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The specific distortion effect of the three-nucleon cluster in the n+ t or p+ He system is studied

by using the pseudostate method in the resonating-group formulation. The result indicates that such
an effect is significant mainly at low energies around the broad resonance in the Pauli-favored / =1
state. In the higher-energy region, a comparison between differential cross sections calculated with

and without distortion shows that this effect has only a minor influence.

I. INTRODUCTION

The pseudostate method' has been used to study specif-
ic distortion effects in resonating-group calculations of
light 3+8 systems. As was summarized in Ref. 2, the
results from p+ct (Ref. 3), d+a (Ref. 4), t+a (Ref. 5),
and a+a (Ref. 6) studies showed that such effect is
strong in the 1+a case, moderate in the t+a case, but
comparatively less important in the p+tx and a+a cases.
This indicates that the importance of specific distortion is
closely related to the degree of compressibility of the clus-
ters involved in the system.

The purpose of this investigation is to examine the
manner in which the nature of the companion cluster 8
influences the effect caused by the specific distortion of
the cluster A. To achieve this purpose, we shall consider
the light system n+ t or p+ He. By comparing the ob-
tained results with those reported previously in the t+a
case, one can then gain information concerning the degree
in which the specific distortion of the t cluster depends on
the nucleon number of the companion cluster which is a
single nucleon in the n + t case, but a heavier u cluster in
the t+a case.

In the next section, a brief description of the formula-
tion is given. Convergence properties with respect to the
required number of pseudostate configurations is dis-
cussed in Sec. III. Phase-shift results in the n+ t case
and differential cross-section results in the p+ He case
are presented in Sec. IV. Finally, in Sec. V, concluding re-
marks are made.

II. BRIEF DISCUSSION
OF THE FORMULATION

The trial wave function for the system is taken to have
the form

is any normalizable function describing the center-of-mass
motion, and N is the number of configurations adopted in
the calculation. The functions Pi and P; (i =2 to N)
describe the internal spatial behavior of the three-nucleon
cluster in its ground and pseudoexcited states, respective-

ly. They are chosen to be

P;= g AtJXi, i =1 toN (N&n),

where n denotes the number of basis functions Xj. These
latter functions are assumed as

3

XJ
——exp ——,aj g (rk —R&)

k=1
(3)

with Ri representing the c.m. coordinate of the three-
nucleon cluster. It should be mentioned that the pseu-
doexcited states are constructed to yield pseudoinelastic
configurations which are used to describe the specific dis-
tortion effect in the n+ t or p+ He system.

For a given value of n, the nonlinear parameters aJ.
(j= 1 to n} are chosen by minimizing the ground-state ex-
pectation value Ei of the three-nucleon Hamiltonian.
With the resultant values of aj, the coefficients A;J are
then determined by diagonalizing the Hamiltonian matrix
in the restricted space spanned by the nonorthonormal
Gaussian basis functions X~. The results for aj and A,z in
the triton case are tabulated in Tables I and II, respective-
ly. In Table II, we have additionally listed also the values
of the corresponding energies E; and rms matter radii 8;.

As a comparison, we have also computed E& and R& in
a model space spanned by a large number of Gaussian
basis functions (n =15). Results obtained with several
appropriately chosen sets of aJ values, ranging from 0.05
to 7.5 fm, turn out to be nearly identical. These results

4, = g M[/;s, F~(R)Z(R, )], Ei ———6.031 MeV, R i
——1.697 fm . (4)

where W is the antisymmetrization operator, g, is an ap-
propriate spin-isospin function with the subscript s denot-
ing the total spin angular momentum (s =0,1}„Z(R,~ )

By comparing with the corresponding values in Table II,
we note that the spatial structure of the triton cluster is
well described when n is chosen to be larger than or equal
to 4.
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TABLE I. Nonlinear variational parameters o;j of the triton.

CK1

(fm )

0.454
0.191
0.205
0.131
0.105
0.0815

0.641
0.691
0.370
0.285
0.208

4.264
0.903
0.675
0.500

a4
(fm )

3.279
1.407
1.181

Q5

(fm )

2.932
1.991 3.646

The relative-motion functions or variational amplitudes
F~(R) are determined by solving the projection equation

where

Ez =E;+E;, (i =1 to N) (6)

with Er being the total energy of.the system and E& being
the relative energy of the neutron and the triton cluster in
the ith configuration (Ei in the elastic channel will be
simply written as E in the following discussion). The
Hamiltonian operator H is given by

4 4a= — gv2+ g v,,—T, (7)
i=1 ig j=l

where T, is the kinetic-energy operator of the total
c.m. motion and i'/2M is equal to 20.735 MeV fm . The
nucleon-nucleon potential Vi~ (hereafter referred to as the
MN potential) is assumed to be purely central and has the

form given by Eqs. (9)—(11) in Ref. 6. The exchange-
mixture parameter u is taken to be 1. This particular
value is chosen, because it has been found recently that,
with specific distortion properly taken into account, the
MN potential with this u value can be used to achieve a
satisfactory description of the main features of many light
nuclear systems.

By following the standard resonating-group procedure,
coupled integrodifferential equations for F;, are derived.
These equations are solved by using a variational tech-
nique discussed by Kamimura. From the solutions, one
obtains the S-matrix elements and, subsequently, the
elastic-scattering phase shifts 51 and the differential
scattering cross sections o (8).

III. DETERMINATION OF REQUIRED NUMBERS
OF BASIS FUNCTIONS AND PSEUDOINELASTIC

CONFIGURATIONS

Our initial task is to determine the number (N —1) of
pseudoinelastic configurations required for convergence

0.1252

TABLE II. Variational results for triton configurations.

A;4 E; (MeV)

—4.558

R; (fm)

1.484

0.01738
—0.038 80

0.1281
0.2278

—5.859
12.568

1.680
2.250

0.02065
—0.042 60

0.006 804

0.1370
0.2628

—0.1008

—0.08477
—0.1328

3.8708

—5.975
13.999

283.893

1.663
2.148
0.615

0.005479
—0.02497

0.01507
—0.004386

0.048 90
0.07798

—0.1860
0.06660

0.1231
0.058 65
0.6224

—0.3971

—0,096 68
—0.038 51
—0.3329

3.1772

—6.028
6.538

37.561
246.010

1.690
2.964
1.919
0.801

0.002 659
—0.01840

0.012 89
—0.006422

0.002 925

0.028 89
0.04867

—0.1458
0.1046

—0.04946

0.09621
0.01033
0.4521

—0.7768
0.4590

0.074 28
0.1133

—0.1887
2.1701

—2.1398

—0.1199
—0.1162

0.043 59
—1.3585

4.8319

—6.030
4.702

25.116
88.070

302.461

1.695
3.385
2.384
1.537
0.&56

0.001025
0.01268
0.01007

—0.005 172
0.002691

—0.001 445

0.01421
—0.025 83
—0.09347

0.07066
—0.039 33

0.02099

0.071 22
—0.003 882

0.2485
—0.4823

0.3605
—0.2026

0.1334
—0.1353
—0.1552

1.9165
—3.0460

2.2013

—0.073 77
0.1220
0.3232

—1.7765
6.6496

—6.9210

—0.065 44
—0.017 15
—0.2870

0.6380
—3.7723

9.8446

—6.031
3.339

16.832
59.186

168.652
455.657

1.697
3.882
2.872
1.894
1.246
0.759
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FIG. 1. Phase shifts in the ( I,s)=(1,1) state of n + t scatter-
ing calculated in the five-Gaussian case with 1, 2, 3, 4, and 5
cluster configurations. Arrows on the abscissa mark the energy
thresholds of pseudoinelastic configurations.

FIG. 3. Phase shifts in the ( ),s) =(0, 1) state of n + t scatter-
ing calculated with different numbers of Gaussian basis func-
tions.
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and the number n of Gaussian basis functions necessary
for accuracy. Smallest possible values of n and N will be
adopted in the final calculation, because lengthy computa-
tional periods are needed in this investigation.

First, we consider the question concerning the required
number N of cluster configurations. For this purpose, we
compute, for a given choice of n and in the Pauli-favored
state with (I,s)=(1,1), the phase shifts in a number of
calculations adopting progressively larger numbers of
pseudoinelastic configurations. The results for n + t
scattering are illustrated in Fig. 1 in the case with five
Gaussian basis functions (i.e., n =5 or 56 case). In this
figure, the dashed curve, solid dots, solid curve, crosses,
and dot-dashed curve represent the results obtained with
1, 2, 3, 4, and 5 cluster configurations, respectively (denot-
ed in the figure as I C, 2C, 3C, 4C, and 5C calculations).
From this figure, one learns the effect of successively add-
ing pseudoinelastic configurations with higher energy
thresholds and finds that convergence is achieved with
N =4 in this particular case. The phase-shift values ob-
tained in the 4C and 5C calculations are seen to be almost
identical. This is, in fact, to be expected, since the thresh-
old energy of the pseudoinelastic configuration with P5
has a large value equal to 308.49 MeV and, hence, its in-
fluence on the n+ t scattering phase shifts in the energy
region of 0—36 MeV should be quite negligible.

Similar investigations have also been conducted in cases

with n =2, 3, 4, and 6. Here we find that convergences
are achieved at N =2, 2, 3, and 4, respectively. This indi-
cates that, in the energy region studied here, pseudoinelas-
tic configurations with energy thresholds higher than
about 100 MeV make very little contribution, which is of
course a rather reasonable finding.

Phase-shift results for n + t scattering in the
(I,s)=(1,1) state, obtained with n =2, 4, 5, and 6, are
summarized in Fig. 2. In this figure, the dots, solid curve,
crosses, and dot-dashed curve represent results obtained
with double configurations (DC or N =2) in the n =2
case, triple configurations (TC or N=3) in the n =4
case, and quadruple configurations (QC or N =4) in the
n =5 and 6 cases, respectively. In addition, we have also
shown, as a comparison, the result from a single-
configuration (SC) calculation' with n =4. From this
figure, one notes that, except in the region where energy
thresholds occur, the 46-TC, 56-QC, and 66-QC phase-
shift results are rather similar to one another. This sug-
gests that, for a general understanding of the effects of
specific distortion in the n+ t system, the adoption of a
46-TC calculation seems to be sufficient.

The above conclusion concerning the use of a 46-TC
calculation has also been examined in the Pauli-unfavored
(I,s)=(0, 1) state. In Fig. 3, we show the phase-shift re-
sults, obtained in the same cases as those in the
(I,s)=(l, l) state. Here one finds again that, at energies
beyond the region containing the energy thresholds, the
5G-QC result is rather similar to the 66-QC result. The
46-TC result is somewhat different; however, especially
for energies higher than about 20 MeV, the difference is
not too large. Therefore, for the sake of saving computa-
tional time, we have decided to use mainly the 46-TC
model space in the remainder of the calculation.

IV. RESULTS

i

12 16 20 24 28 32 36
E(Mev)

A. Phase shifts in the n + t system

FIG. 2. Phase shifts in the ( I,s)={1, 1) state of n + t scatter-
ing calculated with different numbers of Gaussian basis func-
tions.

Phase shifts for n+ t scattering, calculated with 46-
TC (solid curves) and 46-SC (dashed curves), are shown
in Fig. 4 for / =0—3 in s =0 and l states. In this figure,
the arrows on the abscissa mark the energy threshold of
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FIG. 4. Calculated phase shifts in various ( I,s) states of the n + t system.

the lowest pseudoinelastic channel in the 46-TC case. As
is noted, the features in the s =0 and s =1 states are en-
tirely similar. Hence, in the following discussion, we shall
focus our attention only on the s = 1 states.

The most notable features in Fig. 4 are that there occur
cusps and dispersionlike resonances near the energy
threshold. These are unphysical features which arise as a
consequence of the introduction of pseudoinelastic chan-
nels into the calculation. Quite clearly, this represents a
defect of the pseudostate method and has the consequence
that, in this system, one can make a detailed comparison
between calculated and experimental differential cross-
so:tion results only in the relatively high-energy region
beyond about 20 MeV. To alleviate this defect, one could
perform a more extensive calculation by enlarging the
model space through the use of larger values of n and N.
This would, however, result in a considerable increase in
computational periods. A better way is to carry out a
more difficult calculation by introducing realistic reaction
channels, such as the three-body n + n + d channel.

From previous investigations, '" we have hmrned that
specific distortion effects show up most distinctly in
Pauli-favored orbital angular-momentum states. For the
n+ t system, the only such state is the /=1 state. Here
one finds from Figs. 2 and 4 that the specific distortion
has indeed a considerable influence on the energy position
of the broad resonance level at around 4 MeV. %ith the
66-QC calculation, the resonance energy is lowered by al-
most 0.9 MeV. In all other I states, however, one notes
from Figs. 3 and 4 that, with the exclusion of the energy
region in which nonphysical cusps and dispersionlike res-
onances occur, the effect of specific distortion of the tri-
ton cluster is quite minor.

6u =uerr —uo, (8)

where uo denotes the u value used in the with-distortion
calculation and u, rr is the u value necessary to achieve, in
a SC or no-distortion calculation, the same phase-shift
value as that obtained in the with-distortion case. For the
n + t system at 20 MeV, b,u is equal to about 0.04 which
should be compared with the value of nearly 0.07 in the
t+a case at this energy. From these comparisons, one
can conclude that the nature of the companion cluster
does have a considerable overall influence. The specific
distortion effect in the t+a system is appreciably larger,
simply because the companion a cluster contains a larger
number of nucleons.

B. Differential scattering cross sections
in the p+38e system

Because of the presence of unphysical dispersionlike
resonances, a comparison between calculation and experi-
ment cannot be made at low energies. Therefore, in this
subsection, we shall discuss the differential cross-section

Next, we compare the importance of triton distortion
effects in the n+ t and t+a systems. For this purpose,
we study the phase-shift differences between with- and
without-distortion results obtained at energies away from
physical or nonphysical resonances in the Pauli-favored
I =1 state. From Fig. 2, one finds that this difference in
the n + t, 66 case at 20 MeV is about 2' which is consid-
erably smaller than the difference of about 13' in the t+a
case at the same energy. To express this difference in
another way, we have also computed the value of b,u, de-
fined as
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results only in the higher-energy region from 22.5 to
35.625 MeV.

Differential cross-section values for the p+ He system
are depicted in Figs. 5—7. In these figures, the solid and
dashed curves represent results obtained from the 46-TC
and 46-SC calculations, respectively, while the solid cir-
cles represent the experimental results. ' From these fig-
ures, one notes the following features:

(i) The calculation explains all the essential features of
the experimental data. In particular, the measured cross-
section results in the backward angular region are well
reproduced.

(ii) In the higher-energy region considered here, the
specific distortion of the triton cluster seems to have only
a minor effect. For example, differential cross sections at
22.5 MeV, calculated with and without specific distortion,
differ by only 6.9% at 25' and 15.5% at 180'.

(iii) By comparing cross-section results obtained with
and without distortion at various energies, one finds that
the effect of specific distortion seems to decrease rather
rapidly with increasing energy.

(iv) The calculated value of the differential cross section
at the interference minimum near 120' is too small. This
is quite clearly a consequence of the fact that noncentral
forces are not included in the calculation.

The calculated angular position 8;„ofthe interference
minimum in the cross-section curve agrees well with ex-
perimental finding. This is shown in Fig. 8. In this fig-
ure, one notes the interesting feature that 8;„becomes
larger as the energy increases, in contrast to the behavior
of a usual diffraction-type minimum. The reason for this
is as follows. At the relatively high energies studied here
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FIG. 5. Comparison of calculated differential cross sections
for p+ He scattering at 22.5 MeV with experimental data.

FIG. 6. Comparison of calculated differential cross sections
for p+3He scattering at 24.30, 26.25, and 28.125 MeU with ex-
perimental data.

(E & 30 MeV per nucleon), the contribution to the scatter-
ing amplitude in the forward angular region comes
predominantly from the direct process and, to a much
lesser extent, the one-exchange knockout process, ' while
the contribution to the scattering amplitude in the back-
ward angular region comes almost entirely from the one-
exchange heavy-particle pickup process (i.e., the neutron
picks up a deuteron cluster). All these contributions be-
come weaker as the energy becomes higher; however, the
hcavy-particle pickup amplitude decreases with increasing
energy more rapidly than the direct amplitude, thus re-
sulting in the observed phenomenon.

The rather slow increase of 8~;„with energy indicates
that the one-exchange contribution will remain important
even at considerably higher energies. Therefore, it is anti-
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FIG, 7. Comparison of calculated differential cross sections
for p+ He scattering at 30.0, 33.75, and 35.625 MeV with ex-
perimental data.

cipated that the use of an optical model with conventional
types of interaction potential will generally not yield a sa-
tisfactory explanation of the back angle data even when
the energy is high. For a reasonable description of the
data using a macroscopic model which does not take the
Pauli principle explicitly into account, it seems clear to us
that some crude representation of the exchange process, '

such as the introduction of a Majorana component into
the potential, must be employed.

V. CONCLUSION

In this investigation, the specific distortion effect of the
three-nucleon cluster in the n+ t or p+ He system is

studied by using the pseudostate method in the
resonating-group formulation. The result indicates that
such effect is significant mainly in the Pauli-favored 1 = I
state and, even in this particular orbital angular-
momentum state, it is large only in the low-energy region
around the broad resonance. At energies greater than 20
MeV, a comparison between differential cross-section re-
sults calculated with and without distortion shows quite
clearly that, in the higher-energy region, the importance
of this effect is rather minor.

Results from this study and a similar study in the t+a
case show that the specific distortion of the triton cluster
is appreciably more important in the t+a system than in
the n+ t system. This confirms one's intuitive feeling
that the effect of specific distortion of a cluster is related
not only to its own compressibility but also to the nucleon
number of the companion cluster in the system.

The advantage of the pseudostate method lies in the
fact that the kernel functions involved can be easily de-
rived and the computation is straightforward. But there
exist undesirable features as well. The presence of un-
physical dispersionlike resonances complicates the inter-
pretation and has the consequence that, at least in the
n+ t or p+ He system, a comparison with experimental
data cannot be made over a rather wide energy range.
This type of defect can be sufficiently alleviated by utiliz-
ing a large number of pseudoinelastic configurations, but
the requirement of computational time will then become
severe. Rather, our opinion is that, for a detailed under-
standing of the effect of specific distortion, a better way is
to carry out a more involved calculation employing realis-
tic cluster configurations, such as the three-cluster
n + n + d configuration.
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