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Direct calculation of the S matrix for scattering of charged particles
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A recently proposed method for the direct calculation of the S matrix is tested on proton-proton
scattering. The agreement with the S matrix calculated from a standard approach is satisfactory.
Optimal conditions of the method are thoroughly investigated. Special attention is paid to criteria
on the efficiency of the numerical approximation for a limited number of expansion functions. Two
criteria are proposed which are based on exact relations in scattering theory: the intertwining prop-
erty of the wave operators and the commutation property of the S matrix and the free Hamiltonian.
As a result of this study we are able to give recommendations for a successful application of the
method.

I. INTRODUCTION

Few-body scattering processes in nuclear and atomic
physics very often involve charged particles. The interac-
tion between charged particles at nonrelativistic energies
is described by Coulomb-type potentials involving the
long-range Coulomb potential and short-range potentials.
Multichannel scattering theory for short-range potentials
is well established and there is a variety of applicable
methods for the calculation of scattering or breakup am-
plitudes. ' This is not the case when the Coulomb poten-
tial and more than two particles are involved. Although
one can formally establish a rigorous multichannel
scattering theory for Coulomb-type potentials ' its ap-
plication to few-body problems becomes often very diffi-
cult or impossible. " 's Recently Kroger proposed' ' a
straightforward and theoretically transparent approach
for the calculation of scattering (or breakup) amplitudes
for few-body processes involving Coulomb-type poten-
tials. The main characteristics of this approach are its
rigorous mathematical background ' and its orientation to
numerical rather than analytical methods. Such an orien-
tation is motivated by the complexity of an analytical
antilysis on one side, and by everyday enhancement of
computing capabilities on the other side.

Let us briefly describe the inethod. The S matrix is
composed from Me)lier wave operators which contain all
the scattering information. The wave operators are ap-
proximated by exponentials of an approximated finite
rank Hamiltonian operator using a large but finite time.
That applies to the standard Mufller wave operator as well
as to the Dollard modified wave operator if Coulomb po-
tentials are involved. The finite rank Hamiltonian is ob-
tained from the original Hamiltonian by projecting onto
the space of expansion functions. That enables one to cal-
culate the exponential in the eigenrepresentation of the
finite rank Hamiltoman matrix. As expansion functions
we chose step functions like in Ref. 20. The advantage of
those functions is based on the fact that the asymptotic

channel Hamiltonian is diagonal in that basis and matrix
elementt of the two-body Coulomb potential and the ki-
netic energy can be calculated analytically.

First numerical tests of the proposed method for a
two-body system are encouraging. ' ' Also the calcula-
tion of a p+ d breakup amplitude at low energies has
been performed. ' ' While in the two-body case one can
obtain very good agreement with the exact S matrix, in
the three-body case the results are not as good in compar-
ison with experimental data. ' One of the reasons is prob-
ably a too small number of expansion functions in the
three-body case which cannot be enlarged substantially
without enlarging the available computer memory.

In the present study we investigate the proposed
method in more detail searching for an optimal choice of
approximation parameters of the method. Numerical
tests are performed in the two-body case using more real-
istic nucleon-nucleon potentials than in Ref. 20. Our
choice of a short-range potential is guided by three re-
quirements: (i) the potential should allow an exact calcu-
lation of the S matrix via a standard approach, (ii) it
should describe realistic scattering experiments, and (iii) it
should not be too complicated in order that many dif-
ferent numerical tests can be performed easily. According
to these requirements, we have chosen the Graz poten-
tiali2 (s wave) and the Yamaguchi potential (s wave; the
parameters were chosen to reproduce the experimental
values for pp scattering length and effective range).

The main objective of the present study is to find op-
timal conditions to minimize the error of the method in
realistic two-body cases with special attention to criteria
on the efficiency of the numerical approximation for a
given number of expansion functions. This investigation
is certainly required as the first step in order to perform
precise three-body calculations with this method. In fact
one can always consider a two-body calculation as a spe-
cial case of a three-body calculation and fix certain condi-
tions of the method on the two-body level where exact re-
sults are known. In Sec. II of this study we present the
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proposed direct method for the calculation of the S ma-
trix in some detail. Two criteria for efficiency of the nu-
merical approximation are established on the basis of the
intertwining property of wave operators and the commu-
tation property of the free Hamiltonian with the S-matrix
operator. Section III is devoted to numerical tests in or-
der to find optimal conditions to minimize the error. In
the concluding Sec. IV these conditions are summarized.
Some explicit formulae for the calculation of the S matrix
involving Coulomb-type potentials in the standard ap-
proach are quoted in the Appendix.

II. S MATRIX FOR T%0-BODY SCATTERING

In the following we consider the two-body quantum
mechanical scattering problem in the center of mass sys-

tern. Natural units ()I=c=1 are chosen for simplicity.
H=H + V is the total Hamiltonian of the system with
H denoting the kinetic energy operator of the free rela-
tive motion and V denoting the two-body Coulomb-type
potential:

V= V'+ V

V' denotes the short-range potential and V the Coulomb
potential given in coordinate space by V (r)=eiez/r,
where e& and e2 are the charges of the two particles.
Their reduced mass is denoted by p. A two-body scatter-
ing process is described by the S matrix which in the case
of Coulomb-type potentials can be written as fol-
loads, 11,23,24

({()~S
~
y&= 2n—i f d q f d q'y'(q')5(Ee —Ee )W(q', q;Ee)i)'i(q),

W(q' q;Ee)= lim [(Eq Eq +—ie) Ne i(q'
~
T(Eq+ie) ( q)(ie) v(ei]C(q)C(q')

e-++0

8182@
C(q) =(2q2/p)'"e ' /2'"/I (1 i'),—g=, Ee q /2p .——

g

(2.1)

(2.2)

(2.3)

()I((q)=(q
~
{t() and f(q)=(q

~ P) are ingoing and outgo-
ing wave packets, respectj, vely, in momentum space repre-
sentation. T(z) is the T-matrix operator satisfying the
Lippmann-Schwinger equation:

asymptotic Hamiltonian of Dollard, 3 respectively:

HH ——PHHPH,

1/2

(2.6)

T(z)=V+VG'(z)T(z), G'(z)=(z —H') ',
Imz&0 .

HNO (t)=PN H t+ sgn(t) p
2H

X ln(4H'
(

r
~

) P„.

8182

(2.7)
The standard approach to calculate (()I

~

S
~ f) is based,

generally speaking, on solving an integral equation of
Lippmann-Schwinger —type for the T matrix and per-
formin the on-shell limit in an appropriate
way. ' ' ' For a certain class of Coulomb-type po-
tentials with a separable sliort-range part, W(q, q'; )zcan
be calculated analytically and expressed in terms of spe-
cial functions. ' ' ' In this work we shall use an expli-
cit analytical formula for X when the short-range poten-
tial is a s-wave rational separable potential 3 (see the Ap-
pendix).

The new direct approach to calculate (P ~
S

~ g) is
based on the definition of time dependent scattering
theory and a strong approximation of wave operators. z'

The following relations hold:2 ' '

PH is the projector given by

N L I
(h, im)(h, im ~, (h,

~ h, ) =S,,
i =1l=Om =—I

(2.8)

( q ~
h;lm ) =h;(q) Yi~(q), (2.9)

—1/2
h ( )

&i if qi &q &qi+i~ (xi=[ 3 (qi+i qi )]
0 elsewhere,

where h;(q) is the step function normalized to unity, cor-
responding to the interval [q;,q;+ i) given by

((('~S[@)= 1 1 (y(S(T,N) ~@),

S(T,N) =Qt(T, N)Q( T,N), —

iHii T iH)+(T)—
(2.4)

(2.5) && &qX+1=qcut
{N)

HN and HHc are finite rarik approximations of H and the
denotes a finite partition D' ' of the interval'= [O,q,'„,'] such that for increasing N
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(X)
qcut ~ ao, nlax

~ qi+I qi ~

~0 .
ie(1, . . . , NI

(2.11) A. Calculation of &P ($(T,N) ( g&

The whole calculation of the S matrix according to
(2.4) is performed numerically. It has two parts conceptu-
ally: (a) the calculation of &Q ),S(T,N)i') for a given T
and N and (b) the numerical determination of the limits.

First we observe that H and H (t) are diagonal in the
vectors

~
h; 1m ) . Using successively Eqs.

(2.4)—(2.10) we obtain the following expression for the S
matrix:

&y (S(T,N) (i'}=y y &y ~hi, lm &e" Mk[ /;i (T)e' '
&hkI'm'~ y&,

keg k'f'm'
(2.12)

ek(t)=&hklm ~H (t)
~
hklm) =ekt+4n sgn(t)akeiezp —,(qk+i —qk) ln —1 +qk+i lnqk+i —qk lnqk

C OC i z 2 2 2

p

'tk(q»+ i
—qk )

0 2% 2 5

5p

(2.13)

(2.14)

-AH~ T
Mki~, kifg(T)=&hkrm ~e tthkl m ) (2.15)

The problem therefore rests on the calculation of Mki k i (T). As already suggested' ' ' the most promising way is
to diagonalize Hii. In this work we are performing the diagonalization using Jacobi's method.

8. ¹mexical determination of the limits

By differentiation of (2.16) with respect to t and setting
t =0, one obtains the well-known intertwining property:

H"Q+=Q+(H )", n =0, 1,2, . . . , (2.17)

which together with the isometry property of the wave
operators leads to the equality

&y~ Q+H"Q+
~
@}=&y~(H')" [@) . (2.18)

The right-hand side of this equation can be calculated ex-
actly and the left-hand side approximately using Q(T„N)
[as shown in Ref. 21 Q(+T,N) strongly converges to
Q+]. Thus the quantity

The diagonalization of HN for large N can, generally
speaking, be performed only numerically. This is the
main reason why the determination of the limits in Eq.
(2.4) has to be performed by a numerical procedure. Ac-
cording to the definition of the S matrix as a time limit
and a discussion in Refs. 20 and 21, it is clear that the
limes N~oo should be performed first. It depends on
the choice of interval I' ' and on the parameter T. Also,
in principle, the choice of the partition D' ' could influ-
ence the convergence. We shall investigate in detail all
these dependencies of the method in Sec. III.

Now let us discuss some criteria for the accuracy of the
method. There are some properties of the S matrix and
wave operators which are exactly valid and in principle
can be used to estimate the accuracy of the numerical ap-
proximation. Firstly, we quote the following property of
Dollard's wave operators:

&iI)
~

Qt(T, N)(Hii)"Q(T, N)
~
1() —1

&y ~(H')"
~
y)

(2.19)

gives some estimate of the accuracy of the numerical ap-
proximation.

Another criterion is based on the conservation of energy
in scattering experiments which can be expressed through
the commutation property of S and H,

SH =HS H =SHS (2.20)

Thus the quantity

&~I)
~

S (T,N)HiiS(T, N)
~
Q) —1 (2.21)

may also be used to estimate the quality of our approxi-
mation.

An important feature of the method considered here
lies in fact that the S matrix is calculated for wave pack-
ets of finite width. Scattering experiments are usually
performed with very narrow wave packets. On the other
hand, the calculation of the differential cross section is
usua11y performed for a sharp state of we11-defined wave
number; i.e., der jdQ is proportional to the absolute
square of the on-shell T matrix:

~
W(q, q';E )

~

i„q=q'.
The result of such a calculation should be the same as the
result of a calculation with a wave acket in the limit of
an infinitely narrow wave packet. ' This means that in
calculating &P ~

S
~
f) we have to choose narrow wave

packets and investigate the sensitivity of the result on the
variation of the width.
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III. NUMERICAL CALCULATION
FOR REALISTIC s-%EAVE POTENTIALS

In this section we shall numerically investigate stability
properties and error estimates which are important in ap-
plying the direct method for a calculation of the S matrix.
As mentioned in the Introduction we perform our investi-
gation using realistic short-range s-wave potentials. Thus

we choose the Graz potential which reproduces s-wave
phase shifts up to 500 MeV and the Yamaguchi potential
which fairly reproduces s-wave phase shifts up to 100
MeV. The form and the parameters of these potentials
are presented in the Appendix.

Concerning the form of the wave packets we adopted
the suggestion already given in Ref. 20:

2
—0

C'(q~ ~)-=&qI 4 &= k, k, -
0, elsewhere.

ki (q (k2,
(3.1)

The parameter a is fixed by the requirement of normalization to unity. This bell-shaped wave packet is symmetrical
having a peak at qsr ——(k i +kgb )/2 and a half-width tc =(kz —k i )/2. In most of the following numerical investigations
we shall use the wave packet 4(0.2 fm ', 0.02 fm ') as the standard wave packet (SWP) (A'=c =1 units are assumed).
It is narrow enough to cause a deviation of &i))

I
S

I
i)) & from the corresponding S-matrix element in the sharp momentum

limit which is smaller than O. I%%uo for all potentials considered (as illustrated in Table I).
In order to investigate the influence of the partition set D' ' on the convergence we have chosen several different

types:

Dz ' ——Iq; I
q;=(i 1) q—,'«'/N, i =1, . . . , N+1I —quadratic;

D' '(Ni, N2, e»ez, s3)= Iqi I qi+i qi =e—(i)(q; —q; i), i =2, . . . , N;

qi 0 qN +i kl qNi+Ni+1 k2 qN+i q t e(i) ei 2+i +Ni

a'(i)=ex, Ni+2&«Ni+Nz, ', e(i)=e3i Ni+N2+2'ci 'cNJ

geometrical progression by part

(3.2)

(3.3)

q=N; q &0 —general .
l

(3.4)

TABLE I. Exact value of S matrix for different wave packets and different potentials. For definitions ki, ki, and qir see Eq.
(3.1). The values for infinitely narrow wave packets are presented in the rows where only q~ is indicated.

0.00
0.03
0.045

q~ (fm-')
kq (fm ')

0.10
0.07
0.055

Coulomb
potential

0.940 381—0.332 377i
0.933919—0.355 856i
0.932 760—0.360 394i

&4 Is I 4 &

Yam aguchi
potential

0.044700+0.978 277i
0.119421+0.988 268i
0.124464+0.990616i

&ylsly&
Coulomb + Yamaguchi

potential

0.069 721 —0.023 069i
0.989741 —0.095 S54i
0.992496—0.119249i

0.932 683—0.360 698i 0.135553+0.990770i 0.992 671—0.120860i

0.10
0.13
0.145

0.20
0.17
0.155

0.991 344—0. 130730i
0.991276—0.131717i
0.991263 —0.131895i

—0.506 114+0.862 224i
—0.506 862+0.861 990i
—0.506 995+0.861 946i

0.146844+0.982 234i
0.15S871+0.986630i
0.157462+0.987453i

0.15 0.991 262 —0.131906i —0.506 971+0.861 962i 0.157603+0.987499i

0.20
0.23
0.245

0.30
0.27
0.255

0.996 819—0.079 S06i
0.996817—0.079 721i
0.996 814—0.079 760i

—0.501 085+0.865 295i
—O.S02 986+0.864 278i
—0.503 327+0.864 095i

—0.243 619+0.969703i
—0.244774+0.969 553i
—0.244 982+0.969 526i

0.25 0.996 814—0.079 762i —0.503 328+0.864095i —0.244971+0.969 529i
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({t)
~
S(TyN)

~ P) (3.5)

The last type is the most general one allowing an arbitrary
density of the nodes according to some distribution func-
tion f(q). It is, for instance, possible to choose for f(q)
the form factor of a separable potential or its derivative
which could lead to a better approximation.

Firstly, we illustrate the convergence of the direct
method in the case of the Coulomb+ Graz (CG) s-wave
potential. Figure 1 shows globally the convergence to the
reference value (P ~

S
~

(() ) (calculated with a standard
method) depending on the time parameter T and the num-
ber of nodes ¹ The deviation from the reference value is
measured by

3

2-

COULOMB + GRAZ

40 60 80 100 )20 }40 }60 }80 200

2200

2400
3000
40GG
50GG

For a given T, b, is typically smaller for larger N and by
increasing T the limiting values of 6, N ~70 are also
smaller. This is not generally the case, however, as can be
better seen from Fig. 2. h, oscillates slowly as a function
of N about its limiting value which is obtained for
N & 150. By increasing T', the limit in N approaches to
5=0.5%, which can be considered as the result of a finite

q,'„,'. By increasing q,'„,' and performing the limit in N
and T, one expects an improved result.

The typical behavior of 5 as a function of T is shown
in Fig. 3. It decreases rapidly until a certain value To
(which negligibly varies with N} and then becomes rela-
tively stable up to a certain TI after which it increases
rapidly. In the case of a short-range potential the region
of stability is very emphasized while after including the

3000-

FIG. 2. Deviation h(T, N) as a function of the number of
nodal points N for different times T. The convergence for large
N and T is clearly seen.

Coulomb potential oscillations may occur within this re-

gion (Fig. 4). The region of stability (i.e., TI ) is increas-
ing with N (Fig. 5). We found that the time Tc is about
inversely proportional to the energy width of the wave
packet:

u)E (qsr+ml——2) l(2p) (qadi
—w I—2) I(2p)

=qsrutlIs .

The described typical behavior of b, may be a useful
guideline for the limiting procedure when the exact solu-
tion is not known. It is important to note that the main
computational effort of the nmthod considered here lies in
the diagonalization of H~. Once this is done the calcula-
tion of ((()

~
$(T,N)

~
(()) for different values of T is easy

to perform. Thus from the practical point of view we can
easily calculate the T dependence of the S matrix for a
given N and than proceed with the calculation for larger
N bearing in mind that limit N ~ 00 should be performed
firstly. In fact we can search for the limit N~oo of
(tI)

~
S(T,N)

~
{()) being relatively stable with respect to T.

The stability region is obtained simultaneously for the real
and the imaginary part of ((()

~
S(T,N )

~ P) (Fig. 6}.
The number N of nodal points is practically limited by

the available computer storage. It is therefore worthwhile

2&00—

2200- + —— + —— +
I I

I I

I

—-+ ——— + —— +
I

tI(r.}s (I.) s (i.)
12--1 2

10--& 0

8--08

(60)

COULOMB + GRAZ

swp

0

4 --04

FIG. 1. The convergence of (P ( $(T,N)
~

{t)) for the CG po-
tentiaL The radius of the circles r=d, (T,N) [see Eq. (3.5)]
represents the deviation from the reference value
(P ~

S
~

{ti) =—0.141 668+0.989 694i; the standard wave packet
(S%'P) N(0. 2 fm ', 0.02 fm ') and q,'„t' =40 fm ' was used.

8000 )0000
T (fm}

FIG. 3. Deviation h, ( T,60), 5~( T,60), h2( T,60), and
d s( T,60) as a function of T [see Eqs. (2.19), (2.21), and (3.5)].



rmOGERMOO gATgqIC, ZELHLO 0 BAJZER ND HELMUT 33

1

12— 1

1'
1'10-
1

I

q' ) - 4Qfrn'
cut

-010-

-0.12-

/
-014- /

/
-/

-0.16 &

-0.18-

COULOMB GRAZ

q ~40 tmt, SIP

- 0.96

- 0.94

- 0.92

020
2000 4000 6000

— 0.90

2000
I I

r(~m)

a ina (dashed line) part ofFIG. 6. Real (full line) and imaginary

represent the real (full line) and the imaginary pa
of the exact S matrix (P ~

S
~ P

as a function of T for different
potentials: 6 represents Graz, C represents Coulom,
represents Coulomb + Graz.

hether for a given N the choice o the in-to investigate whet er o
terval [O~qcut ] and p

fixed} the result achieved
' a'

Fi . 7). For larger q,„, one canno o
h' h

'
in accordance with theh' ofth oti 1 1 fo

'
1 im rovement w ic is in

eq
'

ent (2.11). The choice o e
n

' f the potential in momen-nds on the behavior o e
of the Graz potential the op-s ace. Thus in the case o e

e method on the choice of the(3.4). The sensitivity of the met on
rated in Fig. 8, where we us t reep
' (N, N2, 1, 1,eq). or e s

1 distribution D2, t eg quad at c n
. The main reason or suobtained for 5 is 17%%uo. -' 0.22 fm-') where

' 0.02f ') o i hm,
t the interval (0.18 fm, 0. m

the wave packet 4(0.2 fm, 0. m

inta. We found that itcovers ony wnl two successive nodal points.
1 nodal oints in the interval ofis important to have several n poin

m o o ~ 1fi so e 0 pthe artition set we
usia the most gener ype

ofh Y(3.4). Thus, for instance, in the case o e
chi otential we use the functionsp

2&(Q Q~ )
(a) f (qi)= tt(Pi'+q') '+be

)2d 2 2 i b
—c(q —q~)(b) f2(q)=alii (P'+q ) + e

dq

nd term of Gaussian shape is included to gen-
mt hi h d

The case (b} is chosen in or er o i
h t f h of thints according to t e ra e o

form factor as a funct'unction of q. n
aad these partitions o no s

( .3)e corn ared with those given y . e
'

1 However such a relation
of Co 1o b-t ot

to the otentia . owev
cannot be established in the case o ou om-
tials.

e ro osed criteria (2.19) andLet us now discuss the propos
' ' . d

'
vesti ations led us to e c(2.21). Our numerical investiga

'

6 andno sim le correlation between anelusion that there is no simp
1 for different pairs

6 (T N ) does not(T2,Nz), the relat' ion 5 (Ti,Ni) &
'1 '

ly b(T,N )&ib(T2,
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N. By increasing N the region of stability is increas

as a function of T for differentFIG. 7. Deviation 5(T,60) as a unc ion
(60)
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COULOMB + GRAZ

S)/I/P

q(60) /0 f
t

~a

/

/
/

/

first region where the S matrix is most stable when T is
increasing, that is T' which is the smallest value of T for
which

~
(BIBT)($[ S(T,N)(())

~

is minimal. The conver-
gence of (P

~

S(T',N)
~
P) with respect to N is in most

cases better than for an arbitrarily chosen fixed T (see
Table II). Furthermore, (P ~S(T',N) ~P) seems to be
correlated with the first minimum of b, for a given N (last
column in Table II).

&000 8000 )0 000
T (~m)

FIG. 8. Deviation 5(T,60) as a function of T for different
partitions: (a) D' ' (20,8;1„1,1.218); (b) D' ' (18,6;1,1,1.205);
(e) D(~' (15,6;1,1, 1.178).

plies to b,„. However, the behavior of b„and b,„as a
function of T for fixed N is similar to the behavior of 6
(Fig. 3). In certain cases a minimum of b i corresponds to
the minimum of b, but that cannot be considered as a rule.
The stability region for h2 and b,, is more emphasized
than for 5i. We found that 5& for a given N is approxi-
mately a periodical function of T with a period
2mpn[q~(k2 —ki )] ' (n is the number of nodal points in
the region of the wave packet). This property holds in the
case of an equidistant partition in the region of the wave
packet [e.g. , D' '(N „Ni, 1, l,ei)].

What is the conclusion on the usefulness of the pro-
posed criteria for the quality of the approximation? From
the above discussion it follows that the most important
feature of 5, and 62 is the existence of a stability region
which corresponds to the stability region of b, when con-
sidered as a function of T for fixed N. The first local
minimum of b, i falls within the same stability region.
Thus using criteria b, i, b2, and b„we can determine the
time interval in which the S matrix is stable with respect
to T and close to its exact value. The question now arises
what is the best value of T, while keeping N fixed, which
one would choose within the region of stability. A well-
defined choice would be Tm;„which is the time for which
b,

&
achieves its first minimum. However, this is not the

best choice as can be seen from Table II. In fact
(P ~

S(T;„,N) ~P) does not converge properly with N.
A much better choice is the value of T which falls in the

IU. CONCLUSION

We have shown that the method of the direct calcula-
tion of the S matrix can be successfully applied to
proton-proton s-wave scattering using a realistic interac-
tion. We investigated in detail conditions of stability and
error estimates of the method and proposed criteria on the
efficiency of the numerical approximation. As a result of
these investigations we can give the following recipe for
an application of the method:

(i) Use the partition D' ' (Ni, N2, 1, l, ez) which is flexi-
ble and simple enough to perform different tests. It is im-
portant to distribute enough nodel points in the region of
the wave packet.

(ii) For a given N and q,'„,' calculate the S matrix, b,„
b2, and hs as a function of the time T, and find the re-
gion of stability which should appear in the real and
imaginary part of the S matrix in h2 and b,s, while hi ex-
hibits a well-defmed minimum in this region.

(iii) By increasing q,'«' gradually find its minimal value
such that the S matrix does not change substantially for

(N)greater Scut
(iv) For a given N and q,'„,' consider the S matrix as a

function of T and choose as the best approximation the
value for which the absolute value of the S matrix is most
stable.

(v) If possible, increase the number N of nodal points
1Mving q(Nt) constmt and peeo~ agMn the steps
(ii)—(iv). This leads to a better limiting value of the S ma-
trix.

The experience gained from the two-body calculations
reported here should be of considerable importance in an
application of the method to the three-body problem.

h(T', X)

TABLE II. Deviation h(T, N) from the exact value of the S matrix for increasing N and different T: T is the time for which

hi(T, N) achieves for given N the first minimum; T is the smallest value of T for which
~
BIBT(P

~
$(T,N)

~
4)

~

is minimal; T;„
is the time for which 5(T,N ) achieves for given N the first minimum in the region of stable h(T, N ).

N b,(T=3000,N) 5(T=500,N) L(T';„,N ) T;„
30
40
50
60
70
80
90
100
120
150
200

10.124
4.870
2.236
1.168
0.416
0.161
0.354
0.465
0.706
0.889
1.034

32.558
6.516
1.777
0.410
0.241
0.426
0.558
0.549
0.565
0.527
0.481

2800
3800
4600
5600
6500
7500
8500
9500

11000
14000

~ 15000

10.582
4.861
1.748
0.250
0.827
1.457
1.963
2.259
2.631
3.020

& 2.581

3000
3200
3400
3400
3400
3400
3600
3800
4000
4400
5200

10.124
4.769
2.045
1.047
0.345
0.045
0.235
0.309
0 AAA

0.496
0.479

4000
3400
4800
5800
4600
3800
3800
3800
4200
%NO
5200

7.554
4.733
1.744
0.238
0.037
0.034
0.226
0.309
0.442
0.496
0.479
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APPENDIX

Here we present explicit analytical formulae for
W(q, q', Es }, given by Eq. (2.2}, for the case when the se-
parable potential belongs to the class of rational separable
s-eave potentials:

W(q', q;Ez )=Tc(q', q;Eq )+ rc, (q', q;E ), (A2)

where the first term corresponds to pure Coulomb scatter-
ing;

T'c(q'q;E, )=&q'I ~'lq&(qj'j ) ""lq'—ql
' ""

Pj are real polynomials of a degree smaller than

g ', jjjz. The Parameters [Pji . Pj„]=—[Pj j,
j= 1, . . . ,N are comPlex numbers with Re Pj~ & 0 for all j
and p. According to Ref. 23, W(q, q';E& ) is given by

& q'
I

I"
I q& = g &q'

I g &~i, &g, I q& Xe~
I
I (1+irj) I', (A3)

&qlg;&=&gj lq&=P, (q') g (q'+Pj, )
""

p=1
and the second one includes nuclear and Coulomb effects.

Tgg(q', q;Eq) = y hg(Eq, q'HgJ(Eq)hJ(Eq, q),

~jp(»[pj j)=

J —l
hj(Es, q') =(q/q')(q+q') i's

I
I'(1+i7}) I

2 g hjz Rjz( iq, jPj—J )

P-
JP g (p2 p2 )

PJ~
Vj

( —2)"" (P;~—1)!(P+Pj~)' ~= i

+Qp

' —1—iy

(A4)

(A6)

(A7)

The formulae for Rjz and the operator hjz as stated in Ref. 23, Eq. (42},are incorrect. Here we present the correct ex-
pressions. The energy dependent term r;j can be explicitly expressed as follows:2~

r'j (Eq ) [ [A M(Eq )]
(A)pj Apjp

V VJ

[M(Eq)] j8/p'i g g [b ~hj+ jp(Eq)F(i' B~~p)]jj
0=1p=1

~'p(Eq)=B; ( lq, {P;))R,~( —iq, (P,'j)(1 B—'~~)—

(p; +iq)(p,'~+iq)

(p; iq )(p'jp iq )——

F(x,y) =(1+x) '2F&(l,x;2+x;y),

(A10)

(A 1 1)

(A12)

Equations (A 1)—(A12) determine W(q, q';Es ) explicitly.
The s-wave Graz potential belongs to the class of rational separable potentials as given by (Al). It can be obtained

by the foHowing specifications:

N =2, I i) ——4~X( —0.0072069) fm, Rip ——4n X33.355 16 fm

~12 ~21

Pi(q')= g aikqik, P2 ——g a2kqik,
k=0 k=1

aio ——2.756054 fm, a &r
——5.104415 fm, a &2

——3.698 168,

a2~ ——21.02945 fm, a22 ——1055.773 fm, a23 ——45.04107 fm

a 2&
——1.327 066,
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v, =2, pi, ——1, piz ——2, Pii ——0.813 167 8 fm ', Pi2 ——1.288 463 fm

v2 ——2, lszi ——2, )ts2z
——3, P2i ——7.496476 fm, P2z

——1.661 389 fm

The numerical calculation of the S matrix for the Graz + Coulomb potential is now straightforward although it requires
a lot of work. It is therefore worth noting that our calculation of the So phase shift is in agreement with that obtained
in Ref. 22, where different analytical formulae were used.

The Yamaguchi potential also belongs to the class of rational separable s-wave potentials and is obtained with the fol-
lowing specifications:

N=l, Pi(q )=1, vi ——1, pii ——1,
i(, ii ———0.0278811 fm, pii ——1.12747 fm
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