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Deuteron-proton breakup reaction at Ed —7—.4 Mev
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The reaction d+p~p+p+n is investigated at E~,b ——7.4 MeV. Calculations of the cross section
are compared with recent kinematically complete measurements. The Coulomb potential is taken
fully into account in the calculations based on the strong approximation of Mufller wave operator ap-
proach.

I. INTRODUCTION

The three-nucleon system has been investigated for
many years in the search for a phenomenological descrip-
tion via NN potentials and possible effects of NNN
forces. While the meson theoretical NN potentials, like
the Paris or the Bonn potentials, describe NN scattering
up to several hundred MeV well, the infiuence of NNN
forces is less clear. In the H binding energy and He
charge form factor a NNN force seems to have a sizable
effect. ' Slaus et al. explain the difference in a ex-
tracted from the reaction H(n, p)2n and from H(m, y)2n
in terms of a NNN force. On the other hand, Faddeev-

type calculations of the n-d breakup process at incident
neutron energies of 7.5, 14.4, and 18.5 MeV which include
a NNN force give effects of maximal 10% percent in the
final state region. A maximum effect of 2—3% is es-
timated from the p-d breakup reaction at E„=14.1 MeV
reported in Ref. 6. As NNN forces are likely to produce
sizable effects in the bound state region it is intriguing to
look for NNN force effects also in the very low energy
scattering region. For reasons of experimental accuracy
one should study the charged p-d reaction. Thus recently
new kinematically complete measurements of the d-p
breakup cross section very close to the threshold have
been performed, and an upper bound of 30% for NNN
effects is estimated. However, in the low energy scatter-
ing region Coulomb effects are important, which from
the theoretical point of view make life more complicated.
While at higher energies the Coulomb effects can be taken
into account by some corrections to the neutral ampli-
tude, or hke in Ref. 10 for the d-a breakup, Coulomb
forces have to be fully taken into account in the p-d reac-
tion close to the threshold.

Rigorous multichannel scattering theory for Coulomb-
like (i.e., Coulomb plus short range) potentials has been
formulated in Refs. 11—18. However, its application to
charged few-body reactions often exhibits some difficul-
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The calculations which are presented in this paper are
based on the strong approximation of Mqfller wave opera-
tor (SAM) approach. This is a time dependent systematic
approximation scheme for the calculation of S-matrix ele-
ments. It allows one to take into account the long range
Coulomb force. The technique has been introduced in

Ref. 27. The applicability and accuracy of the method
has been investigated in the two-body system for p-p
scattering where the Coulomb plus Graz potential has
been utilized. Similarities of this approach to Faddeev-
type integral equations, e.g., the reduction to an effective
two-body system of the three-body system if the potential
is separable, have been pointed out in Ref. 29. First nu-
merical results of an application of the method to the d-p
breakup reaction including the Coulomb force have been
reported in Refs. 30—32. In those calculations total, rela-
tive, and subsystem angular momenta have been limited to
s and p waves. Moreover, the application of the SAM ap-
proach to a field theory model has been discussed in Ref.
33.

In this paper we report new calculations of the d-p
breakup reaction at 7.4 MeV incident deuteron energy for
several p-p detection angles. The calculations now include
also the d wave for total, relative, and subsystem angular
momenta. Some improvement of the overall shape is
achieved.

In Sec. II the method is briefly reviewed. Section III
presents the results and a discussion.

II. FORMALISM

The approximation scheme is based on two assump-
tions:

(a) Corresponding to a given full Hamiltonian
H =H + V, a finite dimensional Hamiltonian H„can be
found having a finite discrete spectrum, which approxi-
mates the spectrum of H. In particular, each scattering
state of H, which has evolved from an asymptotic wave
packet, can be approximated as a linear combination of
eigenstates of H„, and each bound state of H can be ap-
proximated in terms of eigenstates of H„. In tnathemati-
cal terms, one demands that H„approximates H in the
sense of strong resolvent convergence.

(b) A scattering matrix element can be approximately
computed from scattering states using a finite time of
evolution.

Some remarks seem in place. The idea to calculate
scattering quantities from discrete Hamiltonians is not
new in nuclear physics. It is used, e.g., in Ref. 34 for nu-
clear reactions in the particle-hole formalism, where the
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scattering boundary conditions for the wave functions are
formulated via the asymptotic behavior of the wave func-
tions in coordinate space. In the SAM approach the
boundary conditions are built in a different way, as will be
pointed out below. If one wants to calculate a scattering
matrix element for an N-body process in the SAM ap-
proach, only partial knowledge of the bound state spec-
trum is required. In general, only that part of the spec-
trum has to be approximated which is energetically acces-
sible from the asymptotic states. This is in contrast to the
Faddeev-Yakubovsky N-body integral equation formal-
ism. Let us give an example. If one wants to calculate
d-d elastic scattering at the total breakup threshold E=O
(i.e., the asymptotic state consists of a product of deuteron
wave functions and a wave packet describing the d-d rela-
tive motion having a peak at 2

i Be i
=4.45 MeV) in the

SAM approach one has to approximate the deuteron
bound state. In the Faddeev- Yakubovsky formalism,
where the calculation of an N bod-y Green's function
proceeds recursively from (X—1)-body Green's functions
(where the energy variable extends to minus infinity), in
addition the triton bound state has to be calculated.

The second assumption is physically justified by a labo-
ratory scattering measurement. Classically a finite time T
can be interpreted as R;„„/V„i, where R;„, is the interac-
tion radius of a finite range potential and V„( is the
target-projectile relative velocity. Also in the case of the
Coulomb potential with an infinite long range it makes
sense to talk of a finite T (convergence of a T-dependent
S-matrix element when T tends to infinity can be proven
mathematically rigorously).

Based on the above two assumptions we obtain approxi-
mate scattering states by diagonalizing an approximate
Hamiltonian and build in the scattering boundary condi-
tions as prescribed by the M@ller wave operators, using
however a finite evolution time. In the case of a short
range potential, where the Mgller wave operators read

H„=g i
e„)e„(e„i,

Q„(+T) is obtained simply by

(2.7)

Q.(+T)= g i..)-p(+ ..T)(..i.„-)
V,P,

X exp(+i e„T)t, e'„'
i

(2.8)

Q"+-'=s-lim exp(iHt}exp[ iH —'(t)],
E~+ oo

(2.9)

where the detailed form of H~'(t) for the p-d breakup re-
action will be given below. The same type of approxima-
tions as given in Eqs. (2.1)—(2.8) are applied also in the
Coulomb case. For the particular reaction p + d
~p + p + n studied here the modified Me)lier wave
operators read as follows. For the incoming channel with
a deuteron in subsystem 12, and a proton being particle 3,
e.g., one has

Q(2+' ——s -lim exp(iHt)exp[ —iH )2'(t)]P i2 . (2.10)

Here H denotes the full Hamiltonian

0=H, + V'+ V'. (2.11)

V' denotes the strong short range potential, which we
consider here to be a sum of NN-pair potentials

a= 12,23, 31

pS (2.12)

and V' denotes the p-p Coulomb potential.

H iz'(t) =H(2't+A i2(t), (2.13)

Since the pioneering work of Dollard, " in cases where
the long range Coulomb potential is involved the scatter-
ing boundary conditions can be formulated in terms of
modified M@ller wave operators.

Q'+-'=s-lim exp(iHt)exp( iH t), —
f~+ oo

(2.1)
where H)2' is the asymptotic Hamiltonian, which also
would occur in the neutral case,

which relates the asymptotic to the scattering states H12 H0+ ~12 &
(2.14)

i

q(+ ) ) Q(+ )
i

gas )

we substitute

Q(+-)~Q„(+T)=exp(+iH„T)exp(+iH„T),
g(-+))~ if„(+T))=Q„(+T)i(() ),

(2.2)

(2.3)

(2.4}

and hence the 5 matrix

(2.5)

S =Q'-' Q'+' S„(+T,—T)=Q„(+T}'Q„(—T) .

and A;2(t) is Dollard's anomalous term
1/2

log(4HII'
~

t
i ),C

Pl pA i2(t) =sgn(t)e~ed
2HII'

(2.15)

where e~ and ed are the charges of p and d, respectively,

m~ d denotes the reduced mass of p and d, and H$' is the
kinetic energy of the relative motion between the proton
(particle 3) and the deuteron (subsystem 12). Finally the
term P,2 in Eq. (2.10) denotes a projector onto the deu-
teron bound state in the subsystem 12.

In the outgoing channel with particle 1 being the neu-
tron and particles 2 and 3 denoting the protons, e.g., one
has

The technical advantage of the substitution given by Eq.
(2.3) is based on the fact that after diagonalization of
H„,H„

Qo' ' ——s-hm exp(iHt)exp[ iHo" (t)], —
&~+ ao

where

(2.16)

H„= g i e„)e„&e„i, (2.6)
Ho '(t) =Hot +AO(t), (2.17)
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' 1/2

3p(t) =sgn(t)e&'
2HI,'~

log(4H['~
i
t

i ) . (2.18)

Here m ~ denotes the reduced mass of the two protons
and Hf' is the kinetic energy of the relative motion be-

tween the two protons. The breakup S matrix

gc ~c(—) gc(+ } (2.19)

is related to the breakup T matrix, which enters in the
cross section, via

p(E'
~
Sp

~
E)~= 2t—ri5(E' E—) p(E'

~
Tp (E+i0)( E)~.

(2.20)

The differential cross section is obtained from the
T-matrix element in the same way as for short range
forces. The phase space factor is given in Ref. 36. Now
let us describe the finite dimensional approximation of the
Hamiltonians. We have used the followin~ expansion
functions. For each n we have a cutoff q,'"„~ in momen-
tum space and a partition of the interval [0,q,"„,']

(n)0=$O&gl ' ' ' « gn &gn+l=fcut ~ (2.21)

Later the limit n ~ ao will be taken under the additional
condition

Iq'+i —qi I 0~qcui~~ .(n) (n)

I 'EOi ~ ~ ~ i 1j

We use step functions

h;(q) =8(q;+, q)8(q —q; )—, i =0, . . . , n

(2.22)

(2.23)

(i.e., the characteristic function of the subinterval

[q;+i,q;]) to describe the
~ q ~

dependence, and spherical
harmonics to describe the tl dependence of our basis func-
tions, thus h;i~(q) =h;(q) F~~(tl) In order. to describe the
relative and subsystem momentum dependence in the
three-body system we use the basis h;t (p)h/i„(q). As we
have used in the actual calculations potentials which do
not couple spin and angular momentum, we have coupled
our expansion functions to good total angular momentum
and spin. The finite dimensional Hamiltonians have been
obtained from the original ones via orthogonal projections
on the above expansion functions.

We want to make a remark on the treatment of the or-
bital angular momentum in the basis h;I hj~,' this basis
refers to a fixed choice of subsystem and third particle,
e.g., 1, 2, and 3. If one wants to describe a state of orbital
angular momentum A,

' in subsystem 13, one has to sum
over infinitely many angular momentum states from the
basis h;~~hj~. A situation like this occurs when subsys-
tem 13 produces a final state peak. However, at such low

energy experiments as described here, the final state peaks
are not very pronounced. Also Faddeev calculations for
the neutral case at this energy have shown that only a few
partial waves are necessary in all subsystems and relative
systems. The situation is different if one goes to higher
energies like, e.g., 50 MeV where the final state peak is

very pronounced and many partial waves a1'c needed.
For such cases the use of our basis referring to a fixed
subsystem could become problematic.

III. RESULTS AND DISCUSSION

The strong NN potential used in the calculations is of
separable form, rank two (corresponding to the singlet and
triplet channel) with s-wave form factors of Gaussian-
type. The parameters were chosen to reproduce the low
energy data deuteron binding energy, singlet and triplet
scattering length, and singlet effective range. The poten-
tial and its numerical parameters are given in Ref. 31. We
used for the expansion functions q,„,=p,„,= 1 fm ' and
the following upper limits: Ten step functions for the

~ p ~
dependence as well as for the

~ q ( dependence, s, p,
and d partial waves for the total, relative, and subsystem
angular momenta, and the full spin dependence was ac-
counted for.

We have calculated at Ei,b 7A MeV——the breakup cross
section for a set of p-p detection angles. However, only
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FIG. 1. Kinematically complete d-p breakup cross section at
Eh,b

——7.4 MeV. E, is measured along the kinematical curve of
the two outgoing protons. E,=0 corresponds to the point where
the outgoing protons have the same energy (close to the origin).
The p-p detection angles are 13'—13'. The dashed and the full
curve display the results of the SAM calculation. In the dashed
curve s and p waves have been used for total, relative, and sub-

system angular momenta. The full curve includes also the d
wave. Both curves are normalized to the height of the experi-
mental peak. For comparison the dashed dotted line shows the
results of a d-n Faddeev calculation (Ref. 37) also normalized to
the height of the experimental peak of the d-p reaction.
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FIG. 4. Same as Fig. 1, but at 13.5'—13.5'. Same comment

as in Fig. 3 concerning the region around E,=O.
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FIG. 2. Same as Fig. 1, but at 12'—12'.

the relative shape has been calculated, the absolute nor-
malization was adjusted to the experimental peak height.
The results are displayed in Figs. 1—5. In Fig 1th. e
dashed curve shows the results of the SAM calculation in-

cluding only s and p waves for total, subsystem, and rela-
tive angular momenta. The results of the calculation in-

cluding s, p, and d waves are displayed in Figs. 1—5 by
the full curve. It is known from Faddeev calculations at
similar energies in the case of the neutral n-d breakup re-

action that the inclusion of d waves gives a smaller contri-
bution. The rather strong effect of d waves in the d-p
breakup could result from the Coulomb field interference
or from a numerical inaccuracy; this point has not been
resolved yet.

In Fig. 1 the inclusion of the d wave gives a relative
better shape at both ends of the kinematical curve. It
would be important to study the influence of higher par-
tial waves and also the number of step functions. The
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FIG. 3. Same as Fig. 1, but at 12.5 —12.5'. There is a notice-

able discrepancy near E, =O which could be ascribed to the

two-pion exchange three-body force (Ref. 7).

I

l. O
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FIG. 5. Same as Fig. 1, but at 14'—14.
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present restrictions are due to the limited available com-

puter storage.
In order to demonstrate the effect of the Coulomb force

at the low energy considered here, we have displayed in
Fig. 1 the result of a Faddeev calculation for the neutral
d-n breakup reaction. Also in this case the calculated
curve has been adjusted to the height of the experimental
d-p peak (the calculated d-n peak is about a factor 47
larger than the measured d-p peak). The relative shape of
the d-n curve differs also largely from the measured and
calculated d-p curve. In Ref. 32 it has been pointed out
that in all cases, with different p-p angles, the position of
the experimental peak lies very close to the point where
the relative energy of the outgoing protons has a max-
imum (indicated in Figs. 2 and 4 by "Coul"). Thus the
general shape of the cross sections having a pronounced
peak and a sharp fall off behavior could be explained in
terms of the repulsive p-p Coulomb force in the outgoing
channel which tends to suppress configurations with a
small relative momentum (or energy) of the protons and
enhances configurations with a large relative momentum.
It should be noted that in the final state the center of
mass energy of the three nucleons is only 0.241 MeV, and
at very low energies the Coulomb potential tends to dom-
inate over the strong short range potential. On the other
hand, the well pronounced peak with a sharp fall off
behavior is not found in the neutral d-n case. However, a

weak maximum is found there at nearly the same posi-
tion. Thus it is possible that in the d-p and at the d-n
spectra a peak reminiscent of the quasifree scattering peak
is present, although strictly speaking quasifree scattering
can only occur above the threshold Ee ~ 4

~

8

IV. CONCLUSION

Kinematically complete measurements of the d-p
breakup cross section at Ei,b ——7A MeV are compared
with calculations which fully take into account the
Coulomb potential. The calculations roughly reproduce
the overall shape. Some improvement is obtained by in-
clusion of d waves. The importance of the Coulomb force
is clearly demonstrated because a major difference is ob-
tained between the neutral d-n breakup cross section ob-
tained from a Faddeev calculation and the cross section of
the charged d-p reaction obtained from experiinent as well
as from the calculations. Some clear discrepancies remain
in the region corresponding to symmetric energy parti-
tions between the two protons in the final state.
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