAL RESULTS

The solution of the coupled cluster equations for the
vacuum could be done consistently using the form factor
(2.4). In a higher order calculation it turns out that a fur-

TABLE I. Deuteron binding energies.

V'4n X 14.4
1.28

1000
1300
1500

bare mass M
(MeV)

771

Deuteron binding
energy (MeV)

—9.4
—10.5
—10.8

The solution of the coupled cluster equations is a major
task. Not only are the explicit equations rather lengthy
(containing, however, an enormous amount of partially
summed perturbative terms), they also are nonlinear and
coupled to higher amplitudes. The nonhnearity turned
out to be a minor nuisance: iterative procedures always
worked. The technical difficulties mainly had their origin
in the many dimensional integrals, which could only be
overcome in part by partial wave expansions, a great deal
of Clebsch-Gordan algebra, etc. So, we had to truncate on
a rather low level. But we hasten to emphasize that still
many different terms of arbitrary high order were includ-
ed. We list here the amplitudes which were included:
Si p, Si i, Eo i (Eo 2, Fi 0, Ei i in low order). For the two
nucleon problem only those terms containing amplitudes
from the vacuum and one particle problem were included.
This includes the (most important) one Boson exchange
terms, of course. On this level of approximation the
meson self-energy is a higher order term. Therefore its
bare mass was put equal to the physical one. For more
technical details of this work see Ref. 11.

ther cutoff for the nucleon momenta is needed. However,
as long as one is not interested in the vacuum energy itself
(only in its wave function) it is sufficient to cut off only
the meson momenta according to (2.3} and (2.4). This is
what we did here. The results depend on the parameters
M, g, and A, . The bare meson mass m is chosen to be
equal to 139 MeV. The one body problem fixes the bare
mass M, and the deuteron problem the coupling constant
g. Although the convergence of the CCM procedure
turned out to be excellent due to the softening effects of
the form factor, the g dependence was still rather strong.
Nevertheless, it was no problem to find a g not far from
the experimental g =4m X 14.4. In contrast, the A, depen-
dence is rather weak in accordance with similar results ob-
tained by other authors. s Details are shown in Table I.

One may ask how reliable these numbers are. All indi-
cations are that, indeed, the terms not included can be
neglected: already in the approximation scheme we have
used relatively few terms and all terms of higher order
turned out to be numerically small. This is in line with
the nutnerical experience in many body theory. Roughly
speaking it is due to the fact that chains (ladders) of infin-
ite length have been summed. Only the number of parti-
cles excited "at the same time" is very much restricted.

VI. DISCUSSION AND SUMMARY

The pion-nucleon Hamiltonian used in this paper has a
long history. It has been described in standard text books
a long time ago. "'~ Nowadays we know that actually
one has to deal with a many quark system. Lacking a
tractable theory one again is relying on relatively simple
(bag, Skyrme, etc.) models. ' ' Usually, it is no problem
to adjust their parameters such that the properties of nu-

cleons and the deuteron can be reproduced. One cannot
expect the same accuracy with the present rather
simple —and in a sense old fashioned —model. But it was
not the intention of this paper to obtain an accurate
description of the one- and two-nucleon physics. Rather
we wanted to show that the CCM is both a feasible as well
as a reasonable approach to rather complex systems. In
view of this the fact that we for instance have recovered
the "experimental coupling constant" has to be put into
the proper perspective: indeed in a theory with a cutoff it
is not at all clear whether or not this is already the renor-
malized (experimental) coupling constant. The cutoff
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function certainly simulates a large set of high order re-
normalized diagrams. It is hard to say which diagrams
are included in a given approximation. The experimental
value referred to above traditionally is based on a low or-
der (renormalized) pion-nucleon vertex calculation and
would have to be modified in higher orders. Therefore
one cannot expect more than qualitative agreement. We
note in passing that actually a double cutoff function is
needed, which connects the pion field P separately with P
and P.' We could ignore this in our approximation for
the simple reason that in the one- and two-nucleon prob-
lems there are one or two more nucleons than antinu-
cleons and in our approximation the number of antinu-
cleons at the same time is so restricted that they do not
produce infinities. This was not so for the vacuum state:
It either becomes infinite if one uses the form (2.3) with
only one cutoff function (as we did) or it depends strongly
on the cutoff parameter. But this has no influence on the
masses of one- or two-nucleon systems representing ener-

gy differences to the vacuum energy. I.orentz invariance
anyway requires subtracting the vacuum energy from the
Hamiltonian. These problems are inherent in all the pa-

pers based on the same model ' '" although they typical-
ly have not been mentioned. We note in passing that Ref.
19 not only uses the same model, it also is related to our
technique: the folded diagram expansion is known to be
the perturbative solution of the CCM equations for open
shell systems. 'o

We feel that the main objection against this approach is
the enormous amount of numerics. This did not show up
explicitly in the present short paper, see, however, Ref. 19.
It is the inclusion of so many high order terms which
makes the equations so complex and lengthy. But one
should keep in mind that the same amount of numerics is
quite common in quantum chemistry. There, however,
the CCM has developed into a standard technique and
standard CCM procedures and computer programs exist,
which can be applied to a wide range of objects. This also
could be done in nuclear physics, and the drawback of the
CCM mentioned above may be removed. But one certain-
ly should then use better models typically based on or
closely related to QCD: Here again CCM could be useful,
certainly in the lattice forms of whichever theory. Work
in this direction is under way.
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