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Optical potential approach in scattering of hadrons from light nuclei
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A new calculational approach is described which reproduces the %atson multiple scattering
series, simplified by neglecting the terms describing the repeated scatterings of a projectile on the
same target nucleon. The approach involves solving sets of uncoupled wave equations (Schrodinger
or Dirac) with effective optical potentials of the analogous form as the first order optical potential

used in the standard impulse approximation optical models. Our approach is particularly suitable in

multiple scattering calculations for elastic scattering of hadrons from light nuclei. As an example of
the application of the proposed method we evaluated multiple scattering series for the elastic scatter-

ing of protons from He with the purpose of assessing the importance of relativistic effects in this

reaction.

I. INTRODUCTION

It is commonly accepted that the correct description of
the hadron-nucleus interaction is given by the multiple
scattering theory, and the optical potential approach is
meant as an approximation scheme. It is also well known
that the higher order multiple scattering terms in the mul-

tiple scattering series can be reproduced exactly only by
using higher order optical potentials which are, to a great
computational disadvantage, rather complicated nonlocal
operators.

The objective of this paper is to describe a new, easily
calculable method of approximating the multiple scatter-
ing series. The method, instead of adding higher order
terms to the optical potential, consists of solving a set of
uncoupled, suitably chosen wave equations with optical
potentials of the same level of complexity as the first or-
der optical potential used in standard optical models. The
main advantage of our method is its simple treatment of
the 1/A corrections (A being the target mass number) to
the first order optical potential which are techmcally very
difficult to incorporate in the framework of the standard
optical model approaches. Our method may thus be par-
ticularly useful in the treatment of scattering of hadrons
froin light nuclei.

II. COMMON OPTICAL MODEL APPROACH

Before describing the proposed method we briefly re-
view the basic elements of the optical potential method. '

We are interested in the range of sufficiently high incident
projectile energies at which the evaluation of the multiple
scattering amplitude can be made in the fixed scatterers
approximation. The collision matrix describing
projectile-nucleus scattering can be written as follows:

A

T= x tv+ g tkGt(+ x rkGt(Gt + ), (2.1)
k=l k, l=l k, l, m =1

k~l k~l~m

where tk is the projectile-target nucleon scattering opera-
tor whose matrix elements are related to the free NN
scattering amplitude:

& p'
I
t (r )

I p) =e ' 'f«q» (2.2)

where q=p' —p and ( ) denotes the average with
respect to the target ground state density. In Eq. (2.1), G
denotes the free wave propagator which for spin zero pro-
jectile is

G(p)= 1

k —p +Ee

and for the spin —,
'

projectile

p+m E(k)y —p y+m
k —p +i6 k —p + le'

(2.3)

(2.4)

Here p =
~ p ~

is the magnitude of the intermediate
momentum, and k is defined by the energy of the incident
projectile E(k) =(k +mz)'~z.

The collision matrix T of Eq. (2.1) is assumed to be
composed of a finite number of terms corresponding to
consecutive multiple scattering processes. [The first term,
(g",tt ), represents the transition in which the projec-
tile interacts with one of the target nucleons (single
scattering term), the second term, (gk~t tk Gtt ),
represents the process in which two target nucleons are
being hit successively by the incident projectile (double
scattering process). ] We note that in expansion (2.1) we
deliberately do not include the "reflection" terms, i.e.,
terms corresponding to a situation in which at least one of
the target nucleons is hit more than once. The presence of
such terms may be excluded on the basis of various argu-
ments; the most convincing argument follows from the
unitarity equations:~ the reflection terms correspond to a
process in which an excited mass state of a projectile
propagates in between collisions. Hence the reflection
terms constitute a subclass of a class of terms referred to
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(IC+ V,p, )(P=E+, (2.5)

as inelastic shadowing terms in the multiple scattering ex-

pansion. Including such terms as only inelastic contribu-
tions, without justifying that they constitute the most im-

portant part of the inelastic shadowing, might be incon-
sistent.

The evaluation of the complete multiple series of Eq.
(2.1) poses in general severe technical difficulties. The
general objective of the optical model approach is to cir-
cumvent these difficulties by performing an approximate
summation of the series (2.1). The method consists of
finding an auxiliary function —"optical potential" V,p,

—
~hich, when inserted into the wave equation

pg(r». . . rrri )

A

= g p(r;) =
I @o.m. (R)

I
pg'(r$ —R, . . . , rg —R),

where

A

R=—gr;.A,.

(2.10)

Also in the following discussion, we shall assume the
identical interactions of the projectile with protons and
neutrons by setting

&p'IrkIp&=&p'Ir Ip&e (2.1 1)

generates the collision matrix T:

Vop~
T= Vop~+ Vop~ GT =

opt

(2.6)

In Eq. (2.5} I(: represents the kinetic energy operator.
The exact form of V,p„which can be obtained by for-

mally inverting Eq. (2.6},is T= g [A]„IuJ„. (2.12)

Generalization to the case of the correlated wave function
and nonidentical projectile-target nucleon t matrices is
briefly described later on.

Under the above assumptions, the scattering matrix ac-
quires the form

Vop, T/(1+ G——T) =T—TGT+ TGTGT+ ~ (2 7) Here we have introduced the following notation:

Equation (2.1) allows us to expand further V,p, in powers
of the projectile-target nucleon scattering t matrix,

[A]„=A (A —1) (A n+ 1), —

I u ) „=u(Gu)"

(2.13)

(2.14)

(]) (2) (3)
~opt = ~Dpi + ~opt + ~opt +

where
and

& p'
I

u
I
p&=p(p p)&p I

r
I p& (2.15)

V(2) = tk tI — tk tk (2.9)

plq)= J d re 'e'p(r) . (2.16)

The first order optical potential V,'p, can now be written
in the form

(1)V,pt
——Au . (2.17)

. . .etc.

The standard optical potential scheme allows one to ap-
proximate the multiple scattering series, to a desired accu-
racy, by including higher order terms in the optical poten-
tial expansion. The higher order terms, however, are in

general, to a considerable computational disadvantage,
quite complicated nonlocal operators. This serious techni-
cal difficulty renders the standard optical model essential-

ly useful in cases in which only the first order approxima-
tion involving the first term in Eq. (2.9) is sufficiently ac-
curate.

The purpose of this paper is to discuss another approxi-
mation scheme which is technically easier to deal with
than the standard optical model. Before we describe our
method in the next section we introduce below our nota-
tion and several elements of the optical model approach
which we shall need in our further discussion.

Let us consider scattering of a projectile from a nucleus
composed of A nucleons. For simplicity of the discus-
sion, we shall assume the independent particle model den-
sity with the separable center of mass correlation

The above potential generates the following, approximate
scattering matrix T,„,:

Topi= Vopi+ Vop'«T~~= g ~ "Iu I. . (2.18)

1, 1 ——,1 ——1 1

A

1 2
1 ——

A

(2.19)

tend to differ more for light nuclei and increasing orders
of scattering.

note that the optical potential of K.erman,
McManus, and Thaler (KMT) (Ref. 3) is constructed in

We see that the exact multiple scattering series (2.1) and
the approximate multiple scattering series (2.16) differ by
the combinatorial factors multiplying Iu I„.The ratios of
these factors for the single, double, triple, etc. , scattering
terms
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such a manner that its first order term reproduces the
combinatorial factors in front of (u j„exactlyup to n =2,
because

Xls a ~ a pXZ and als ~ ~ 0 fag j

which satisfy a set of 2N equations

and

VKMT =(A —1)u (2.20) g xjaj"=[A]„,n = 1, . . . , 2N (3.5)

A (A —1)u
A —1 1+6(A —l)u

=A Iu j i+A(A —1)Iu j2

which are linear in xj and nonlinear in aj.
By eliminating the coefficients xj from the above 2N

equations, we find that the coefficients aj turn out to be
the roots of the ¹h order algebraic equation:

+A(A —1)(A —1)I u j,+ (2.21)

However, the combinatorial factors for the orders of
scattering higher than two start to differ from those in the
exact multiple scattering expansion.

The common procedure of obtaining a better approxi-
mation to the exact result (2.1) consists of including
higher order terms in the expansion of the optical poten-
tial (2.8). In general, taking into account terms up to the
nth order in the expansion of V,~, allows one to repro-
duce the multiple scattering series up to the nth order.
Such an approach is, as we stressed above, however quite
difficult to apply because of the increasing complexity of
the higher order terms.

( —a) + 1
(A —N)( —a)

I

+ 2 (A N)(A ——N+1)( —a)

+ +(A N)(A —N+1—) ~ ~ ~ (A —1)=0 . (3.6)

The knowledge of the N solutions aj allows us to deter-
mine the coefficients xj, by solving a set of N arbitrarily
chosen linear equations from the set of 2N equations (3.5).

In the following we shall discuss the properties of three
solutions obtained with the help of the above method, cor-
responding to N =1,2, and 3.

III. DERIVATION OF THE GENERALIZED
OPTICAL POTENTIAL METHOD

In this section we derive a new optical potential ap-
proach which allows one to reproduce the multiple
scattering series. The approach is different and signifi-
cantly simpler than the standard optical potential pro-
cedure described above. Instead of including higher order
corrections to the optical potential, we write the collision
matrix T as a linear combination of N auxiliary collision
matrices Tj

T= g x, Tj, (3.1)
j=l

where each Tj can be generated by solving the wave equa-
tion with an optical potential Vj:

A. N=i

xiawi ——[A]n n =1 2

and, consequently, the solution

AQl=A —1, Xl=
A —1

(3.7)

(3.8)

The corresponding, approximate scattering matrix has the
orm

alQ
T=Xl =A Iu j,+A(A —1)Iu jz(1—Gaiu)

+A(A —1)(A —1}Iujp+. . .

The simplest case of N =1 yields the following set of
equations:

TJ = VJ+ VJGTJ,
where

(3.2)

(3.9)

Vj
——aju, (3.3)

and the coefficients xj and aj are to be determined.
%'e stress here that only the linear combination of TJ's

describes the physical scattering process and we do not at-
tach any physical meaning to the auxiliary collision ma-
trices Tj and the optical potentials Vj which generate
them.

By expanding both sides of Eq. (3.1} in powers of r we
obtain

A N ajQg [A]„Iuj„=g x,. (3A)
n=1 j=l J

We see that in order to make both sides agree up to the
2¹h order of scattering, it is necessary to find 2N coeffi-
cients

i.e., the result is equivalent to that obtained by using the
first order optical potential of KMT. We note that in this
approximation the terms of order higher than 2 are too
large by factors

A (A —1)j
(3.10)

A (A —1) (A —j+1)
which, e.g., for He nucleus yield R3 ——1.5 and R4 ——4.S.
Also, while the multiple scattering series (1} terminates
after the fourth order, the approximation (3.9) leads to the
spurious fifth, sixth, etc., scattering terms. In the p- He
elastic scattering around 1 GeV, differences between the
multiple scattering theory and the optical model become
quite large, e.g., the second diffraction maximum is
overestimated by the optical model by about 100%.
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where

The case of l)l =2 leads to the following set of equa-
tions for x& and aJ, and to the following solutions:

xiai+xzaz ——[A]„,n =1, . . . , 4

a i
——a 2

——V'A —2(VA 2—+i )

A v'A 2—i—
2(A —2) v'A 2—+i

The resultant scattering matrix is

Q1Q Q2Q
T X1 +X2

(1—Gaiu) (1—Ga2u)

(3.11)

+[~]5Iu jr+[~]6Iu j6+ . . (3.14)

y = [(A —3)(1—v'A —2)]'~' .

The N =3 approximation reproduces the multiple
scattering series (2.1) exactly up to the sixth order, i.e.,

Q1Q a2Q Q3QT=X1- +X2 +X3(1—Gaiu) (1—Ga2u) (1—Garou)

~ Iu j i+ [~]2Iu j 2+ [~]3Iu j i+ [~]4Iu j 4

=A [u j)+A(A —1)Iu j2+A(A —1)(A —2)[u j&

+A(A —1)(A —2)(A —3)Iu jg

+A(A —1)(A —2) (A —5)Iu js+ . (3.12)

The above expansion reproduces, as expected, the multiple
scattering series up to the fourth order. We also note that,
in the case of p-~He elastic scattering, the scattering terms
of order higher than 4 are much smaller in the above ap-
proximation than in the case of the KMT optical poten-
ti Vj=aJQ, j=1, . . . , N . (3.15)

In the case of p- He elastic scattering, the approximation
we propose has an additional advantage over the KMT
approximation: the dominant spurious terms, the fifth
and sixth order scattering terms, vanish.

The above examples demonstrate the usefulness of our
approach. By using our method it is possible to reproduce
the combinatorial factors in front of the first 2N terms in
the multiple scattering expansion (1) exactly by solving l)i
uncoupled wave equations with the optical potentials pro-
portional to the first order optical potential of KMT:

C. %=3

Here we find

xiui+xiu2+xgu3=[A]„, n =1, . . . , 6,
ai ——x+y+A —3,
a2 —a f = ——,

' (x+yj+A —3+&v'3/4(x —y),
(A —1)(A —2)—(A —1)(ak+ai)+akai

x) ——A
a&(a& —ak )(aJ —ai )

(3.13)

y y(i)+ y(2)+ y(i)+. . . (3.16)

In order to achieve the same level of accuracy in the
framework of the standard KMT approach, it would be
necessary to solve one wave equation with the 2¹h order
optical potential; this is in practice totally unfeasible.

Our method can be generalized in order to include
correlations as well as the nonidentical t matrices in the
analogous way as in the standard optical model ap-
proaches, by replacing the potentials aju with the expan-
sions

for j,k, l =1,2,3, where

'tk 6 'tI 6 't~ (3.17)

Here the summation runs over i,k, l =1, . . . , 3 such
that i,k, l are all different, and the prime indicates that a
given sum has to be divided by [A]„,n being the number
of summation indices. The above expression is essentially

f

an expansion in terms of the correlation functions in the
target density, i.e., the first term V)" is proportional to
the single particle density, the second term Vz

' to the
two-particle correlation function, etc. (cf. Ref. 4). We
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stress, however, that in the case of independent particle
myel t get density o~y the fi~t order te~ Vj(1) ~ntri-
butes to the expansion (39). This is not the case of the
KMT potential, in which, in general higher order terms in
the expansion do not vanish even if there are no correla-
tions between the target nucleons.

elastic scattering. Our objective is to estimate the quanti-
tative importance of the relativistic effects in this reac-
tion. Such a calculation, in principle, consists of compar-
ing the multiple scattering amplitudes composed of the
single, double, triple, and quadruple collision terms:

IV. APPLICATIONS
E(Q)=E)(Q)+E2(Q)+E3(Q)+E4(Q) (4.1)

As an interesting example demonstrating the usefulness
of the method proposed here we compare the nonrelativis-
tic and relativistic calculations of the amplitude for p- He

evaluated with the Schrodinger and the Dirac propaga-
tors, respectively.

In either Schrodinger or Dirac case the amplitudes Ej,
j=1,4 can be written schematically as follows:

E, =A&a ~h, (Q}
~
~&,

E2 ——A(A —1) J d p(%
~
hz(p —kf )G(p)hi(k; —p) ~

0'),
Es =A(A —l)(A —2) I d~pld p2(% ~ hs(p2 —kf)G(p2)hz(pi —p2}G(pi )h3(ki —pi) ~

%')

E4 ——A(A —1)(A —2)(A —3) f d pid p2d ps(%
~ hs(p3 —kf )G(ps)h3(p2 —p3)G(pi)h2(pi —p2)G(pi )h3(ki pi)—~

%') .

(4.2)

In the above formulas, A =4 is the target mass number,
%' is the target wave function, A (q) = [f,(q)+f„(q)]

h„(iI)=e "f(q), n =1, . . . , 4 (4.3)
k2 —i 2+

2 E [f.(q) —f.(q)], (4.7a)

are the isospin averaged amplitudes for scattering off the
nth nucleon.

In the nonrelativistic approach we adopt the elementary
projectile-target nucleon amplitude in the following form:

f(q) =A (q)+ &(q)~ $'

i.e., we neglect the projectile interaction with the spins of
the target nucleons and retain only the two relevant spin
components of the NN amplitude. The amplitudes A and
C are obtained from the phase shift compilation of Amdt
and Roper. ' This allows us to consider the relativistic
representation of a NN amplitude in a simple form

(k2 q2y4)l/2
«q) = —,. 2 E [f.(q) —f (q)]

The inverse relations are

f„(q)= A (q)8+m
( —2mi)

& q
(k' —q'I4)'" 4(E+~)

(4.7b)

(4.8a)

f(q) =f,(q)+f.(q)ro. (4.5)

(This choice is essentially the same as that made in Ref. 6.
It differs only in our neglect of terms associated with the
target nucleons spin degrees of freedom which give negli-
gible contributions for scattering off large, spin zero nu-
clei.) The scalar f,(q) and vector f„(q)components are
constructed by equating the matrix elements of the amph-
tudes between the four component positive energy Dirac
spinors and taro component Pauli spinors, respectively:

u(ko ——,
'

q, sf )[f,(q)+f„(q)yolu(ko+ —,
'
q,s; )

=X(sf) [A (q)+C(q)o"y]X(s ) . (4.6} )
o-1

0,$ 0,5 0.6 0.7 0.8
Here ko is the Breit frame average momentum determined
by the "optimal" energy, X(s) is a Pauli spinor, and
u (p,s) is a positive energy Dirac spinor. The following
transformation formulas between the amplitudes A(q),
&(q) and f„(q),f, (q) can be obtained in a straightforward
manner from the last equation,

Q (GeV/c)

FIG. 1. Corn. parison between the successive approximations
N =1,%=2,N =3 for the differential cress section for p-~He

elastic scattering at 800 MeV. The He wave function %" was

parametrized as the product of the single particle s-wave func-
tions with the harmonic oscillator parameter b =1.37 fm.
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and

f,(q) = A (q)E+m

Similarly as in the nonrelativistic approach, the accepted
form of the relativistic NN amplitude determines the
form of the relativistic optical potential in the impulse ap-
proximation,

( —2mi) q~

(k' —q'y4)'" 4(E+~) (4.8b) V(q) = V, (q)+ V„(q)yo, (4.9a)

102 p- He

T[ob = BOOMeV

V, (r)= —— J d q e ''I'f, (q)S(q)
m (2Ir)3

(4.9b)

10-

E

Cy

b
C3

10

10
0 0.2 0.4 0.6

0 (GeV/c)

N=2

0.8 1.0

V. ( ) = ——,f d'q e 'q'f„(q)S(q)i 1

m (2~}3
(4.9c)

V( r) = V'(r)+ V (r)a I (4.10a)

are the scalar and vector optical potentials.
The relativistic nuclear scattering amplitude and the ob-

servables can be found by solving numerically the Dirac
equation with the relativistic optical potential of Eq. (4.9).
An alternative approach is to cast the Dirac equation into
the mathematically equivalent form of a Schrodinger
equation containing the central and spin-orbit potential
components:

1 0-Analyzing &ower Ay
I

/

/

/

p-4He

T[ab = BOOMeV

1
G ~-m

2fA———G-
k2 p2

which are related to the Dirac scalar and vector potentials

[V„(r)—V, (r)]
1 I'

V (r)=
2mr E+m+ V, (r) V„(I')— (4.10c)

V'(r) = V„(r)+Vg(—r)+ [ V,'(.) V„'(r)]+V—D(r),
m

" '
2m

(4.10b)

—1,0
0 0,4 0.6 0.8 1,0

0-

0, 2 1.Q0 0,4 0 6

Q IGeV/c)
FIG. 2. (a) Differential cross section for p- He scattering at

Tl,b ——800 MeV. Solid and dashed lines represent the relativistic
and nonrelativistic calculations, respectively. (1) Analyzing
power and spin rotation parameter for p- He scattering at
T~b ——800 MeV. Solid and dashed lines represent the relativistic
and nonrelativistic calculations, respectively.

where V~ is the Darwin term which, because of its negli-
gible contribution, was omitted in our calculations.

In Figs. 1 and 2 we present the elastic differential cross
sections and spin observables for p- He scattering at 800
MeV obtained using the method described above. Figure
1 represents the elastic differential cross section calculated
in the N =1 (i.e., the first order optical potential), N =2,
and N =3 approximations. %hile the N =2 approxima-
tion differs dramatically from the N =1, the difference
between the N =2 and N =3 approximations is, for the
range of momentum transfers covered by Fig. 1, practical-
ly negligible.

In Fig. 2 we compare predictions of the relativistic and
nonrelativistic approaches for the differential cross sec-
tion and the spin observables. On the basis of the results
of our preliminary calculations (the He wave function %'

was parametrized as the product of the single particle s-
wave functions with the harmonic oscillator parameter
b =1.37 fm and the isospin degrees of freedom were tak-
en into account through the isospin averaged NN ampli-
tudes), we expect the relativistic effects to play a very im-
portant role in p-"He scattering observables.

This work was supported in part by the U.S. Depart-
ment of Energy.
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