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Virtual photon theory in electrofission
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The process of nuclear fission induced by electrons or other charged leptons is analyzed using dis-

torted electron wave functions and interpreted in terms of virtual photon exchange, thus relating

electrofission to photofission. Comparison of cross sections and fission fragment angular distribu-

tions for photofission, electrofission, and positrofission is shown to lead to reasonable conclusions in

terms of the contributions of different multipoles and intermediate states. The effects of electron

distortion are found to be considerable. As a method of analysis of fission, especially near thresh-

old, inclusive and exclusive electrofission experiments and also the ratio of electron to positron cross
sections promise goad results.

I. INTRODUCTIQN

Photons were used to induce fission in uranium and
thorium as early as 1941 (Refs. 1 and 2} and yet, despite
many experiments since that time, there still remain
discrepancies in the photofission cross sections; compare
for example results from Refs. 3 and 4 summarized in
Fig. 1. Recently there have been a number of experiments
using electron and positron scattering as the excitation
mechanism, s s and by interpreting the leptons as a source
af virtual photons, we can add these to the available pho-
tofissian data in the hope of clarifying the situation. Un
fortunately these data are not without discrepancies also
(see Fig. 2}. In addition ta cross section and fission-
fragment angular distribution results, we have the added
possibility, in the case of electrons, of analyzing correla-

tions involving the scattered electron and a fissian frag-
ment in coincidence. ' We may also anticipate the use
of muons to induce fission in a similar fashion.

In view af the above considerations there sirens ta be a
need for a reliable and flexible program af analysis for a
charged lepton interacting with a fissionable target nu-
cleus; one which will enable us to compare existing results
for photofission with electrofission and to compare elec-
trofission with positrofission and moreover to make some
preliminary examination of the value of coincidence mea-
surements. On the face of it this is a straightforward un-
derta mg since the interaction is electromagnetic in every
case and the nuclear matrix elements involved must surely
be related. The process does pose some special problems
because the energies of interest reach down to threshold
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FIG. 1. Photofission cross sections for ~38U. The triangles
and upper curve are from Ref. 3 and the circles and lower curve
are from Ref. 4. Representative error bars only are shown.

FIG. 2. Electrofission of 3 U from Ref. 5 (squares), Ref. 6
(triangles), Ref. 7 (circles), and Ref. 8 (diamonds). Representa-
tive error bars only are shown. Solid curves show fits using E1
only and dashed curves include E2.

33 1354 Q~19$6 The American Physical Society



33 VIRTUAL PHOTON THEORY IN ELECTROFISSION 1355

(typically about 5 MeV) while the nuclei of interest are al-
most exclusively heavy, a combination which leads to
large distortion of the electron wave function thus render-
1Qg plane-wave BOHl approxImatlon madqQRte. We may
also have particular concern for distortion effects in the
case of differential cross sections which represent only a
very small slice of the total and consequently are vulner-
able to small changes in the wave functions. This would
be the case for example with a triple differential cross sec-
tion in scattering angle, fragment emission angle, and en-
ergy.

In Sec. II of the present work we present expressions
for the cross sections for different classes of experiment,
namely exclusive experiments (where both electron and
fission fragment are detected), inclusive experiments (fis-
sion fragments only detected), and finally the electron
cross section alone with the direction of the fission frag-
ment integrated over. We will find that it is one thing to
write an expression and quite another to render the results
in numerical form while preserving a respectable level of
precision. At the very least we strive to avoid introducing
approximations in the treatment of the electrodynamics of
the problem.

The techniques for evaluating the needed cross sections
are discussed in Sec. III, although to avoid exhausting the
patience of the r~~er much of the detail is deferred to an
Appendix. We compare our results with some existing ex-
perimental data in Sec. IV. We also make a few remarks
on what one may expect in the analysis of different types
of experiments focusing largely on the effects of the elec-
tron distorted-wave treatment as opposed to the plane-
wave treatment.

II. FORMALISM FOR ELECTROFISSION

Consider the following reaction:

e+N~e'+N'~e'+f i+fz,
where an electron e interacts with the nucleus N through
the agency of virtual photon(s) and is scattered while ex-
citing the nucleus to state N'. The excited nucleus then
decays by fission into fragments fi and fz. In Fig. 3 we
show the vector diagram of the process, where ki is the
momentum of the incoming electron, with energy E,; it
also defines the z axis. The vector k2 is the momentum of
the outgoing electron (energy E2}, which makes an angle
8, with the z axis; ki, kz define the x-z plane. The vector
q=ki —k2 is the momentum transferred to the nucleus
making an angle 8 with the z axis. Vector f is the direc-
tion of one of the Fission fragments, and this makes an an-
gle 8f with the z axis and has an azimuthal angle Pf. The

FIG. 3. Vector diagram showing the angles used in text:
kl, k2 are the incoming and outgoing electron rnomenta and lie
in the x-z plane. Vectors f,f' are the fission fragment direc-
tions with polar angles 8f,g~ with respect to the z-x axes.

other fragiiient will be emitted in the opposite direction if
we can ignore nuclear center of mass motion. Other pa-
rameters used are ai=Ei —E2, the energy transfer, and
L,M the quantum numbers of the angular momentum
transferred.

Fission will be regarded as a two-step process. The first
is the excitation of the nucleus from the ground state
(treated as 0+ throughout this paper) to a resonant state
with spin (parity) L (n), while the electron is scattered in
some specific direction. Next the nucleus deforms in an
axially symmetric fashion, elongating along the symmetry
axis and ultimately dividing into two. In the immediate
prescission stage the nucleus has the structure resembling
that of a symmetric top and under suitable circumstances
may be accorded the set of quantum numbers L, M, and
K associated with a rigid rotor.

Since we are using distorted-wave methods to treat the
scattering electron, the first part of the process must be
broken down into partial-wave amphtudes, 8 (iri, xz)
(see Ref. 11), which are defined to be the probability am-
plitudes for the electron to change from angular momen-
tum state iri (where ir is the Dirac angular momentum

quantum number) to state ir2 while emitting a photon in
the multipole state AL, M. Here A, is a label distinguishing
electric multipole (E) and magnetic multipoles (M}. De-
fine W~~~, , to be the probability amplitude for the exci-
tation of the nucleus while the electron scatters through
angle 8„ the initial and final electron spin projections are

can relate the two amplitudes by

where

,(8,)=dna) a(Ei+m)(Ez+m)
k2

1

1/2

Jc) K2

i{5„+5„)I
gsr' ', , =e ' 'i ' '( 1)"+ [(21i+—1)(2j,+ I)]' '

X C(li, ,'j i,O, m, )C(lt, —,',jz—,mi+M m2, mz)C(j „jt,L;———,', —,
' )C(ji,L,jt,m i,M) .
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The quantity Mu. is the raus nuclear matrix el~Mt
for the transition, and C( ) is the Clebsch-Gordan
coefficient. Other electron angular momentum qu'mtum
numbers I;,j; are dependent on rc;; the relation is given in
the Appendix, Eq. (A3}, where our notation for Dirac
Coulomb wave functions is specified. The quantity V is
the normalization volume.

In the second step, the division of the nucleus, the state
of the nucleus requires the specification of the direction of
the nuclear principal axes with respect to the space-fixed
set of axes of Fig. 3. The Euler angles between these sets

of axes itif 8f, and itif, are the dynamic coordinates of
the top which then is described by the wave function

' 1/2

q'sr'(4y 8f 4y) = &srir(it/, 8f, itif ), (4)I. 2L+1
8

where Dsr» is the rotation operator

gl- (y 8 y) eiMgdL (8)eiKQ

d (8)=[(L +M)!(L —M)!(L +EC)!(L—E)!]'/2 g (L E n—)!(L—+M —n )!(n +E—M)!n!

Taking the symmetry axis of the top to coincide with the
ultimate direction of emission of the fission fragments, we
can see the probability of emission of the fragments
within a solid angle dQ/ around the direction 8f,pf while
the electron is scattered within solid angle d Q, around po-
lar angle 8, is

diP 2L +1
d QQQ/d itif 8+

2

X g ~sr, ,(8,)D~x(gf, 8f, gati/)

The photoabsorption cross section for the same process
depends on the same factor

~ MiL,
~

as in Eq. (9), specifi-
cally

irr ——~M~r (co)
~

5(co air—)

and so if we define a reduced cross section by

~~(Q Q )=' +" '
JC e~ f =

4

2

Xgg gbsr, „,(8,}e

In the foregoing equations the angle iti/ represents the nu-
clear rotation about the symmetry axis which is not ob-
servable and has to be integrated over. To get the coin-
cident cross section we divide by the incident electron
fiux, k&/Ei V, and sum over spin projections thus giving
us

we can rewrite Eq. (9) as

=f ~~(co„)o„(co„)
f 6)&

(12)

(13)

d 0'

d QQQf
2I. +1 Ei~
8nk, .

m) m2 M
'did(8f) (8)

d cT

d QQQf
2L+1 )~ ( ) ~z

2

Xgg gb~Q, ,e fd~x(8f), (9)

where

b~~, ~, ——4nco[a(E&+m)(E2+m )kz/ki]'~i/(2L+1)

Now the reduced nuclear matrix element does not depend
on any of the summation indices in Eq. (8) and so can be
factored out to give us an equation of the form

which expresses the electron cross section directly in
terrors of the photon cross section. Whereas we have per-
formed our analysis for a single isolated resonance of en-
ergy ei and qtumtum numbers ALE, we can evidently
complete Eq. (13}by summing over all resonances which
comprise the complete photofission cross section.

The expression of Eq. (13) may be somewhat mislead-
ing; by introducing the photonuclear cross section expli-
citly, we do not mean to imply that the factor Mx in the
equation is entirely independent of the nuclear model. To
calculate the radial integrals R (ai,~2) we still need to
specify shapes for the charge and current distributions of
the nucleus.

To obtain the angular distribution of fission fragments
alone we integrate over electron angles in Eq. (10}and get
a result which is conveniently expressed in the form of a
sum over M, the projection of the transferred angular
momentum along the berm direction:

Xg ggsr' ', , I'i, ' '(8.,0)~~(&i &2) .
1 X2

WP(Qf )=g N~ (Ei, ri) ) Vs'(8f ), (14)

(10) where
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N~~(E„co)= (E, ~m )(Ei ~m )
ir 2L pl i

xgg gag~) ' R~(a„~2)
l5 l Nlg fcj K2

is the virtual photon spectrum carrying angular momen-
tum L with z component M, and

I'~d(9/) = 2I +1
2

is the angular distribution of fission fragments from the
nuclear state with quantum numbers L, M, and E.

In photofission the quantum number M is always +1
corresponding to the two possible states of polarization of
the photon. Each nuclear substate with a distinct L,E
then has a distinctive angular distribution. For electrons
the quantum number M is not restricted and the relative
weighting of the different M substates is a feature of the
virtual photon spectrum. The angular distribution of the
fission fragments when the outgoing electron is not ob-
served is then

= f g ~„(~)Na (E)ru),V~g(8y)
N

Notice that the angular distribution tends to be smoothed
out by two processes; the sum over M which we have al-
ready noted is not present for real photons, and the sum
over different contributing resoiuuices, AL, which means
that we can only expect to see an anisotropic angular dis-
tribution where these are very restricted (as in the neigh-
borhood of threshold} or when one resonance is dominant.

For the angular distribution of the outgoing electrons
we integrate over the fission fragment angles in Eq. (12)
and one then gets the electron differential cross section,

da 1 ~LE 2

dQ 2 E V ~~g I ~~m, ~, I

0 m( m~ M

To get the total electrofission cross section, we integrate
over both electron and fission fragment angles with the re-
sult

2 (4ir) & (E1+iii)(E2+in) ~~u,
~

(2L+1) y y g y ygMN~iggg2R (&1 &2) ~

m& m2 M
(19)

Relating this to the corresponding photon cross section,
given in Eq. (9), we get the result

R A,L(& & ) f (AALg)I, L yAL, ~AX) 2d. (22)

cr" (Ei)=f err (co)N (Eicos) (20)

which is very similar to what one would get for any pho-
toprocess for which the cross section is cd and where the
incident radiation has the spectriun N~~. In this case„of
course, N is the virtual photon spectrum:

NLL y NAL

which reduces to

where the quantity Ri~ is, aside from normalization [see
Eq. (28)], the same as the radial integral R introduced
in Sec. II. The charge and current transition charge den-
sities are written in terms of f„,g„, the two radial com-
ponents of the Dirac wave function for the electron mov-
ing in the Coulomb field of the nucleus:

~"=i[L(L+1)l '"[L(f.
,g., g.,f.,)—

+(~1—~2 f)(., ;g+ gf.,}],
(z. k2 (Ei+m)(E2+m)co

N (Eicos)=-
w k) 2L, ~1

x g (2ji + 1)(2j2+1)

J = —i[L(L+1)] ' '(iri+&2)(f. ,g.,+g.f. »
(23a)

(23c)

GI. CALCULATION OF CROSS SECTION

(21)

The nuclear current density is also broken down into mul-
tipoles,

The interaction between the appropriate components of
the electron current and charge densities J,p and
those of the nuclear vector and scalar potentials A
is written:

J„(r)= g Jg (r)YPg ('P)

M, L,L'
(24)

and the corresponding potentials [in the least singular
gauge (Ref. 11)]are then

A (r) =br &(cur) f [ —ji +&(d'or')[L/(L ~1}]' Jz+i(r') ((j~ i(d'or')Jr, i(r') Jr' dr'

~ji. ,(ar) f j —)'ii+, (cur')[L/(L+1)1'"&a~i«')~4. i(~~')Ji i(r')[r'dr'

[L/(L+1)]'~ (2L+—1}co r ' f 7~+i(r')r' dr', (25a)
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(rl=hglmri f jg(ar iI'L(r')r' dr'+jg icier) f h~(rur )I'~ir'ir' dr',

(r) =[L/(L +1)]'~ hl (d'or) f [ jL—+i(nor')[L/(L +1))' Ji +&(r')+jr i(d'or')JI &(r'}Jr' dr'

+JL(aii) f t
—hL, + i(oir')[L/(L +1)]' JL, + i(r')+hL &(oir')JL &(d'or') )

r' dr'

—[(L+1)/(2L +1)]' r /co f Jl +i(r')r' dr' . (25c)

g ML h ( p)RhlL

(r) =[L/(L+1)]' hl (d'or)RpP,

(26b)

(26c)

where RJv, Rg are the radial parts of the nuclear transi-
tion matrix elements:

RN —— —jl i ar' I L, + l ' Jl i
r'

+jr,(o)r')JL,(r') I r'dr', (27a)

R„

, ""jl a)r' JL r'r' r'. (27b)

If we extract the factor RN from the transition integral
Rq, we get the radial integral,

R~(a(,a'i)=Rg (xi,x2)/R~ (28)

which is now identical to that used in Eq. (2).
To calculate the radial integral in Eq. (22), we need to

perform an integral over an infinite range. The integral
involves nuclear density functions for values of r ~R„„,.
It is known' that the detailed shapes are not particularly
vital for virtual photon calculations in this range, which
depend primarily on the values of the nuclear root-mean-
square radius and the appropriate transition radius. We
use here expressions derived from assuming irrotational
incompressible fiow in the nucleus:

Notice that in Eqs. (25) the nuclear transition charge dis-
tribution does not appear explicitly since it can be related
to the current distribution through the continuity equa-
tion. The radial functions JL, i and JL, +, for an electric
multipole transition, or Ji for a magnetic multipole tran-
sition, are thus the needed independent functions describ-
ing the nuclear participation in this stage of the interac-
tion. The complicated forms given in Eqs. (25} arise only
because the range of integration extends throughout the
nucleus; once outside the nucleus (i.e., for r & R„where
all Ji, ——0) they take on the simple forms:

(26a)

tegral r ~ R„ for suitably large r, which it is possible to
do in the form of an asymptotic series (see Appendix A).

Apart from the infinite integrals we also have to per-
form infinite sums over initial and final angular momenta
zi, z2 in Eqs. (2), (9), (12), and (19) in Sec. II. When one
quantum number is fixed (say a2) the sum over the other
is restricted by selection rules, so there is an unrestricted
sum over one variable only. Techniques used here depend
on whether the sum is coherent or incoherent. In the ex-
pressions for the virtual photon spectrum, for example,
the final sum is incoherent, that is of the form

(29)

The sum has a slow rate of convergence, as has been noted
elsewhere, 'i making direct summation quite unreasonable.
However, it is found that for suitably large ~i, the terms
become insensitive to the nuclear charge Z and radius R„
and may be replaced by their values in the limit Z~O,
R„~O, denoted here by the notation [ )o,

X = g a,,+ g [a„,]o.
x2 —-a +1

(30)

EiE2 —kikp —m 2

)& ln
m(Ei —Ei)

2k'
ki

(31)

Thus we may write Eq. (30) in the form

However, the sum of all terms in this limit is simply
equivalent to the calculation carried out in the plane-wave
and long-wavelength limits, and this is well known to re-
sult in simple analytic forms. ' ' For example, for the
electric dipole

(E)+Ei)'
1

JL, i(p) =p p (1')o

Jz dpo/dr, ——

"m

=[N lo+ g «,—[a.,]o)
e2 ——1

(32)

JL+i ——0,
where po(r) is the ground state charge distribution which
is taken to be the standard Fermi shape.

However, it is impossible to evaluate an infinite-range
integral with confidence unless some analytic limits can
be set on the remainder. The nature of the integrand in
this case renders the convergence as the upper limit tends
to infinity very slow and irregular, and so it becomes par-
ticularly important to evaluate the exterior part of the in-

replacing the sum of Eq. (29) by one that converges very
rapidly. We will now need the radial integral of Eq. (22)
evaluated in this limit which presents a problem because
expressions developed hitherto then become indeter-
minate. We give an independent evaluation of
[R (ai, a2)]o in Appendix A. Expressions for [N ]o in
this limit are, as we have remarked, well known. Howev-
er, we find no record of expressions for the corresponding
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breakdown into magnetic substates [%sr jc, we give ex-
pressions for these also in Appendix B.

IV. INCLUSIVE EXPERIMEN'I'S

In Sec. II, the electrofission cross section was related to
the photofission cross section crrf via the virtual photon
spectrum (VPS). Measurements of o„f for 'sU have been
made by the Saclay group and by the Livermore group'
in the photon energy range 5—19 MeV. The photoabsorp-
tian cross section is dominated by the giant dipole resa-
nance (GDR) with peaks at approximately 11 and 14
MeV, and can be reasonably represented by two Lorentzi-
an curves (see Refs. 3 and 4). The photofission cross sec-
tion is about one-tenth of the total in this range. In Fig. 1

we compare the results obtained by the two groups and
show also the analytic curves we have fitted to their data.

Although related to photofission, electrofission mea-
sures samething a little different because of the relatively
enhanced spectra for the multipoles beyond El. To
translate a photafission cross section into an electrofission
cross section we would need the multipole breakdown of
crrf In the giant resonance region this decomposition
would be confined to a few multipoles only, and prom-
inent among them would be the giant quadrupole reso-
nance (GQR}.'

We have used our VPS along with the measured photo-
fission cross sections for iisU to calculate both the elec-
trofission and positrofission cross sections. For the GQR
we have used simple Gaussians at two alternative energies:

azf(E&) =tref(E„)exp — " ln2 (33)

with

arf(E, )=3.5 mb, E~=9 MeV, I'=4 MeV, (34a)

orf2(E )=11.7 mb, E„=11MeV, I =2 MeV; (34b}

these expressions represent a GQR strength of 70% of the
energy weighted sum rule. The balance of the cross sec-
tion is then assumed to be electric dipole. Figure 2 shows
the U electrofission measurements by a number of dif-
ferent groups and the sole positrofission measurement.
The solid lines show the results of our calculation if we
discount the GQR, and the dashed lines show the results
of including the GQR. It can be seen that the quadrupole
contribution to positrofission is small, whereas the contri-
bution to fission by electmns is considerable and essential
if we are to obtain agreement; it is not possible to place
the energy of the resonance more accurately, however, as
either of the alternates (34a) or (34b) are equally good.
Note that we have used for photofission the data of Sa-
clay; if we use the somewhat larger cross section of Liver-
more we are unable to reach agreement even with zero
quadrupole contribution. The Giessen group, who have
measured both the electron and positron cross sections,
have taken the ratio of the two thereby avoiding any ques-
tion of the normalization of the photofission cross sec-
tions, and we show the result in Fig. 4 compared vrith our
calculations. In this comparison we find a clear prefer-
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ence for a GQR with the parameters of (34a); parameters
(34b) or zero

refinance

are equally (although not
overwhelmingly) unacceptable.

The same experimental setup has been used to obtain
angular distributions of fission fragments in a few cases
and these, too, can be accounted for using aur VPS calcu-
lated here. Such angular distributions, as already
remarked, are only significantly anisotropic near thresh-
old, and again the assumption has been made that there
are only dipole and quadrupole components present, al-
though unrelated to the giant dipole and quadrupole con-
tributions discussed in the last section. For the low ener-

gy quadrupole contribution we have used an old estimate
by Blatt and Weisskopf 7

cr (E)=1.2E —X 10 X 10 mb . (35)
6

The nucleus we are considering this time is Th, and we
have used photofission data from Ref. 3. In Fig. 5 we
show the comparison with the measured angular distribu-
tions's at 9.0 MeV; we have used one variable parameter
in this case; namely, the relative contributions of K =0
states to K = 1 states to the fission channel.

Other angular distributions have hen measured for
electrofission, for example by Arruda-Neto, ' where the
distributions are fitted to the form

W(8)=a+& sin 8+c sin 28,
which has also been used for studying threshold photofis-
sion, and which again would result from assuming dipole
and quadrupole contributions, the coefficient c coming
from quadrupole alone. Reference 18 shows a plot of
these coefficients as a function of electron energy for the
nucleus U, which is reproduced in Fig. 6. To interpret
such curves it is necessary to assume the presence of a
number of states in the transition nucleus, for example
thtxie which we show in Fig. 7. Then the result of apply-
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FIG. 5. Fission fragment angular distributions for ~'~Th us-

ing electrons and positrons of energy 9.0 MeV. Data are from
Ref. 1S.
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ing the analysis of Sec. II is the fit shown as solid curves
in Fig. 6; note that we have made no claim to a unique
analysis of this structure; we are content to show how an
interpretation can be obtained using the methods
described here.

U. COINCIDENT ANGULAR DISTRIBUTIONS

Until recently it has not bien possible to detect the scat-
tered electron in coincidence with the fission fragments.
Now, however, where this is possible, one could measure
the angular distribution of fission fragments for a series
of well defined excitation energies and momentum
transfers. In the current section we will use our simple
single-resonance model to examine the characteristics of
the final state and interpret these in terms of the inter-
mediate virtual photon.

In Sec. II we derived an expression giving the electron
angular distribution coincidentally with the fission frag-
ment angular distribution. In the cases considered here
there is a well-defined symmetry axis to the angular distri-
bution of fission fragments and, indeed, in simple one-
photon exchange one would expect this to be coincident
with the direction of the momentum transfer. It is con-
venient to identify the axis of symmetry which also lies in
the scattering plane at angle 8, . Fission fragment angles
with respect to this axis are distinguished by a prime,
8f,pf (see Fig. 8).

We show in Figs. 9(a) and (b) polar plots of the fission
angular distribution expected for real photons exciting
transition states with I. =1, K=o and I. =1, E=1. In
both cases the z axis is both the bum direction and the
symmetry direction, and since the radiation is taken to be
unpolarized the angular distribution is independent of the
azimuthal angle. These plots are the same regardless of
the photon energy.

For comparison we have calculated the fragment angu-
lar distributions for the corresponding transitions for a 20
MeV electron scattering through 40' and leaving mth 15
MeV; thus this can be regarded as a 5 MeV virtual photon
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FIG. 8. Vector diagram, comparable with Fig. 3, showing fis-
sion fragment polar angles ef,gf measured from z' axis (the
symmetry direction) and x' axis (perpendicular to z' axis in the
scattering plane).

exchange corresponding roughly to threshold for fission
of U. In Fig. 10 we show the polar plots assuming an
intermediate Ml state. Since an Ml photon is purely
transverse one could expect that the results closely resem-
ble the real photon as indeed they do. The observation
that the polar plots are not in this case precisely azimu-
thally symmetric can be interpreted as demonstrating par-
tial polarization of the virtual photon in the scattering
plane. The comparison also yields the apparent photon
direction (the appropriate symmetry axis) which is notable
in that it is not the same as the momentum transfer direc-
tion (identified as q in the figures). In a single photon ex-
change process all of the momentum is conveyed to the
nucleus by a photon which also carries the energy of exci-
tation, thus the momentum transfer can be taken to be in-
dicative of the direction of that photon. In the distorted-
wave treatment momentum is also conveyed by the
Coulomb potential between electron and nucleus in the
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FIG. 9. Polar plots for fragment angular distributions from
photofission. We assume a dipole transition state with E =O
(upper plot) or E = I (lower plot).

FIG. 10. Polar plots for fragment angular distributions from
electrofission comparable with Fig. 9. The level assumed is MI
with E=0 or X = j, . Electron energy is 20 MeV, the scattering
angle is 40', and excitation energy is 5 MeV.
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approach and departure phases and whereas there is a sin-

gle energy-bearing photon exchanged it does not carry all

of the momentum.
Next we consider an intermediate E1 state. Compare

Figs. 11 and 9, and notice that the distributions for both
11' =0 and X =1 are quite different: in fact they appear
almost to be interchanged; this is due to the longitudinal
interaction. Generally for an El transition induced by
electron scattering, we find that the interaction is predom-
inantly longitudinal except where the scattered electrons
are in a narrow cone in the forward or backward direc-
tions in which case the interaction is predominantly trans-

verse. In the X=0 case, for example, the fission frag-
ments tend to be ejected in the direction of the electric
vector which is perpendicular to the velocity for the real

photon of Fig. 9 and along that direction for the longitu-
dinal component of the virtual photon in Fig. 11. Notice
again that the virtual photon direction is not the same as
the momentum transfer direction; in this case, however,

the interaction is further complicated by the presence of
both longitudinal and transverse components and it would
be incorrect to assume a real-photon-like appearance to
the angular distribution produced, even in the absence of
distortion.

We have carried out similar calculations for the corre-
sponding I. =2 situation. The observations are qualita-
tively like those for the dipole cases, although E2 is
slightly more complicated in having three E values and
double-lobed distributions.

VI. CONCLUSION

We studied different aspects of electrofission of heavy
nuclei with the object of interpreting them in terms of vir-
tual photon transfer. Since these nuclei typically have a
large radius and large charge, it is necessary to take into
account both the physical extent of the nucleus and the
distortion of the electron waves. We developed methods
of doing the exterior radial integrals so that we were able
to produce reliable electron matrix elements with pre-
cision of about 1 part in 10 . We also are able to provide
a correction procedure so that the sum over all partial
waves can be taken into account. Starting with measured
photofission cross sections we were able to account for ex-
clusive electrofission and positrofission cross sections for

U with a reasonable sized E2 component in the photo-
fission cross section.

We are also able to examine angular distribution of fis-
sion fragments and again for 3sU found that the mea-
sured distributions were compatible with a small number
of transition states as seems to be the case for photofis-
sion. We found similar results for the angular distribu-
tion of fission fragments from Th.

In the case of coincidence measurements where both the
scattered electron and the fission fragments are detected
we have only looked at simple single-resonance models
primarily to see what characteristics of the fission frag-
ment angular distribution we could ascribe to the spin and
parity of the photon transferred. In particular we could
compare these with the corresponding results for real pho-
tons and with the one-photon exchange picture with no
distortion. It was clear that the presence of the longitudi-
nal component drastically changes the distribution for
electric multipole transitions and the photon direction as
given by the symmetry of the angular distribution of the
fission fragments is not coincident with momentum
transfer direction.
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APPENDIX A: RADIAL INTEGRALS

The time independent Dirac equation with a central po-
tential in standard notation ' is

j=
I
~

I
--'

i=a for a&0;
l= —a —1 for i~&0.

(A4)

[a p+Pm + V(r)]rP=EQ . (A 1)

The solution when separated in polar coordinates is writ-
ten as

g, (r)
—if,(r)

(A2)

where I", are the two-spinor angular-momentum eigen-

functions

For the free particle [V(r)=0] the radial functions with
this convention reduce to

f»(r}=sgn(a)/(E+m j)i(kr),

g„(r}=fi{kr),

where ji is the spherical Bessel function and l =l —sgn(ir).
For a Coulomb potential having charge Ze as its source
the same functions become

C(l, , ,j;p, , —~,r) Yt' '(8,$)X~/i .
~'=+ 1 t2

(A3) f„=— Im[V+r(kr)],
(A6)

In Eq. (A3) the subsidiary angular momentum eigenvalues

j and l are regarded as functions of the Dirac angular-
inomentum eigenvalue which specifies both

g„=Re[ V+„(kr)],

where Vr can be written as a combination of Whittaker
functions of the second kind, W, „,as follows:

V (kr) 2(2kr) —3/21 ( +i )( +i )e »v/2+ii—f y»/2 »—/4) ei—»/2 '0+i / ~ r '&r+1) —'0 —ii/i~ rW; i 2 ( 2ikr—) . W (2ikr)

r(y+1+ &) I (y i ri)—

with

y=(K -a Z )' ~

ri=aZE/k,

e =e ,. a —iaZm/'k

V+~ 9

(A7)

(AS)

The choice of sign of y in Eq. (A7) is (+ ) for the regular function and ( —) for the irregular function. Since our prob-
lem has a pure Coulomb field only outside the nucleus, the solution will be a linear combination of both regular and ir-
regular solutions and hence combinations of W+;&+i i/z~ +r and their complex conjugates. Moreover, the radial integrals
of Eq. (28) in the text have relatively simple forms in the same region:

=[L~(L +1)]' f [hl."(izir )(f»,g», g» f», )+ (&i —&z)/'LhL,
' ' i(r —)(f»,g», +g—» f», )

—hL', "(ter )(f„f,+g„,g„)]ridr (A9)

for electric transitions, and

R =(ai+tc2)[L(L +1)] ' f h&"(cur)(f„g„+g„f„)r dr (A 10)

for magnetic transitions.
in order to evaluate these integrals it is evidently sufficient to have expressions for integrals of the kind

A =f hl (cur)Wb, e, (ie&r)Wb, e,(ie2r2)r '« .

This is achieved in the present case by using the asymptotic expansion

-i ( —,'+b —d)„(—,
' —b —d)„

(&) e
—(1/2)z&b g " "

( &)
—»+0(&—z)

tr=o n.

and integrating term by term. The result is a multiple sum over incomplete gamma functions

(Al 1)

(A12)
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—i 1 2+ g (2
—is/2')i m ~

m=p
( &+d2 —b2) ( —,—d2 —b2) /m!I'(p, —,'ital)

+di bi )ni( g di bi )(ei/ei )

1 1

n, ni!( —, +d2 —bz+m n—, )„(—, —d2 —b2+m —n, )„

where

(1+m n —n i—)„(L+ 1)„( L)„—( —e2/2ai)"
1 1a=0 n!( —,+d2 b2+—m n—i n—)„(—,—dz —bz+ni —n, —n)„

(A13)

m =e1+e2 —2',
p =bi+b2 1 ——m .

(A14)

We also need to evaluate the same radial integrals in the limit Z~O and R ~0. In this case the expansions (A12} ter-
mina«[in fact becoming hi(z)]. The integrals (Al 1) diverge in the limit R-+0, but the integrals we want, Eqs. (A9) and
(A10), are quite regular and evidently composed of terms of the form

IP = L pygmy Jl 1P' Jl 2P' P' P (A15)

Using the same techniques we get the expressions

'z l 4

Io ——,
' g g —g gaok, "' k, "'

ai " 'c,Pq"--
n&=pn2=0n =0j=1

i ( —1)i+—:-(N}+i lnP. (A16)

where

ao —2 (L+ l)„(ii+1)„,(12+1)„,( —L)„

X( —i, )„(—i, )„, /n, !n, !n!,

N =n1+n2+n3

3/2 M;+1;+3~=, XXd;IIk '

M) M3 i=1

M; I, +2-
xI (A19)

[(N+ i)/2]

( —N), (N —2s+2)

, l)+l2+L
Pi ——ki+kz+co, ci ——( i)—

. -l j+l2+I. n2+n
(A17)

P2 ——ki kz ai, cz ———( i—)—( —1)
. l) -l2+L n2+1Pi ——ki —k2+co, cs ——( i) —( —1)

. L —l) —l2 n)+1
P4 k, +k, —c0, c,——=( i) —( —1)

In Eq. (17}[x] means the integral part of x.
The expression (A 16} is unsuitable for numerical

evaluation in many cases due to large degree of cancella-
tion among the terms. In such eases we have been able to
overcome the difficulty by reexpanding titus of the form

I.
g aoki ' k2 ' ai " 'c/P/ /N!

n&—-On&=pn ~0

(A18)

into sums over powers of ki, kz, and ai only [thus elim-
inating PJ using the relations in (A17)]; this gives the al-
temative expression

In Eq. (A19}co is relabeled k& and

M2 ———(M i +Mz+ 3),
d =( i)' ' — d =(—i)' '

( —1) ' (A20)

d2 ——( i) ' '
(——1) ', d4=( —i) ' '( —1)

The range of sums Mi and M& are finite being limited to
terms in which no denominator gamma functions have ar-
guments which would be negative integers.

APPENDIX 8: PLANE %AVE CALCULATION
OF VIRTUAL PHOTON SPECTRUM

The virtual photon spectrum for multipole order AL
broken down into magnetic substates M is defined in a
general manner in Eq. (15) in the main text. However, as
remarked in the same section, we also need explicit ex-
pressions for the same quantities evaluated in the long-
wavelength zero-charge limit, [Nsi ]0. Calculation of
these quantities is straightforward but rather long and we
confine ourselves to giving the final results here. Details
are available in Ref. 23. In the following

$0=(EiE2+kikz —m )/me@ .
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Electric dipole

Np
' —— [k)kg(E)Eg+3m )+m r0(3E)+Eg)lngp],

Zmk4)

NfI —— Ik)kg( 4—Ef —E)Eg+m )+[2Ef(kf+kg) —m ~0 ]lngpI .
ink )

(83)

Magnetic dipole

N(~)' —— [k)kg(E)Eg —m )—m c0 lngp],
2rrkt

N+)' —— {k)kg(m ~ —E)Eg)+ [2Ef(Ef+Eg~) —m ~(E)+Eg) 4m—k ) ]lngpI .
4rrk4)

(84)

(85)

Electric quadrupole

Np = I[12m +20m E~ —28m E)E~—12m Ef+12m~E)Eq~

+74m E E —208m E&Ez+126m~E, +6EfEz —4EtE~z+2E', Ez]/(3rp k4)

+m Ei( —Sm Ez+16m E1—3E)Eg —10E)Eg+5E))lngp/(k)k2)I (86)

Ng= [16m —22m Eg+76m EgE) —70m Ef —10m E(Eg —110m EgEf
Smk)

+218m EqEf —114m Ef —14EgE(+12EgE)+18EgE)]/(3r0 k))

+[2(—4m +4m Eq+10m EzE& —15m Ef+m EzEf+14m EzEj —llm Et+2EzE&+2Ei)lngp]/(k, /kz),

(87)

NE+~q— I [4m'—+2m E~q—16m EqE~+18m E~~ —2m~Eq3E~+36m E~qEf
Snk)

74m~EgE~)+—20m~E~(+SEp~E( SEgE( +1 2—Eg E)5]/( 3r0k))

~[2m (m Eg —2m EgE)+9m E) —2EgEf —4EgE) —2E))lngp]/(k)kg)I . (BS)
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