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Stopping of heavy nuclei in relativistic heavy-ion collisions
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(Received 19 August 1985)

We examine the space-time dynamics of the baryons in nucleus-nucleus collisions and estimate the
energy density reached in the central rapidity region. It is found that with an incident laboratory
energy of 15 GeV per projectile nucleon, a headon collision of Au on Au will leave a substantial spa-
tial region with an energy density of 1.5—3 GeV/fm which may exceed the energy density for a
quark-gluon plasma formation.

Recently, there has been considerable interest in ultra-
relativistic heavy-ion collisions and the related possibility
of producing a quark-gluon plasma with these reactions. '

The type of quark-gluon plasma which may be formed de-
pends on the collision energies. At the energies of interest
in the range of a few to a few hundred GeV per nucleon in
the c.m. system, a baryon-baryon colhsion will lead to the
production of a large number of particles in the central
rapidity region. As a result, the leading baryon suffers a
large loss of energy. In terms of the rapidity variable, the
incident baryon loses about —, to 1 unit of rapidity in each
baryon-baryon collision. 2 6 Thus, for collisions in the
high-energy end of this energy range, the central rapidity
region has only a little net baryon content. The initial en-

ergy density of the quark-gluon plasma, which may be
farmed in this region, was estimated previausly. On the
other hand, for collisions at the low-energy end of this en-

ergy range, the baryon rapidity losses lead to a baryon-
rich matter in the central rapidity region. s '3 This is the
"stapping" regime for which the energy density has been
estimated previously from hydrodynamical considerations
and nucleon stopping. Our previous work on baryon den-
sityz'3 by following the distribution of the baryons is
applicable only to the high-energy end of the energy
range. We wish to examine the baryon distribution and
the energy density af the baryon-rich matter in the stop-
ping regime by following the space-time dynamics of the
baryons.

In the multiple collision model, a nucleus-nucleus col-
lision can be decomposed as a collection of tubes of pro-
jectile nucleons colliding with tubes of target nu-
cleons. '4'5 To get a general idea of the type of energy
density attained in the collision of two heavy nuclei, we
study the collision of a tube of n projectile nucleons with
another tube of n target nucleons, with the cross section
of the tube taken to be the inelastic nucleon-nucleon cross
section of 29.4 mb. We call this an n Xn coihsion. To
obtain the spatial distribution, we need to follow the
dynamics of the nucleons in the center-of-mass system as
they make successive colhsions with each other. The
behavior of the transverse degree of freedom is relatively
simple. The baryons wi11 acquire a transverse momentum
of about 0.35 MeV/c which does not grow much with the
collision number. ' We need to follow only the longitudi-
nal momentum represented by the rapidity variable y; and

the spatial longitudinal coordinate z;, assuming straight-
line trajectories. The dynamics of the baryons is described
by (y;(t),z;(t)) for i =1, . . . , 2n, as a function of time.
We follow their coordinates by a Monte Carlo method.
Initially, the two colliding tubes are taken to be just
touching each other. The initial positions of the nuclrxins
z;(0) are obtained from a random sampling with a uni-
form nuclear density. The initial rapidities y;(0) of the
baryons are specified by the incident energy. When the
world lines of two baryons with momenta yi and yz cross
each other, there is a collision, and the new momenta of
the baryons yi and yz are determined by a stopping law.
We choose to represent the stopping law with a probabili-
ty distribution for the light-cone variable x of the outgo-
ing baryon in the form characterized by a stopping power
index a:

P(x)=
1 —xL

8(1—x)8(x —xr, ), (1)

where x& is the lower hmit of the ligllt-cone variable. In
terms of the rapidity variables, the stopping law can be
given as a probability distribution for the rapidity variable
P'j:

e"
A

e —e

&ze —e

e —e

xe(yi —yi)e(yi —y2) . (2)

Then, given the rapidities yi and y2 of the baryons before
collision, the value of y'i of one of the baryons after col-
lision can be obtained from the above by a random num-
ber generator. %hen y& is known, there is a distribution
for the value of yz which is likely to peak at the rapidity
such that the total longitudinal momentum of the pro-
duced particles is zero in the center-of-mass system. Ac-
cordingly, we assume that yz and y& are correlated ac-
cording to

3'Z =Pl+3'2 —P'&

For convenience of operation, we use the convention that
when there is a colhsion of two baryons, the baryon with a
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greater rapidity before collision also has a greater rapidity
after collision. With the updating of the rapidities of the
colliding baryons, the dymimics of the baryons can be fol-
low&ed until all the projectile baryoas in the tube collide
with all the target nucleons in the tube.

In Eq. (2), the law of energy loss is parametrized by a
stopping power index a. In our previous work, i'4 we
found that the data of pA~pX, the total reaction cross
section, and dN/d rl data can be well explained by using a
power index of a =1. Earlier work' using pA ~pX data
yielded a=6. Recent studies ' showed that the data of
pA ~pX can also be fitted with a =3. However, the value
of the stopping power index a is related intimately to the
multiplicity of the produced particles. Whether or not
a =3 is consistent with the pseudorapidity density
remains to be seen. The stopping power index also de-
pends on energy. In the absence of a definitive determina-
tion of the stopping power index, we shall examine both
a = 1 and a =3 cases. A leading baryon loses on the aver-
age 1/a units of rapidity per collision. A baryon is
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FIG. 2. Spatial density at 3.2 fm/c for the collision of four

nucleons on four nucleons at a laboratory energy of 15 GeV per
projectile nucleon. The solid curve represents the density for
e= 1 and the dashed curve for a =3

slowed down more if a= 1 than it is if a=3. In Ref. 6 a
distinction is made between the stopping laws for the in-
termediate collisions and the last collision in a nucleon-
nucleus collision. However, in the collision of n projectile
nucleons with n target nucleons along a tube, there is only
one last collision out of about n Xn collisions. We shall
not make a distinction between the stopping law for this
last collision and that for the other collisions.

We follow the dynamics of the baryons for an ensemble
of 100 randomly chosen initial spatial configurations for
an incident laboratory energy of 15 GeV per projectile nu-
cleon. As an illustration, we show the results of the 4)&4
collision in Figs. 1—3. All the projectile nucleons have
collided with all the target nucleons at the time t=3.2
fm/c. (For the case of a 5X5 collision, all the projectile
nucleons have collided with all the target nucleons at the
time t=4.5 fm/c. ) Figure 1 shows the space-time dia-
grams for sample cases of collisions under different stop-
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FIG. 1. Sample cases of baryon space-times dynamic for the
collision of a tube of four nucleons on another tube of four nu-
cleons at a laboratory energy of 15 GeV per projectile nucleon.
The dynamics is described in the center-of-mass frame. Solid
hnes represents the world lines of the projectile nucleons, and
the dashed hnes represent the target nucleons. Part (a) is for the
case a= 1 and part (b) for a=3.
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FIG. 3. Rapidity density dN/dy at 3.2 fm/c for the collision
of four nucleons on four nucleons at a laboratory energy of 15
GeV per projectile nucleon. The solid curve represents the rapi-
dity density for a= 1 and the dashed curve for a =3.
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ping laws. In Fig. 1(a), where the stopping power index is
a= 1, one finds that the slopes of the world lines of the
particles at t=3.2 fm/c are very large, indicating that
these baryons have small longitudinal momenta. One can
roughly describe the baryons as being "stopped" in the
center-of-mass system. In Fig. 1(b), for the case of a=3,
the baryons, after collision, still have substantial speeds in
the z direction, and the two systems continue to separate
from each other. There is apparently no complete stop-
ping of baryons if the stopping power index is 3.

We can examine the spatial density p and the momen-
tum density (rapidity distribution) dn/dy for the baryons
at the time t=3.2 fm/c. To present the data in a con-
tinuous curve instead of in histograms, we obtain the spa-
tial density of a baryon by smeuing the point distribution
by a Gaussian distribution with a standard deviation of
0.5 fm. We obtain the rapidity density dn/dy by a
Gaussian distribution with a standard deviation of 0.2
units of rapidity. The results for the spatial density are
shown in Fig. 2. As one observes, for a= 1 the central
density reaches about two baryons/fm, which is very
high indeed. The full width at half-maximum of the den-
sity distribution is about 1.5 fm. For a=3, the maximum
density attained is still quite large, and the width of the
density distribution is about 3 fm. Another view of the
dynamics can be obtained from the rapidity distribution
dn/dy in Fig. 3. For a=1, the final rapidity density
peaks at y=0 with a full-width at half maximum of
about 1 unit of rapidity. The rapidities of the baryon at
r =3 2fm/. c is small, and there appears to be a complete
stopping of baryons. On the other hand, for the case of
a =3, the rapidity distribution has two peaks and the dis-
tribution is much broader than that for a= l. There is no
complete stopping of the baryons in such a case.

For a collision at a laboratory energy of 15 GeV per
projectile nucleon, the energy per nucleon in the nucleon-
nucleon center-of-mass system is 2.73 GeV. Thus, the ini-
tial baryon energy for the collision of n projectile nu-
cleons with n target nucleons is Ei ——2nX2. 73 GeV.
From the rapidity distribution, we can obtain the final
baryon energy E/ after collision by assuming a transverse
momentum of pz ——0.35 GeV/c:

E&
——f m Tcoshy dy,

dy
(4)

niz =(Pi N+pT) (5)

and m N is the nucleon rest mass. With the Monte Carlo
program, we can record the locations of all the collisions
for each event. These are the longitudinal coordinates
with respect to which the produced energy (which mani-
fests itself as produced particles) will emerge about 1

fm/c after a collision takes place. ' The average separa-
tion du between the leftmost and the rightmost collisions
then defines the length of the sources of the produced en-

ergy, each of which will be distributed over a longitudinal
length. At the time of 1 fm/c after a collision the pro-
duced particles begin to emerge and the fiow of energy
from the collision point reaches at most a longitudinal
distance of 1 fm. To allow approximately for the addi-
tional distribution in space, we add a length of 1 fm to
both ends of bz as the length of the tube over which the
produced energy will distribute itself. Accordingly, the
energy density of the produced "matter" e~, can be es-
timated as

(E —E/)
cr;„(hz+2 fm)

'

Besides the produced matter, there are also baryons in
the central rapidity region which contribute to the total
energy density. The number of baryons Nb in the interval
of M+2 fm in the central rapidity region can be obtained
by integrating the baryon density. We can get a conserva-
tive estimate of the total energy density e«, by including
the rest masses of these baryons.

We show in Table I the relevant quantities and the ener-

gy densities for collisions at a laboratory energy of 15
GeV per projectile nucleon after all the projectile nucleons
have collided with all the target nucleons. In the 4X4
collision, if a = 1, the final baryon energy at r =3.2 fm/c
is 8.7 GeV and the total energy density e«, is 2.2
GeV/fm . For a=3, the total energy density e«, is 1.6
GeV/fm . The stopping is more effective when the num-
ber of nucleons in the tube is greater, and the total energy

TABLE I. We list here the relevant quantities in collisions at a laboratory energy of 15 GeV per pro-
jectile nucleon. The cases considered involve the collision of four projectile nucleons on four target nu-

cleons and five projectile nucleons on five target nucleons. The quantity o; is the stopping power index

[Eq. (1)], E~ is the final baryon energy after colhsion, lLz is the average separation between the leftmost
and the rightmost locations of baryon-baryon collisions, NI, is the number of baryons in the interval of
du+2 fm, e~ is the energy density of the produced matter in the interval hz+2 fm, and e~, is the total
energy density including the baryon rest masses.

Case

4g4
4X4
~X5
5y5

8.7
10.7
10.2
12.4

1.1
1.8
1.3
2.4

Nb

(haryons)

8.0
6.7
9.8
8.6

(GeV/fm')

1.4
0.99
1.74
1.2

(QeV/fm }

2.2
1.6
2.69
1.8
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density of the baryon-rich matter is also higher (Table I}.
For the collision of five projectile nucleons on five target
nucleons, the total energy density at t=4 5.fm/c is 2.7
GeV/fm for a = 1 and 1.8 GeV/fm for a =3.

It should be pointed out that there are additional effects
which need to be included in future, more refined calcula-
tions. As the baryons pile up together, the equation of
state will lead to a repulsive mean field which will lead to
an outward explosion of baryons. The number of baryons
in the central rapidity region decreases but the total ener-

gy density may get a compensation from the baryon ener-

gy which resides in the equation of state. About 1 fm/c
after the occurrence of the first nucleon-nucleon collision,
particles such as pions will materialize and participate in
secondary collision with nucleons which are in the central
rapidity region. These collisions will slow down the
baryons and increase the energy density. Furthermore, if
a quark-gluon plasma is formed during the course of the
collision, the dynamics will follow a course quite different
from the description of a collection of baryons. The
present calculation without those effects gives an estimate
of the energy density. We intend to examine in the future
how these effects may modify the energy density estimat-
ed here.

The matter in the central rapidity region is baryon-rich
and any quark-gluon plasma evolved therefrom is a
baryon-rich plasma. The critical energy density for a
transition from hadronic matter to this type of quark-
gluon plasma has been found to be rather insensitive to
the net baryon content. ' For a pure quark-gluon plasma,
the critical energy density has been estimatedi to be

about 1—2 GeV/fm . The results of Table I show that for
either a =1 or tr =3 the collision of a tube of four or more
nucleons on four or more other nucleons may lead to an
energy density in the range of 1.5 GeV to 3 GeV/fm .
This energy density may exceed the energy density for a
transition to a baryon-rich quark-gluon plasma. In the
head-on collision of Au on Au, an area up to an impact
parameter of 5 fm has tube-tube collisions with more than
four nucleons in each tube. Therefore, within this area of
rr {5fm), the total energy density is at least in the range
of 1.5—3 GeV/fm3 and may be energetically capable of
forming a quark-gluon plasma. The results here are in
rough agreement with those of Gylassy who obtained, for
a bombarding energy of 15 GeV per projectile nucleon, an
energy density in the range of 0.9—2.2 GeV/fm, depend-
ing on the method of estimation and other attributes of
the equation of state.

In conclusion, we have examined the baryon energy loss
in nucleus-nucleus collisions and estimate that for a
head-on collision of Au on Au at a laboratory energy of
15 GeV per projectile nucleon the total energy density in a
substantial spatial region is in the range of 1.5—3
GeV/fm' and may allow the formation of a baryon-rich
quark-gluon plasma.
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