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Two-particle correlation functions in the thermal model and nuclear interferometry descriptions
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The equivalence of the thermal model and the conventional zero lifetime Hanbury-Brown/Twiss

descriptions of the two-particle momentum-space correlation function is demonstrated. A simpli-

fied expression for the correlation function is presented and tested against recent composite particle

correlation measurements. The expression allows a more direct analysis of the measurements and

predicts novel behavior for certain interaction potentials.

The technique of nuclear interferometry involving
correlations among pions, ' protons, and light nu-
clei' ' has been successful in helping to map out the
space-time trajectory of a heavy ion reaction. Recently, '

da coincidence measurements were used to reconstruct a
6Li excitation spectrum (not a correlation function) whose
form was consistent with Li excited state emission from
a thermalized source with a temperature of about 5 MeV.
Is this thermal model description of the excited state
yields in conflict with the conventional nuclear inter-
ferometry description?

A system in thermal equilibrium may have multiparti-
cle correlations for a variety of reasons, just as in the nu-
clear interferometry approach. Indeed, in the zero life-
time limit of the interferometry approach, one would ex-

pect the correlations to be the same for a uniform source
as in the thermal model. To demonstrate this, we choose
a uniform source of radius R„and calculate the change in
the correlation function in both models arising from the
nuclear interaction term.

In the thermal model, the change in the density of
states 4gt arising from the interaction term for a particu-
lar partial wave 1 with phase shift 5t is' (ignoring spin)

21+1 d5l(p)
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where p is the relative momentuin of the two particle sys-
tem. Compared to the free particle density of states, this
implies a contribution to the correlation function BCh(p)
of
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where g is the (summed, spin weighted) relative wave
function of the two particles (see Refs. 1, 5, 10, and 11 for
specific examples). Although the individual source terms
for particles 1 and 2 are uniform in space, after integrat-
ing over the center of mass coordinate, the distribution in
the relative coordinate r is not uniform; thus the second
two terms in the large brackets in Eq. (3) have R„ in the
denominator. For sufficiently large R„ these two terms
can be neglected since the expression in the first set of
brackets guarantees that the major contribution to the in-
tegral comes from small r. Assuming that at the upper
limit the wave function may be replaced by its asymptotic
form we have' (see the Appendix for details),
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&
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where k is the wave vector corresponding to p.
In the conventional nuclear interferometry approach

the correlation function for a uniform source function is
given by,

1 d5I
~tP~ r dr=

3 2 g(21+1) — sin(4kR„+25t)+2R„+
2k

(4)

The R„dependence in the brackets in Eq. (4) is largely
cancelled by the means of a similar expansion,

2R„ 2R„

3 I r dr= s g(21+1)I [rjt(kr)] dr .
Q Q

Extracting the nuclear part, one recovers Eq. (2) as re-
quired.

This expression for the correlation function will be
most valid in the region of the resonant states, where
d5tldk is large and may dominate over Coulomb and
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other contributions. To test its accuracy, we use Eqs. (2)
and (3) to predict the peak in the da correlation function
at the resonant momentum 5@=42MeV/c. {Another res-
onance at 83 MeV/c is less useful since d5ildk is small-
er.) With the phase shifts associated with the potential
model analysis of Ref. 11, Eq. (2) yields R =93 and 20 for
R„=6 and 10 fm, respectively. We can compare this
with a numerical integration of Eq. (3). Taking the lead-
ing term [as was done in deriving Eq. (4)], hR is cilculat-
ed to be 134 and 29 for R„=6 and 10 fm, respectively.
However, when finite size effects are included in a full
evaluation of Eq. (3), the predicted correlation function
changes to 71 and 20, respectively (where the Coulomb
term has hem included). Thus we find that finite size ef-
fects are important and that Eq (2). is not particularly ac-
curate, with about 30% error for typical source radii.
One would expect similar errors due to finite size effects
in the thimnal model. In any event we see that the
thermal and the zero lifetime limit of the interferometry
approach do give similar results and become the same for
large source sizes.

Equation (2) can be easily extended to more general
source distributions than the uniform distribution. In fact
it turns out to be much more accurate for smoothly vary-
ing distributions such as Gaussians. Consider a source
function g(r) for each particle. We define the two-
particle relative source function f(r) by integrating over
the center of -mass coordinate; thus

f(r)=fdRg R+ r g R— r . {6)
m~+m2 lFt ] +Pll2

Assuming that f(r) is slowly varying near r=O, we can
use techniques similar to the uniform case {the details are
again relegated to the Appendix). The result is

d51(Ji)
hR (p) = g (2l +1)

fd rf(r) p dp

In the limit of a uniform distribution for g (r) the factor
A, =f(0)/f d r f(r) becomes I/V, where Vis the volume,
and Eq. (7) reduces to Eq. (2); for a Gaussian source,
g (r) =exp( ri/ro), A, be—comes I/(v 2nro) .

As an application, we consider a Gaussian source.
Then, for the da peak discussed previously, the correla-
tion function is predicted to have values of 74 and 28 for
r=4 and 6 fm, respectively. The approximate form Eq.
(7) gives 83 and 25, in good agreement with the exact re-
sults.

Returning to Eq. (2), there are several points about b,R
worth making. The first is that it is independent of the
temperature, even in thermal models. Thus, the excitation
function and the correlation function provide complemen-
tary information The rati.o of the peak areas in the exci-
tation function depends only on the temperature of the
system, at least as a first approximation. In contrast the
ratio of the peaks in the correlation function depends
mainly on the source size and to a first approximation is
independent of the temperature. The second is that even
though the interaction behveen the two particles is attrac-
tive, there may be a suppression rather than an enhance-
ment in the correlation function. When there is one

TABLE I. Potential parameters from pd phase shifts assum-
inl a Woods-Saxon form for the potential.

Vo

(MeV)
&us
(fm)

1

2

1

2

3
2
3
2

3
2

—29.754

—8.214

—7.849

—18.115

—13.10

+ 14.878

2.826

2.974

2.837

2.527

1.187

0.991

0.9655

1.578

1.235

bound state, the phase shift starts from m at low energies
and may either increase or decrease depending on the
strength of the potential. If the phase shift decreases its
derivative is negative: the same as for a repulsive poten-
tial.

As an example consider pd correlations. Here the
bound state is the He nucleus and the phase shift does de-
crease. The calculations were carried out as in Ref. 11.
The low energy phase shifts'6 were fitted with a Woods-
Saxon potential, with the potential parameters given in
Table I. A Gaussian source with zero lifetime was used.
Two values of ro were used, 4 and 8 fm, and Fig. 1 shows
the predicted correlation with and without the nuclear
terms. The shift is substantial and should be experimen-
tally detectable.

Aside from the physics applications of Eq. (7), it is also
useful simply for allowing rapid estimation of the correla-
tion function. We have shown its accuracy above for the
da correlation function; we now look at some nonidentical
elementary particle combinations. Just as consideration of
nonidentical composite particle correlations (pd, pa, and
da) has provided much reaction mechanism information
at low energies, imp, Km, and Kp pairs may provide extra
information at higher energies.

Taking the n+p and K+@+ combinations as examples,
the derivatives of the phase shifts' in the p, =100
MeV region are —0.2 (s wave) and + OA (p wave) rad fm
for ir+p and —0.22 radfm (s wave) for K+n+. Using
the Gaussian source parametrization, the predicted change
in the correlation function for ro ——4 fm is 0.02 for n+p
and —0.005 for K+@+ at p=100 MeV. For smaller hp
the shifts will be larger. Consequently we see that these
pairs will probably be more sensitive to the Coulomb in-
teraction than the nuclear one.

To summarize, we have derived a simplified expression
for the conventional nuclear interferometry description of
the two-particle correlation function. Numerical tests
have shown that it is a reasonable approximation for a
Gaussian source, less reasonable for a uniform source of
small dimension. For large uniform sources, the expres-
sion is identical to what is found in the thermal model.
The expression can also be used to demonstrate that the
enhancement or suppression of the correlation function
depends on the sign of the derivative of the phase shift,
rather than on the sign of the interaction potential. The
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Eq. (A 1) becomes

r r —1 r
hR=

Jd r f(r)
We now expand P(r) and 1 in partial waves and assume

f(r) is spherically symmetric. The result is

4m g (21 + 1)

dg= ' rr' I r Jl kr r, A4
dsr f(r)

where Pi(r} is the relative wave function in the 1th partial
wave and j~(kr) a spherical Bessel function. For simplici-

ty we have ignored spin. We now concentrate explicitly
on the integral

I= rr I r —gt kr r (A5)

Asymptotically P&(r) goes like

sin( kr l n /2+—5i ) /kr

while ji(kr) goes like

sin( kr I~/2)—/kr .

Qp(Mev/c)

FIG 1. Pr.edictions for pd correlation function with (NC)
and without (C} the nudear term. The curves are shown with

two vaiues of ro, 4 and 8 fm.

%'e now write

I= rr ~ r —sm r —7T 2+ I r —JI

+sin (kr ln/2)/(—kr) ]f(r)

+ 2
S1Il r —K 2+

pd conelation function is calculated as an example of this
effect. Finally, the usefulness of the approximation in es-
timating the magnitude of the nuclear contributions to the
correlation function is illustrated for irp and Km pairs.

The authors wish to thank C. K. Gelbke for useful dis-
cussions. This work is supported in part by the Natural
Sciences and Engineering Research Council of Canada.

—sin (kr ln/2)]f—(r) . (A6)

For the first integral we may restrict the upper limit since
the quantity in square brackets goes to zero. If f(r) is
sufficiently smooth we may replace it by f(0) inside this
integral. Thus we have

RoI =f(0) J dr r [Pi(r) —sin (kr ln/2+5')/(—kr)

—jf(kr)+ sin (kr —Iir/2)/(kr) ]

APPENDIX
dr+ 2

siIl Isin2 r —m+ ~ r (A7)

In this appendix the expressions for the two-body corre-
lation function are derived We ass. ume a single particle
source function g(r) The corre.lation function can then
be written

fd'rid'rzlIi)'«i rz')
I

' —1]g(ri)g «z)hR=
drg r

(A 1)

f(r)= fd R g R+
f71 2rgR— r (A2)

Ptl ) +ltl2

where p( rr i)izs the two-body wave function. The two-
body interaction only affects the relative coordinate so
g(ri, rz) is just a plane wave in the center of mass coordi-
nate, R=(r, +rz)/2, and

I g(r„rz)
I

depends only on the
relative coordinate r=(ri —rz). Defining a relative func-
tion

where Ro (not the center of mass position) is assumed to
be sufficiently large that pi(r) and ji(kr) have reached
their asymptotic form and sufficiently small that f(r) can
be assumed to be constant. The second integral was sim-
plified using trigonometric identities. For the first term
we follow a procedure very similar to that used in Ref. 15
for doing the effective range expansion. We define
u (r,k) =Pi(r)kr, then ui(r) satisfies the equation

ui(r, k) — 2p V(r)+ I (l +1)
ui(r, k) = —k ui(r, k) .

dr r

(AS)

The same equation (with k replaced by k') is satisfied by
(ru,ik'}. Multiplying the first of these equations by

&(ru, k'), the second by ui(r, k), and taking the difference
we have after an integration by parts
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ut(r, k'} ut(r, k) u—t(r, k) ui(r, k')
r dr p

The second term can be expanded by successive integra-
tion by parts into an asymptotic series

Pb=(k' k—) I dr ut(r, k)ut(r, k') . (A9)

We now let k' go to k and combine Eq. (A9} with similar
results for the other parts of the first integral in Eq. {A7).
Letting r, go to zero and rb to R the result is

I= f (Q) d51

2k' dk

sln5t df (Q)
s sin( l—n+.5t)

4k dr

s1115t d f(0)cos{ lrr—+5t ) + 0 ~ 0

Sk' dr
(A12)

(0) d5t f(0)I= — sin5t cos( lm—5t—)2k' dk 2k'

s11151
sin2 r —~+ I r r. (A10)

Note that this equation is independent of R. This can be
rewritten as

If g (r) =8(ro r) t—hen df (0)/dr goes like —1/ro while if
g (r) is smooth df (0)/dr is zero and d f(0)/dr goes like
1/a, where a is a length scale related to the size of the
source. This indicates why the simple formula works
better for the Gaussian than the uniform source. In any
event in the limit of a large source we have

I=
z + 1 J cos(2kr ltr+—51 ) dr .f(Q) d51 s11151 op df (r)

2k' d 2k' r

(Al 1)

f(0) 2w ~ (2lfd'rf(r k'' (A13)
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