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The connection between the electron scattering electric dipole coincidence cross section (e,e'X) and

the inclusive electric dipole (e,X) cross section, differential in the angle of the outgoing X particle, is

derived. Unlike the (e,e ) inclusive cross section which contains contributions from only two of the

four terms of the (e,ex' cross section, the (e,X) cross section contains contributions from all four

terms of the (e,e'X) cross section. Data from a previous experiment have been used to obtain the

magnitude and sign of the interference term between the transverse and Coulomb reduced matrix

elements (form factors) in the limit as q~~, from the relationship commonly referred to as

Siegert's theorem in the context of inclusive {e,e') scattering.

I. INTRODUCTION

The purpose of this paper is to point out that inclusive
electroexcitation experiments of the type (e,X) involving
excitation of an isolated, discrete El resonance are sensi-
tive to the interference between the transverse and
Coulomb form factors and to show that the excitation
function for the 1, 16.28 MeV isobaric analog state in

Zr requires the contribution from the interference term
to fit the data.

In Sec. II we derive the d2o(e, X)/dQ„dEf from the
(e,e'X) coincidence cross section, dso(e, X)/
dQ dQ, dEf, and specialize this result to a discrete, nar-
row level. Here dQ, is the X particle solid angle with
respect to the momentum transfer and dQ, is with

respect to the incident electron direction. In Sec. III we
relate the der(e, X)/dQ, to El virtual photon spectra dif
ferential in d Q, and illustrate the relative magnitudes of
the four terms for the proton decay of the 16.28 MeV, 1

isobaric analog state in Zr. Corrections for Coulomb
distortions, the momentum dependence of the reduced
matrix elements, and the interference between these ef-
fects are discussed.

II. THEORY

The electron scattering coincidence cross section has
been the subject of several papers' 2 and is of increasing
interest bemuse continuous wave (CW} electron accelera-
tors with 1009o duty cycles now in operation allow a
broad class of these experiments to be done. The coin-
cidence cross section describes the angular correlation be-
tween the momentum transfer, q, of a scattered electron
and some outgoing nuclear fragment, X. As written by
Drechsel and Uberall, the (e,e'X) cross section in the
plane wave Born approximation (PWBA), differential in
the final electron energy, Ef, the solid angle, Q~, of the
scattered electron, and the solid angle, Q„, of the decay
product is

dio /d Q,d Q~ dEf (t22/q„)(Py——/Po)P„E„[Vc(8~ ) Wc+ VT(8~ ) W'r+ Vt (8~,4„)Wt+ Vs(8~, 4„)IVs],

where the kinematic factors

Vc(8 )=(qu2/q2)2(EoEf+popf MS8„+m2), (2a)

Vr(8 )=a.2/q2+ ,' q2, — (2b)

Vt(8, @.) =(itq„' /q')E+ cosa. , (2c)

Vs(8,4 )=2(a2/q2) cos24, + —,
' q2 (2d)

contain the dependence on the angle between the incident
and scattered electron 8 ~ and on 4„, the angle between
the electron scattering plane defined by the momentum
vectors of the incident and scattered electron, Po and Pf,
and the plane defined by the momentum transfer vector,
q=Po —Pf, and the momentum, P„,of the disintegration
product (see Fig. 1). Here tt=

~
PoXPf ~, E+ Eo+Ef, ——

and q&
——q —to . The four generalized form factors are

model dependent dynamic quantities, being functions of
q, E„, P„, and 8„, the angle between q and P„, and de-

pend on the nature of X, the reaction mechanism, and the
nuclear model used to describe the latter. Drechsel and
Uberall evaluated the functions IV using a Breit-Wigner
resonance for the nuclear levels. They also assumed the
level matrix was diagonal. If a multipole expansion is
performed, the generalized form factors depend on the an-

gular momentum, I., of the virtual photon absorbed, the
spin and parity of the initial, excited, and final nuclear
states, and the angular moinentum, l, of the emitted parti-
cle, X. They are expressed in terms of the decay parame-
ters, S, which, in turn, depend on the reduced matrix ele-

ments describing the transition involved. According to
Kleppinger and Walecka, the (e,e'X} cross section of
Drechsel and Uberall corresponds to the static limit reso-
nance approximation of their generalized (e,e'X) cross
section, with their
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result is the familiar Mott cross section multiplied by 4'
as expected and no information about the generalized
form factors Wz and Ivs can be obtained from single arm
(e, e') experiments.

If, on the other hand, the coincidence cross section is
integrated over dO„, the electrodisintegration cross sec-
tion for the production of a particle X results in the fol-
lowing:

d 0'~~ d og d oT+
d Q„dEf d Q„dEf d Q„dE/

d 01 d CTg

+ +
dQ dEI dQ„dEf

(3)

FIG. 1. Definition of the angles used in the 4,
'e, e'X) and (e,X)

cross sections described in the text.

Vz-r(8 ) =[Vs(8, 4„)—Vz(8„)]/cos2e„.

%hen the coincidence cross section is integrated over
dO„, terms involving the regular and associated Legren-
dre polynomials, Pz(cos8„) and Pz (COSH„ ) with L &0,
vanish and the cross section only contains squares of the
transverse and Coulomb form factors multiplied by their
respective kinematic functions Vc(8„) and Vz (8„). The

which, unlike the (e, e') cross section, contains all four
terms of the coincidence cross section. The contribution
of d oz /dQ„dEf depends on the relative phase of the
Coulomb and transverse reduced matrix elements. This
phase, in turn, depends on the definition of the Coulomb
and transverse operators.

Dodge ez al. have recently reported on work which
represents an experimental verification of Eq. (3). We
measured the isochromat of the El virtual photon spec-
trum by counting the number of ground-state protons
emitted at 90' by the well-known 16.28 MeV, 1 isobaric
analog state in Zr as a function of the incident electron
energy. This level has a proton width of about 77 keV, a
ground state radiation width of about 100 eV, and decays
by proton emission to the ground state (-63%) and
second excited state (-37%) of Y. The electroexcita-
tion of this state followed by proton decay to the ground
state of Y is described by Eq. (45) of Drechsel and
Uberall. For an isolated, 1,Breit-Wigner resonance in a
nucleus of ground state spin J;=0,

d'o a' Pf
dQ dQ dE Px ee' f ~ 0 q~

X (M))'Vc(8„)[S Pp(cosH ) —v 2S'P2(COSH„)]+(a t")'Vr(8„) S Po(cosH„)+ Pz(COSH„ )
2

—u~('M, vz(8„,4, )S P2(cosH„ ) —(a~ ) [Vs(8„,4„)—Vz(8„)] P2(cosH„ )
. .

2 2
(4)

In this equation the subscript x refers to the emitted pro-
ton, S and S are the decay parameters for the channel
under consideration, in this case the proton channel,
8(co,coo) is the Breit-Wigner resonance function,
1/[(co —coo) +I /4], I is the total width of the level, and
cu0 is the resonance energy. The reduced matrix elements
of the El transverse and Coulomb operators are W&"(q)
and M, (q), respectively. In Eq. (4) Vs —Vz appears in
the fourth term; henceforth, we will represent this com-
bination by Vz-r(8~ )cos24 and the interference term by
CT instead of I to be consistent with modern notation.

Integration of Eq. (4) over d0„ is facilitated by the re-
lationship

2n'

Pz (cosH» ) cosm 4» dree0

=2nPL (COSHq)PL (COSH» ) . (5)

The appearance of the term Pz. (COSH~) with m =0, 1,2 re-
sults from the vector nature of the exchange virtual pho-
ton of spin 1 and angular momentum projections of 0 for
the Coulomb, and +1 for the transverse excitation terms.
After integration over q&, the electrodisintegration cross
section for the emission of a particle X at an angle 0„
with respect to P0 is given by
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d 0'

d Q„dE/
20', ~f ov 3P„E„B(rp,rap)S

m Po
r

S~ f i Mi(q) i Vc(8 ) 1 —v 2 Pi(cos8v )Pz(cos8„)ce So

~ i%&'(q)
i
iVT(8 ) 1+(v 2} ' Pz(cos8~)Pz(cos8„)

S

~i'(q)~i(q)(~q„E+/q') p Pq(cos8s)Pq(cos8, )
S

—i~l"(q) i
(& /q )(2~2) ' pPi(cos8q)Pi(cos8„) d(cos8 ), (6)

do'y x

dQ„
r Q2

&(~,~p)ap 1~ Pz(cos8, }2' Qo

Comparison of the term multiplied by the kinematic func-
tion Vz(8 ) in Eq. (6) at 8s=0 with Eq. (7) shows that
S /S = 2az /ap. To integrate Eq. (6) over

d(cos8 ) = dq /(2Pp—PI),
the Coulomb and transverse El reduced matrix elements,
~i"(q) and ~i(q), may be parame«xed by model depen-
dent expressions which reproduce experimentally mea-
sured transition radii, R, . Alternatively, in the long wave-
length limit (LWL) Wi"(q} is replaced by the first-order
term in the expansion of the spherical Bessel function,
g, (qr)=qR, /3; hence,

Wi'(q) =
3

Siegert's theorem

where

cos8z (E+co——+q )/(2Ppq) .

The photodisintegration ground and excited state cross
sections have typical dipole angular distributions,

Fr'(q) = &l.+—1/L Fc(q—)

is used to evaluate Mi(q ):
2

Mi(q) =Fc(q)= — Fr(q) =—1 i 1

N 2 2 3N
(10)

There is some confusion in the literature concerning
the relative sign of Fri(q) and Fc'(q). Siegert's theorem as
expressed in Eq. (9) can be obtained by standard reduction
techniques from the definitions of the reduced matrix ele-
ments given in Eqs. (22a) and (22b) of Dreschel and
Uberall. In the inclusive (e,e'} cross section this phase is
of no consequence; on the other hand, it is important to
the magnitude inclusive (e,X) cross section as well as the
(e,e'X) cross section.

Rose7 s defines the transverse current operator with a
sign opposite to that of Drechsel and Uberall, i as well as
most other authors. For this reason, Rose7 9 writes
Siegert s theorem with a positive sign. However, when the
reduced transverse matrix elements defined by Rose
are inserted in the (e,e'X) cross section defined by
Rose, s the results are identical with the (e,e'X) cross
sections of other authors. Explicitly, in the LWL the four
terms in d e/ d Q„dE/ de/d Q——,d—co are

d or
d Q„dc'

2
'

2 2
'

2

=D Nz (Ep, fi))+ ' 1+
& & &

Nr (Ep ~)——
z & z Nc (Ep ~)+ gi 3 e N E[

2P0 Eo+Ef' 2 Po Eo+Ef

4EOE

2m Po~ EO2~Eg
EoE +m

J

Q2
Pi(cos8 )

Qo
(1 la)

d C
d Q~id69

3 ~(Ep~3Eg}, 3~ P/ 3EpE/+m,
=D Nc '(Ep, a))~ ~ 1 ——

q
Nc'(Ep, co)

4 po2 2m Po po2
J

Q2
Pz(cos8„)

Qo

d cTcr2

d0 'dQ)

I~

QpEy+2~C ~ Pf EOEf +Pke
=3D Nc '(Ep, a))+2

po2
'

m Po po2

m, EOE~
ink,

Po Po

Q2
Pz(cos8„ ), (1 lc)
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d OrT
2

=—D ~

dQ, dp)

where

N2 —4m2, a Pf EoEf +3m,
Nc '(Ep, co) 2—

P02
'

m Po P02

m, EoEf a2—4 — ink, Pz(cos8„),
Po Po ao

(11d)

2 2

Nr (Ep,co)=— lnA, —
Po2

2

Nc (Ep,pi)= —
q

1ng-s~ a E+
2P

E+ Pfln—
2P(~) Pp

(1 le)

D =~3aP»E»(R, /3) 8(co,pip)S

A, =(EpEf +PpPf m, )/m—,co,

g=(Pp+Pf )/(Pp Pf ),—
Rnd

(1 lg)

(12)

2
(1 lj)

go &o

The ratio of the total width to the excitation energy of the 16.28 MeV, 1 isobaric analog state in Zr is sufficiently
small so that the only function of co which varies rapidly in the integration of az(pi) or d a, /(dQ„de) over this state
is the Breit-Wigner function. With this caveat, the transverse E 1 reduced matrix element, i' (q), is related to the pho-
ton absorption cross section into this level by'p

0'& N N= 2S' —
~ N

The integrated partial cross section, resulting in the emission of particle X, may be obtained by integrating Eq. (7) over
energy and angle:

cT P,X N =4&Qo = 0'& 'I/' N = 2'F —
~ Nr ~ r (13)

Using Eq. (g) and Sp=ml, /(~3P»E» ) from Eq. (29c) of Drechsel and Uberall, ~ D =(I'/2n )8(pi, pip)(ap /co). Integrat-
ing Eqs. (11)over co, we have in the LWL:

Nz '(Ep, ro)a p+ 1+
» pi 2Pp Ep+Ef

3 me NNf '(Ep, co) — — Nc '(Ep, pi)
2 P2o Eo2+Ef2

3a Pf 4EpEf
EoEf+m' 1—

2m' Po Eo+Ef
a zPq(cos8„) (14a)

3 pi(Ep+3Ef), 3a Pf 3EpEf+m,
NP '(Ep, ai)ap+ 1 —— Nc '(Ep, co)

d Q»' co Po' 2m' Po Po2
aiPg(cos8„), (14b)

do'~ 3

d0„4N
N —4me2 2

P2

d(TCT 3 NEf +2m e

dQ» co Pp
Nc (Ep,co)+2 a

Po

N, (E„~)—2—a
Pp

EoEf+m,

Po

EoEf+3m,
P2

m, EoE+
ink, azPq(cos8 ),

Po Po

m, EpEf—4 '
ink, a&Pi(cos8„) .

Po Po

(14c)

(14d)

Combining terms,

doer 1 me2
apPp(cos8„) + 1+—

dQ~~ N P2

Pf EoEf m,
2 m' N Po P02 P02

E2

E2 +E2

4Ep
j.ni, +P2

Pf 4EoEf1—
PO E02 +Ef2

azPz(cos8» ),

azPz(cos8„) N '(Ep, co)

(15)
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where

N "(E„~)=N,"(E„~)+Nc'(E, ,~) .

For Pf &~m„ this is the result of Dodge and Barber. "

l0

lo

III. RESULTS

=4aap, (16)

where Jo and J; are the spins of the excited and ground
states. Dodge er al. obtained (do, ~, /dQ~, ),„~ from their

measurements. If a factor of (ao/oi) is extracted from
do; /dQ, , Eqs. (14a)—(14d), the remaining factor is the
El virtual photon spectrum differential in dQ, , i.e.,
der; /dQ„=(ao/ai)dN; /dQ&, for i=T, C, CT, and TT.
The ratio' of the coefficients, a2/az, for the Zr, 1

16.28 MeU isobaric analog state, contained in Eqs. (14), is
—0.61.

Therefore

+e po

Pp
exp

dNT de dNcz dNTr
(17)

The integral of the photonuclear absorption cross sec-
tion over the 16.28 MeV, 1 isobaric analog state in Zr
that results in protons populating the ground state of Y
is related to the photon width, I „,the ground-state proton
width, I ~,, and the total width, I, of this level by

2Jp+1 FyPpof or~,(ai)d~=(mk )

X)o'

(Q
OJ

l0

O
LIJ

-5
iO

(o'
0 20 40 60 80 l00 l20

E,(Me V)
FIG. 2. A comparison of the four terms, dX; /dQp {90),Pp

Eq. (14). They represent the number of 16.28 MeV virtual pho-
tons absorbed to produce ground-state protons at 90' as a func-
tion of incident electron energy, Eo. The interference term,
dX~ /d Qp is comparable to the Coulomb term, dX& /d Qppps Po'

and amounts to about 10% of the virtual photon spectrum. The
dNTT /0 Ap term is an order of magnitude smaller and negative

Pp

at this angle.

I „I&

(i)lc)' 2Jo+1
r

+e Po

dQp

X exp

dNr dNc dNcz dNrT,

To illustrate the relative magnitudes of the four terms,
dN;/dQ& (90'), in Fig. 2 we plot the number of 16.28

MeV virtual photons absorbed to produce ground-state
protons at 90' as a function of incident electron energy,
Eo. It may be seen that the interference term,
dNcr /d Q&, is comparable to the Coulomb term

Numerically,

I ~I"p

I
=(4.72 eV/pb)

doe p

dQP
X exp

dWc dWcT dN~

(18b)

- l.2
3
O

LLI

CL

I

80
i.o

20
I I

40 60 100
E, (Mev)

FIG. 3. The ratio, Rc{,Ep, 16.28,40},of the E1 D%BA virtu-

al photon spectrum of Ref. 10 to the E1 P%'BA virtual photon
spectrum NE'{Ep, ro}, defined in the text, as a function of Ep.
R~{Ep,16.28,40} shows the effect of Coulomb distortion in ~Zr
on the E1 virtual photon spectrum at an excitation energy of
16.28 MeV.
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I 00--

~ 0.95

3
O

~ 0.90

098—

3
O

Ld

~ 096—
CL

O.85
20

I

4O
I

60
0 {Mev

lOO
09~

20 eo
E, (Mev)

I

80 IOO

FIG. 4. The ratio, E,FF(E0, 16.28, 90), of E1 P%BA virtual
photon spectrum obtained with the Helm model form factors to
El P'WBA virtual photon spectrum for a point nucleus as a
function of Eo. RFF(E0, 16.28,90) shows the effect of the q
dependence of the generalized Helm model form factors on the
90Zr E1 virtual photon spectrum at an excitation energy of 16.28
MeV.

dNC /dQp, and amounts to about 10% of the virtual

photon spectrum while the dNrT /dQ~, contribution is

negative at this angle but negligible in any case.
Equations (14) do not include the Coulomb distortion

of the incoming and outgoing electron wave. The distort-
ed wave Barn approximation (DWBA)' and second-order
Born approximation (SOBA)' calculations of the
Coulamb distortions have only been carried out far total
(e,X) cross sections. However, Soto Vargas et al. ' have
produced a computer program which calculates the ratio
0

FIG. 5. The ratio, RcFF(E0, 16.28,40,90), of the E1 SOBA
virtual photon spectrum of Ref. 11 to the E1 P%'BA virtual

photon spectrum with multiplicative Coulomb and form factor
corrections as a function of Eo.

is plotted in Fig. 4; here A is the mass number of the nu-

cleus, FF denotes form factor, and P a point nucleus. Be-
cause of the forward peaking of the transverse part of the
cross section, the model dependence of Xpp(Eo, ro, A) is
slight as long as the model reproduces the same electron
scattering charge and transition charge radii.

Durgapal and Onley' have pointed out that Coulomb
distortion and form factor corro:tions to virtual photon
spectra can interfere, and hence factorized Coulomb and
form factor corrections cannot always be used. However,
for the 16.28 MeV, 1 isobaric analog state in Zr, a
direct comparison of the SOBA calculation of Durgapal
and Onley with the PWBA calculation with multiplicative
Coulomb and form factor corrections shows that interfer-
ence effects are small. The ratio

Nnwa~(Eo, u, Z )
=Rc(Ep, ro,Z),

&pwaA Eo~ro)

where

27 —
r
———

6s—

I

(o)

dQ~ Qp, dQ
96

CP

ding.+ dQp .
Po

This ratio is plotted as a function of Eo for co=16.28
MeV in Fig. 3. The Coulomb correction for these
kinematic conditions is about 10% and nearly indepen-
dent of Eo. For these reasons we have corrected for
Coulomb effects by dividing Eq. (18) by Rc(Eo,ro, Z).
The effects of using model dependent expressions for
FT'(q) and Fc(q) were investigated by numerically in-
tegrating Eq. (4) assuming Helm model form factors. s

The ratio of

Npp(Eo, ro, A )/Np(Eo, a) ) =Rpp(Eo, co, A )

I

F00
I

40 60 80
E, (Mev)

FIG. 6. (a} The invariant quantity I F /I plotted as aPo

function of the incident electron energy, Eo, obtained with the
choice of relative sign of the Coulomb and transverse form fac-
tors given in Eq. (1) with Coulomb and form factor corrections
described in the text. (b) The invariant quantity I I /I plot-

ted as a function of the incident electron energy, Eo, obtained as
in (a) except the choice of relative sign of the Coulomb and
transverse form factors was taken to opposite that given in Eq.
(1).
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TABLE I. Summary of g fits to the weighted mean of I „I~ /I as a result of applying various

corrections to El P%'BA differential virtual photon spectra. For definitions of Rc(Eo, 16.28,40),
RFe(E0, 16.28, 90), and R~E0, 16.28,40,90) see the text.

Coulomb
correction

Form factor
correction

R,{E„16.28,40) R~(E„16.28,90}

Coulomb-form factor
interference correction

RCFF (Eo, 16.28,40,90)

%eighted mean
of I yI p /I

{A')

Reduced
X2

No
Yes
No
Yes
Yes

'For 24 degrees of freedom.

Yes
No
No
Yes
Yes

No
No
No
No
Yes

66.06+0.27
60.21%0.36
70.14+0.29
63.82+0.26
66.14J0.28

9.13
5.33
1.99
1.20
1.20

NsortA(Eo, 16.28,40,90)
RcFF(Eo, 16.28,40) =

[Npwa~(Eo 16 28)Rc(Eo 16 28 40)RFF(Eo 16 28 90)]

is plotted in Fig. 5.
Figure 6(a) shows the invariant quantity I'&I'z, /I plot-

ted as a function of Eo for the relative sign relationship
between the transverse and Coulamb form factors given
by Eq. (9). Figure 6(b) shows the same quantity with the
sign of Eq. (9) taken to be positive. Table I summarizes
the results of making various combinations of corrections
described above in terms of a X test for goodness of fit to
the weighted mean of I „I~, /I'. This comparison shows

that the interference term of the (e,e'p} coincidence cross
section is clearly observed in our (e,p) experiment and
must be included in the der, p /dQ~.

IV. CONCLUSION

Equations (14a)—(14d) are the PWBA expressions for
the electric dipole virtual photon spectra including the an-
gular dependence of an outgoing nucleon. They contain
all four terms in the electron scattering coincidence cross
section. In the experiment we measured the invariant
quantity, I &I ~

/I', using electrons in the energy range,

17—105 MeV, as well as bremsstrahlung having end-point
energies 60—105 MeV. The results of these two measure-

ments were consistent when the carrection shown in Fig. 5
was apphed to the (e,p) data and if the Davies-Bethe-
Maximon bremsstrahlung cross section'5 was used in the
intex-pretation of the real photon data. This experiment
represents a clear observation of the interference term in
the coincidence crass section.

The minus sign of Eq. (9} is compatible with the con-
ventions of Drechsel and Uberall. z Other definitions of
the operators could lead to a positive sign, but with these
definitions of the operators the sign of the Coulomb-
transverse interference term in the coincidence cross sec-
tion would change, thus resulting in the same coincidence
cross section and virtual photon spectra. This result is re-
lated to the ' C(e,e'y) experiment of Papanicolas et al. 's

where an E2 excitation was studied.
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