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Symmetric and antisymmetric states: A general feature of two-component systems
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It is shown that in both the nuclear shell model, considering explicitly proton and neutron degrees

of freedom (seniority scheme), and in particle-core coupling model calculations, 2+ levels with sym-

metric and antisymmetric character in the constituent unperturbed basis result. Besides the excita-

tion energy for such 2+ levels, the E2 decay properties also are studied. Constructive and destruc-

tive interference between the two distinct E2 matrix elements results for the 2~ (symmetric) and 22

(antisymmetric) levels, respectively. Applications are shown for the Cd (Z =48) and the N =84 nu-

clei.

I. INTRODUCTION

Recently it was shown, within the framework of the
proton-neutron interacting boson model (IBM-2}, that be-
sides the symmetric proton-neutron states (identical to
IBM-1 states), a large class of states with mixed-
symmetry character does arise 'T. his is a consequence
of the fact that although the total boson wave function
has to be symmetric under the interchange of all vari-
ables, a mixed-symmetry character can arise for both the
spatial (sd part) and the proton-neutron charge part of it.
Mathematically, this can be formulated via the reduction
of the U(12) group containing both proton and neutron
bosons, as U{12)DUe+„(6) XSU'+(2) D. . . . ' In both
the theoretical' 9 and experimental'c '2 studies of such
mixed-symmetry states, most interest has gone into the
studyof 1+ levels. Recently, Zamickpointedout' that in
the 1 f7' nuclei some of the even-even Ti isotopes show
1+ states with a character, similar to the mixed-symmetry
states in IBM-2, and some of the authors'"'s also showed
that near A 100 (9 Pd} such a 1+ level could be well
described within the nuclear shell model.

It is the purpose of this paper to point out the general
character of the existence of mixed-symmetry states
wherever two distinct basic blocks are used to construct
the nuclear wave functions (Sec. II). This is most easily
formulated within the nuclear shell-model properly, using
a single-j shell or degenerate j shell (see Sec. III), but also
within the particle-core coupling model such states do
arise {Sec.IV). In both Secs. IH and IV we concentrate on
the J =2+ states, the wave functions describing these
states, and their E2 properties.

II. GENERAL TYCHO-COMPONENT SYSTEMS

Before concentrating on particular nuclear model appli-
cations, we shortly describe a general nuclear t~o-
component system. If each subsystem is characterized by
only a single 0+ and 2+ state, i.e., described by states

I
o+(1}& 12+(1)& the combined system only contains

the

~

0+(1)O+(2);0+&,

~

2+(1)0+(2)'2+ &
~

0+(1)2+(2);2+&,

(2.2)

The electric quadrupole electromagnetic decay properties
(E2 decay) are now described by an operator which is the
sum of two components, each acting in one of the subsys-
tems, i.e.,

T(E2)=et T(E2;1)+ezT(E2;2), (2.3)

where e t,ez are the effective charges in the different sub-
systems and T(E2;i) denotes the operator acting in the
ith subsystem. The reduced transition matrix element for
decay towards the 0+ ground state

~

0~+&, being almost
purely the

~

0+{1)0+(2);0+
& basis state, then becomes

~

2+(1)2+(2);I&

basis states. Here, one notices that for angular momen-
tum 2+, three basis states do result. Depending on the
unperturbed energy of the 0+ and 2+ excitations in the
separate systems and on the residual interaction, this par-
ticular two-component system can be solved numerically
for its energies and wave functions. If now the
~0+(1)2+(2);2+& and ~2+(1)0+(2);2+& states are de-

generate in energy and the
~

2+(1)2+(2);2+& state has a
much larger unperturbed energy, which is often not too
far from realistic situations (see Secs. III and IV},even in-
dependent of the residual interaction Vt2 between the two
subsystems, a symmetric and antisymmetric eigenstate
will result, i.e., one obtains

~

2t+ &
= [ (

0+(l)2+(2);2+ &+
~

2+(1)0+(2);2+&],
1

2

(2.1}

i 2,'& = [ i
0+(1}2+(2);2+&

—
i
2+{1)0+{2);2+&] .1
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r&0+(»IIT«»»II2+(»&e

—( —1)'&0+(2)l IT(E2;2)II2+(2) &et] . (2&)

lations to cases where one has n protons and n„neu-
trons, but still considering seniority u =2 configurations
for describing the lowest 2+ states, the basic configura-
tions, already taking into account the pairing properties of
the identical nucleon interaction in a single-j shell, are

If the separate systems have reduced matrix elements of a
similar structure (both being particlelike or holelike in fer-
mion space) and thus the same sign, coherence or incoher-
ence results for i =1 and i =2, respectively. If ei-e2,
the coherence and incoherence is optimal.

We now discuss in detail applications of two-
component systems that have often been treated in
describing low-energy nuclear structure:

(i) lowest seniority (u =2} shell-model calculations
where both active protons and neutrons are present in a
single j-she11 approximation,

(ii) particle-core coupling where a two-particle (-hole)
fermion cluster is coupled to the collective excitations of a
surface quadrupole harmonic vibrator.

III. THE NUCLEAR SHELL MODEL:
LOWEST SENIORITY (u =2) CALCULATIONS

A. Excitation energy in a single- j shell

Recently, we have pointed out how in a single-j shell
starting from two valence proton particles (or holes} and
two valence neutron particles (or holes) collectivity arises
in an exact solvable model. ' If we now extend the calcu-

I

I V ) =2»+&'
I V ) =o'0+& (3.1)

I V.)."=~'2+ &'
I V.)."=o'o+ &, (3.2)

I

2+
&

=—
I I.V ).=2'2+V. }."=o'o+]2+ &

I 2.' &
—=

I l V.).=o,0'V, )."=z,2'12' &,

(3.3)

as unperturbed 2+ configurations. Taking into account
that these configurations describe seniority u =22+ states
within a series of isotopes (i.e., Sn nuclei) or isotones
(i.e., X=50, 82 nuclei), the unperturbed energy is almost
constant. If we take the extra approximation to use
for configurations (3.3) the same unperturbed energy, i.e.,
ez =ez+-ez+ the 2 X2 model space is easily

diagonalized when using as a residual proton-neutron in-
teraction a quadrupole force —«Q Q„(with
Qz=[V'mrs/Arz] Y2(rz)). The coupling matrix element
b'omes

respectively. It will now be studied how the 2i+ gets
lowered (becomes collective} in the vibrational and transj-
tional nuclei by taking the appropriate combinations of
(3.1) and (3.2) and diagonalizing within the 2X2 model
space for the 2+ and 2+ levels, i.e., one obtains

V =&2+
I
—aQ Q„I2+)

= —
5

&(j ).=t»+IIQ IIV ).=o'0'&&V. )."=2 2+IIQ.IIV.)."=o'0+&

' 1/2 ' 1/2

&j IIQ llj &U-IIQ. llj. & (3.4)

where we call the qu'mtity between curly brackets
F(Q 0„)and N (—=n /2) and N„(=—n„/2) describe the
number of nucleon pairs. The matrix to be diagonalized
then becomes

0'e2 V

22

~ y 0

with eigenvalues

(3.5)
21

E(2; ) =e2 —e; —N N„ 1— 0)

( I2+)+e; I2+)) . (3.7)

(3.6)

and corresponding eigenvectors, the linear combinations
(see Fig. 1),

FIG. 1. The unperturbed, seniority U =2 proton and neutron
shell-model configurations [see Eqs. (3.1) and (3.2)] and the two
J =2+ levels obtained after diagonalizing the quadrupole
proton-neutron interaction within the two-level model space of
Eqs. (3.3).
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age of E(2i+) in the N =82 nuclei with 52&Z &62}]
and e + [=1.210 MeV; the average of E(2i+) in the Sn

nuclei with 60&%&80]. We took, moreover, degenerate
single-particle states thereby using 0 =0„=16. The
average value of the fitted parameter («/5)E=0. 365 MeV
(see Fig. 4} can easily be converted to a value of «, using
the j~ao estimate in calculating the factor E(Q~Q„)
which gives a value of E=12 for the harmonic oscillator
%=4 shell. One then obtains as the strength of the
proton-neutron shell-model quadrupole interaction the
value of «=0.15 MeV, which is very near the value used
in calculating nuclear shell-model spectra in odd-odd Sb
and I nuclei.

0.8

~ 0.6
UJ

1 i 1

Experiment

S. E2 decay properties

Using the wave functions from the two-level sheii-
model calculation, as discussed in Sec. III A, one easily
calculates the E2 matrix elements, using the electric
quadrupole operator T(E2), i.e.,

0.0
60 64

l

68
I

76 80

T(E2)=e~ Yi(r )+e„r„Y2(r„).

The result becomes

(3.8}

N

FIG. 5. See caption to Fig. 4, but now different ~ values have

been used for the different series of isotopes, i.e., we have

used the values x':—{~/5)F Te (x'=0.386); Xe (~'=0.388); Ba
(a'=0.362); Ce (z'=0.340); Nd (x'=0.328); Sm (v'=0. 312) (v'

in MeV).

(Oi+IIT(E2)II2+) =
2

E~(Q~—N~)
((j~)"0+

I I
T(E2)

I I(J )',2+ )
e-1

+E']
N„(Q„N„)—

((j„)',0+IIT(E2)ll(j )';2+)
v —1

(3.9)

with

(Zj&—1)(2'+3) z((jp);0+IIT(E2)ll(jp);2+)=Apep v'5——/n — . .—(r)pep . (3.10)

1—~AJ ~

N(Q —N)
0 —1

+6'g
N„(Q„—N„)

0„—1
(3.11)

which, for N =N„= 1, reduces further to

(Op+I IT(E2)l I2~+ )= jAJ (e~+@;e„) . (3.12)

Here, the coherence in the E2 matrix element for the
lowest 2&+ level becomes clear and results in a charge
e +e„whereas for the antisymmetric 2+ level, the

If we assume identical j =j„=j (as was done in Sec.
IIIA for the study of Te, Xe, and Ba nuclei with
60 &% & 80), Eq. (3.9}reduces to

(Oi+
f f

T(E2)
I
I2+ )

charge e —e„results. For the charges, normally used,
this results into a 8 (E2) ratio favoring the 2&+ decay over
the 22+ decay by almost =10. In the more gener-
al case AJ &A~ we have plotted the experimen-

tal 8 (E2;Oi+ ~2i+ )' values versus [N„(Q,—X„)/
(Q„—1)]'~ to test Eq. (3.9) [or Eq. (3.11) when AJ =AJ ],
i.e., if a constant slope and identical intercept with the or-
dinate result, which should be the case for constant fer-
mion charge e,e„. In Figs. 6 and 7, we give the experi-
mental results for the Z =50 region (Ru, Pd, and Cd us-

ing Q =11,and Te, Xe, and Ba using 0 =16, respective-
ly). ' From both figures one observes that a straight line
could well be fitted to the Te, Xe, Ba and the Ru, Pd, Cd
nuclei when the number of valence nucleons is not too
large (then the assumption of vibrational energy spectra is
a good approximation). One observes that a larger slope
shows up for a larger number of valence neutrons and also
that the intercept with the ordinate increases with increas-
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I
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N~ (A~- N„)

0„-1

FIG. 6. Plot of the experimental values of 8 (E2;Oi ~2&+)' '
(in units e b) as a function of [iIt'„(Q„—N„)/(Q„—I)]'~ for the
Ru, Pd, and Cd nuclei {nuclei ~ith a fixed value of
[N (Q —N )/(Q —I)]'+} in order to determine the proton
fermion charge e and the neutron effective charge e„, using
Eqs. (3.9) and/or (3.11). We have used the degeneracies Q = 11,
0„=16.

ing number of valence protons. From these observations,
one can conclude that a larger effective proton and neu-
tron fermion charge e,e„ is needed to accommodate the
low-lying 2I level within the simple description of a two-
level shell-model calculation. From the shell-model
values of A& and A& for the different mass regions, one

obtains for the j =—", (0 =16) and j„=—", (Q„=16}
orbitals the values (m) =0.10 eP and (v) =0.10 e"„b,
respectively, for the coefficients multiplying the

1.2
I

1.4 1.6
I

2.0

Nvt~v Nv)

0„-1

FIG. 7. See caption to Fig. 6, but for the Te, Xe, and Ba nu-
clei using 0 =16, 0„=16as degeneracies.

N-dependent factors in Eqs. (3.9) and (3.11). From a fit
to experimental E(E2;0~+~2~+) values in N=82 nuclei
('ssXe, . . . , '~Sm) and to the Z =SO nuclei
(" Sn, . . . , ' Sn) one determines (n ) =0.202 e b,
(v) =0.161 e b. With these values, the calculated
8 (E2;Oi+ ~21+} values in Te, Xe, and Ba nuclei, as shown
in Fi'g. 7, are given in Table I. Here, one observes on the
average too small theoretical values, especially for nuclei
with a large number of valence protons and neutrons.
This again shows the limitations of the simple shell-model
approach of Sec. IIIA for a detailed reproduction of the
dsts.

TABLE I. Table of experimental 8(E2;0|+~2|+)'~ values (Ref. 19) according to Eq. (3.9). The
quant&&y Xp=[&q(Qq —&z)/(Qz —1)]' (p=m', v) is calculated for the 50—82 region, I.e., Q =Q„
=

~ (82—50)= 16. The theoretical value is denoted by the relation

8(E2;Oi+~21+)'h =X (n)+X„(v)((s}=0.202 eb, (v) =0.161 eh) .

Nucleus

Te 122
124
126
128
130

2
1.915
1.789
1.612
1.366

8 (E2'Oi+ ~2i+)mp

0.816(7)
0.755(7)
0.691(8)
0.614{2)
0.539(10)

0.524
0.510
0.490
0.462
0.422

Xe 120
122
124
126
128
130
132
134
136

1.366 2.066
2.049
2
1.915
1.789
1.612
1.366
1

0

0.959{57)
0.894(50)
0.949{37)
0.889(34)
0.831(30)
1.000(40)
0.663(23)
0.583(51)
0.424(94)

0.609
0.606
0.598
0.584
0.564
0.535
0.496
0.437
0.276

Ba 126
128
130
132
134
136
138

1.612 2
1.915
1.789
1.612
1.366
1

0

1.354(73)
1.222(132)

0.860(96)
0.837(11)
0.694(11)
0.466(4)

0.648
0.634
0.614
0.585
0.546
OA87
0.326
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Within the IBM-2, in the vibrational limit, general ex-

pressions for the E2 matrix elements can be derived
which are valid for a nuclear Hamiltonian which is invari-
ant under rotations in F-spin space ' ' (F-spi»ym-
metric Hamiltonian). For the E2 transitions from the
lowest symmetric 2i+ state and from the lowest mixed-
symmetry 2+ level (which we call 22+, which conforms
with the restricted shell-model space} the following results
mere obtained:

(e ~+e„N„)~5
(Oi+

f /
T(E2)

/
/2i+ )=

(3.13)

Identifying Eqs. (3.13) with the corresponding shell-model
results of . (3.11), proton and neutron boson effective
charges e~,e„can be obtained as a function of proton and
neutron fermion charges e,e„and the number of proton
and neutron valence pairs X,N„, respectively. For a
single-j shell 2 this results into

0.4-

LLL

IX

2-'0.2-
O '

oft
C)
Cl
LLI

LLI
LL

4.~ 0.1-

00 l

7
Nv

N(Q„—N„)
v 10 ~ N„(Q„—1)

(3.14}

The latter expressions are studied for the Z=50 and
the %=82 mass regions (Figs. 8 and 9). In the Z=50 re-
gion, we carry out the calculations both for the nuclei
with Z~50, for which both cases Q =5 (lgs/z orbit
only) and Q =11(the lfs/2 2@3/2 2@i/2 and lgs/2 «bi-
tals} are considered, and for nuclei with Z & 50, in which
case we take Q =16 (the full 50—82 shell as a single de-
generate j= —", shell). This is performed for both
e„=0.5e and e = 1.0e (or 1.5e). From Fig. 8, an impor-
tant difference in the values of e,e„results, especially
when the proton and neutron number of pairs are largely
different. Moreover, values of the effective boson charge,
as calculated here, are of the right order of magnitude as
the ones used in realistic IBM-2 calculations for this mass
region, ~s especially for the choice e~=1.5e, e"„=0.5e.
Similar conclusions are obtained for the %=82 region
(Fig. 9) where now one observes that e~ is a decreasing
function of X and e„an increasing function. Even tak-
ing into account the approximations used in obtaining ex-
pressions (3.14), a mass dependence (and thus a nuclear
structure dependence) of boson charges is clearly estab-
lished.

As a conclusion of the shell-model calculations of Sec.
III, ii is clear from constructing proton-neutron coupled
wave functions, through the proton-neutron quadrupole
interaction, that symmetric and antisymmetric 2+ states
arise in a very natural way. The dependence of the excita-
tion energy E(2i+) in the vibrational and transitional re-
gion can be estimated to be a smooth function of the
product N~„. Moreover, calculating E2 reduced transi-
tion probabilities a quenching for the antisymmetric
22+ ~symmetric O~+ transition compared to the symmetric

I

(b)

X

O
CQ

LLI

~ 0.1—
LLL

LL
L.
UJ

0.0 l

7

v

FIG. 8. (a) The boson proton (e ) and neutron (e„)effective
charges, obtained from the two level shell-model E2 matrix ele-
ments, using Eq. (3.14), in the Z =50 mass region. The figure
gives results for both the Z «50 nuclei (using the 1g9~2, Q =5
or full 1g9/i 2@i/i 2+3/i 1f,/z,

. 0 = 1 1 shells) and for the
Z ~50 nuclei (using the full space 1gvn 2dsn 2d3n, »In
1h I 1~2, Q~= 16). The neutrons are put in the 50 &N & 82 region
(Q„=16). Results are given as a function of N and N„using
the values e =1.5e, e„=0.5e. (1) See caption to (a), but using
the fermion charges e =1.0e, e„=0.5e.
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LLj0.2-
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I
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v 2

2~+~symmetric 0~+ transition results, making it clearly
difficult to observe such antisymmetric 2+ levels in vibra-
tional nuclei. Moreover, by equating the shell-model and
IBM-2 results, a N (N„) dependence of the bamn effec-
tive charges on the fermion charges occurs.

C. Comparison arith a more reahstic calculation

In the analysis mrried out before, a nu~ber of approxi-
mations have been imposed:

0.0
2 3 4 5 6 7 8

N~

FIG. 9. (a}The same caption as for Fig. 8(a},but now for the
N =84 mass region. For the proton degeneracy we use the fuB
50(Z & 82 she11 (0 = 16) and for the neutrons, we consider the
2f7~, 3p3gg, 1h9g2, and li)3~ orbitals (Q„=18}. Results are
given as a function of N and N„using the values e =1.5e,
e„=0.5e. {b) See caption to (a), but using the fermion charges
e"=1.0e, e„=0.5e.

{i}the assumption of degeneracy in energy for the pro-
ton and neutron 2& excited states;

(ii) the use of a separable proton-neutron quadrupole
force;

(iii) the use of a single-j shell for both protons and neu-

trons;
(iv) the neglect of higher seniority (v=4,6, . . .) and

higher spin states (J =4+, 6+, 8+, . . .).
If more realistic calculations are carried out, however,

the error in assumption {i}is negligible and is borne out by
the approximate equality of 2+ excitation energies in a
series of single-closed proton and neutron shell nuclei for
a given mass region, i.e., Sn and N= 82 2&+, energies in the
A =130 mass region (see also Sec. III A). Also, the use of
a separable quadrupole proton-neutron interaction com-
pared to more realistic interactions in the Z=50, N=50
(Refs. 14 and 15) and the Z=50, %=82 (Refs. 27 and 28)
regions does not modify the formation of a symmetric and
antisymmetric 2+ level in an important way. Of course,
the use of restricted model spaces and simplifications of it
as described under (iii) and (iv) have a rather large influ-
ence on the detailed energy spectra and electromagnetic
decay properties. ' ' '~ However, the general conclusions
discussed above are not drastically changed.

When describing the B(E2;2~+~0+) values, using Eq.
(3.11), in Figs. 6 and 7, it is clear that even the single-j
shell results give a good overall description of the avail-
able data. This of course reflects the fact that the charges
e~ and e„become "renormalized" as a function of Z (and
N) in order to accomplish good agreement over a large
number of nuclei (see Sec. III B).

We also point out that, concerning the N E„ysste mta-

ics, the good behavior obtained here by using the two-level
model may not be overestimated. After all, we have used
lowest order (U =2) seniority shell-model wave functions
and a realistic description of the lowest 2+ level in vibra-
tional and transitional nuclei gives of course more com-
plex results. For deformed nuclei, the above nuclear cou-
pling scheme where the pairing force is the dominant
component of the nucleon-nucleon interaction is clearly
not the best starting point. Here, one will rather have to
start from a deformed potential. However, for the 2+&

level, the basic content of the energy lowering and
8(E2;2~+~0~+} values are clearly contained within the
simple two-component proton-neutron system.

IV. PARTICLE-CORE COUPLING CALCULATIONS

As was pointed out in the Introduction, any model
description where two distinct building blocks determine,
when coupled, the low-lying nuclear levels, symmetric and
antisymmetric states wi11 result. In the present section we
use the particle-core couphng model where a few
(one, two, three, . . .) fermions are explicitly treated and
coupled to a set of surface quadrupole vibrational excita-
tions of the underlying core nucleus. Since the particle-
core coupling model has been discussed at length, espe-
cially by Paar and co-workers (see Refs. 30—32, and refer-
ences therein), we quote here some of the necessary ex-
pressions for the further discussion to be self-contained.
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A. Excitation energy in particle-vibration coupling

~Inst =—

The standard particle-core coupling Hamiltonian reads
' 1/2

42~2 g [b~+( —1)"bi,-„]I'~{1.»
l~@

core states, move in the ig9&2 orbital whereas for the
N =84 nuclei, the two neutrons move in the 2f7&&, 3pi&i,
1 /19f2 ~ orbitals, being close in energy. In both cases,
the separate subsystems are described by (i) fermion part

~(j)';0+&; ~(j)',2+&,

(4.1) (ii) collective part

whe«$2 denotes the particle-core coupling strength, ~z
the quadrupole phonon energy [=E(2i+) of the core nu-
cleus], b2„ is the creation operator for the quadrupole sur-
face oscillations, and F2„(r;) describes the particle {fer-
mion} coordinates. With the present Hamiltonian, the
coupling strength g2 is related to the quadrupole core col-
lectivity via the relation

(4.2)

(or to the notation frequently used by Paar, 3 according to
gi ——a22v 5/Aco2). In Eq. (4.2), V denotes the vibrating
single-particle potential taken at the spherical equilibrium
shape. A typical estimate of the strength

results in heavy and medium-heavy nuclei.
Correspondingly, the E2 transition operator will con-

tain, besides the single particle term, also a collective term
and is written as

~00;OF;0+&;
~

12;2+&, (4.7)

~
(j}0+ 12 2+ &,

~
(j)'2+ 00 2+

& .

So, one obtains the linear combinations

(4.8)

~
2,+&= [ ~

(j}0+, 12'2+&+e;
~
(j) 2+,00;2+&] . (4.9)

1

2

where
~
(j);0+& and ~(j);2+& describe the paired and

the one-broken pair fermion state and
~
00;OF;0+ &,

~
12;2+& the zero- and one-phonon quadrupole phonon

states, respectively. If we consider the approximate case
that the pair matrix element

~
&(j)',0+

~
V~(J)', 0+&

~

-~, ,

which is indeed the case for both the Z=SO and N=82
regions, the 2+ levels will result, when considering only
the basis states (4.7), from a two-level model diagonaliza-
tion with the basis states,

T(E2;p, )= g e& r; Fi„(r;)

+8 (E2;2)+ ~oi+ )' [bi~+ ( —1)"b2 ~],

(4.3)

where e, gives the fermion charge and 8(E2)'~i the col-
lective vibrational charge, characterizing the collective
part of the E2 transition. Furthermore, one has the rela-
tion

~oi+&= ~(j)'0+ ooo+& (4.10}

In the case of two particle-core coupling, the lowest 2+
state has ei ———1, e,=+1 for the 2i+ level. As wiH be
discussed in Sec. IV A 2, in the 2&+ decay, both the collec-
tive and two-particle contributions add up coherently and
therefore the 2i+ state can be called the "symmetric" state.
For two hole-core coupling, the opposite situation results,
j.e., p&

—+1, g2 ——1. The 0+ ground state remains basi-
cally the

8(E2;Oi+-+2i+) ~pi ZeRO
4n

(4.4)

with

Mco

2C2
{4.5)

configuration. Before studying the E2 transition proba-
bilities from the states (4.9) to the 0+ ground state, we
shortly discuss the results for both the Z=50 (Cd nuclei)
and the %=82 (%=84) regions.

~

(j)"uJ,NR;IM & . (4.6)

In particle-core coupling, near closed shells, in many
cases a single-j shell (or a linear combination) determines
the proton (or neutron) fermion cluster wave function. In
the Cd nuclei, i.e., the two proton holes, coupled to the Sn

Within the particle-core coupling model, basis functions
contain a particle cluster wave function

~
(j)"aJM & (n is

the number of extra felonious) coupled to a collective
wave function, the latter denoted by the number of quad-
rupole phonons N and the collective quadrupole angular
momentum E., resulting in the basis wave functions

1. The C'd nuclei

Although many detailed calculations have been carried
out ' using the two hole-core coupling model, we sim-
plify the present discussion in order to find out the basic
mechanisms at work. Taking into account a single-j shell
(the 1g»2 orbital) and up to three quadrupole phonon ex-
citations, we illustrate some numerical results for a case
where we take Aco2 ——1 MeV, gz

—2.5. The excited states
2~, 22+, and 23+ are shown in Fig. 10, and very much
resemble a typical even-even Cd nucleus. The wave func-
tions become
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~
Qi ) =—0.77

~
( lg9/2) 9+~00;0 )

—0.54
i ( lg9/z ) 2+ 12;0+ )

~
2,+)= -0.55

~
(lg„,)'2+,00;2+)

—0.56~ (lg9/2) 0+, 12;2+),

~
2,+ }=—0.23

~
(lg„,)'2+,00;2+ }

+0.50
~
(Ig„,)'0+ 12 2+}

+0.48
~

( lg„,)'2+, 12;2+ ),

~

23+ )=+0.54
~
(lg9/2) 2+ 00i2+ )

—0.26
~

( lg / ) 0+,12;2+ )

+higher components .

(4.11)

Compared to the
~

2i+ ) wave function, both the
~

22+ ) and

~
23+) wave functions have an antisymmetric character,

although distributed over the two levels (the 2&+ being the
better antisymmetric state).

2. The %=84 nuclei

The %=84 nuclei have been studied in detail (realistic
situation for both the neutron single-particle energies,
coupling strength, and phonon energies) before. 33 35 Here,
we basically have redone the calculations of Ref. 35.
Since here, not a single-j shell but the 2f7/2, 3@3/2, . . . or-
bitals are considered, some slight complications arise.
Thus, we call the neutron 2+ excitation, the linear com-
bination,

I

2+
& =&

I
(2f~n)'»+ &+b

I
(3s 3/2)'»+ &+

(4.12)
Diagonalizing the particle-core coupling Hamiltonian of
Eq. (4.1), with the parameters as discussed in Ref. 35, one
obtains the following wave functions for the 0+ ground
state and the low-lying 2+ levels:

~

Oi+) =0 27
~ (3@3/z) y0+ )+0.67

~
(2f7/2);0+)+0. 24

( (1h9/g);0+)+

[0 31
~
(&13/22f7/2)2+ 12;0+) +0.35

~
(2fp/z )22+, 12;0+ ) + ~ ~ ],

~

2i+ ) =—024
~
(3@3/$2f7/z)2+, 002+ )—0.33

~
(2f7/2)22+, QQ2+ ) +

+[0 23
I (3@3/2) 0+, 12;2+)+0.60

I
(2f7/g)'0+, 12;2+)+ ] .

(4.13)

2.0—
1)scd

Here, one recognizes the symmetric structure
P

u QP, ,'~(~~)2+,00;2+) +b g ~(J)'0+, 12,2+)

X

c9
IX
LLIT~ &.0-
O

Ã
LU

2'
0

2'

00 0

0
2'
I,

(4.14)
For the other 22+, 23+ levels (see Table I of Ref. 35), more
complicated admixtures occur, but for the 23+ level a large
component

0.41
~ (2f7/2) 2+,00;2+)+0.38

~ (2f7/p) 0+, 12;2+)

(4.15)
does result. Thus, we find two major components of the

~

2~+) wave function, but with the opposite sign. There-
fore, the analysis for 23+ levels in some N =84 nuclei, as
carried out by Hamilton et al. ,

3 although using a purely
collective approach for both proton and neutron constitu-
ents of the nuclear wave functions (IBM-2) is not too far
from the results obtained from a semimicroscopic calcula-
tion as indicated here. Thus, even for more realistic
particle-core coupling calculations (Cd, N =84), besides
the lowest-lying strongly eoBective symmetric combina-
tion of particle and collective excitations, an antisym-
metric 2+ level results albeit arith a more strongly mixed
wave function to other configurations outside the purely
collective IBM-2—type subspace.

FIG. 10. The low-lying excited J =0+, 2+, and 4+ levels ob-
tained from a schematic two-hole core coupling calculation [us-
ing a single j shell {the 189~2 orbital) and the values Aco2 ——1

MeV, g'2 ——2.5 and up to three quadrupole phonons] for the Cd
region. A comparison is made with the lour part of the experi-
mental spectrum in "Cd.

8. E2 decay properties

Starting from the above particle-core coupled wave
functions describing the different 2+ levels (see Sec. IV A)
and using the E2 operator, discussed in Eq. (4.3), one easi-
ly calculates the reduced E2 matrix elements
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A = &0,+IIT(E2}II2,'&
2

= &{j)'0',00;0+II g e « I'2(» )+8«2;2i+ oi+)'"(be+be) ll[u I
{j}'0+,12;2'&+&

I
(j)'2+ 00;2+ &]

]/2
5=uB(E2;2~+ 0~+)'"v 5+b 2(»'&

jj{—+1)
[j;(j;+1)(2j;—1)(2j;+3)]'~' (4.16)

The Cd nuclei

In Table II, we give the 8 (E2;0&+~2&+ ) values as taken
from Ref. 37. An averaged value of =2000 e fm results,
giving rise to a collective charge, to be used in Eq. (4.17)

e~g ——8(E2;2)+~0(+)s, V 5 45e . (4.18)

For the even-even Cd nuclei, one obtains the approximate
single-particle charge

e,p
——0.35M 5A ~ e~ 20e~ . (4.19)

In the particle-core coupling calculations, effective
proton charges 1.5e & e~ &2.0e have been used. Restrict-
ing to a single j shell (1g9/2 orbital) [see Eq. (4.16)], renor-
malization will even imply a larger effective proton
charge. This means that for an equal mixing (for degen-
erate 2+ levels in the unperturbed two-level model)
a = b= 1/V 2 —and since the collective and single-
particle charges are almost equal, a value for the matrix
element

TABLE II. Reduced E2 transition probabilities
8 (E2;Oi+ ~2~+) for the even-even Sn nuclei (Ref. 37).

8 (E2 0+~2+)
(e fm)

The latter term reduces (in a single-particle limit; j;~ ao }
to b '

,—(«0)—A / V'{5/4r«}e;, which for «0 1.3——fm
reduces to the expression —ho 35& .5A ~ e;. So one ob-
tains for A' and 8' [8':—(0&+

I IT(E2)l I22+ &] the approxi-
mate expressions

A'=oB(E 2; 2,
+ 0+)'/ V 5 bo —35~5. A2/

(4.17)
8 =uB(E2;2~+ 0+)'"~5+b0.35W5A'"e .

Coherence and destructive interference thus results for the
symmetric 2+ and the antisymmetric 2+ particle-core
coupled states, respectively. In the particular situation of
the Cd (Z =50 region) nuclei and the X =84 (N =82 re-

gion} nuclei, the following results are obtained.

{0)+
I I

T{E2)lI2)+ &=~28(E2;2)+~0)+)s„~5 (420)

8 (E2;2)+~0(+ )cd=28 (E2;2)+~0(+ )s, (4.21)

results. This means that the coherence between the two-
proton cluster and the collective vibration is optimal and
almost doubles the B(E2) values in going from Sn to the
Cd nucleus with the same number of neutrons. Detailed
calculations for Cd nuclei, using a particle-core coupling
model description, give the same results. Similar results
were also obtained and discussed by Paar, starting from
perturbation theory. 3'3 For the antisymmetric 2q+ state,
on the contrary, a very small reduced matrix element
(0~+IIT(E2)II22+& will result.

e~s ——8 (E2;2)+~0)+ )'~ ~5=55e,

e,z
——0.35@5A ~ e„=22e„.

(4.22}

In particle-core coupling calculations 32 effective neu-
tron charges 0.5e & e„&1.0e have been used. Restricting
now even more to a single j shell [see Eq. (4.16)], renor-
malization will imply an even larger effective neutron
charge. For optimal mixing, a = b= 1/~2 o—ne approx-
imately gets

{0)+IIT(E2)II2)+&= 55e+ 22e =55e1 1

2 2

(4.23)

~21 ~01 )N =84 (E2i21 ~
1 )%=82 .

One notices that the 8(E2) value remains almost con-

TABLE III. Reduced E2 transition probabilities
8(E2;0~+~2+i) for the even-even X=82 nuclei (Ref. 37).

2. The N =S4 nuclei

In Table III, 8(E2;0&+~2&+) values, as taken from
Ref. 37, for the N =82 nuclei, are given. An averaged
value of =3200 elm is representative for this mass re-
gion. If we apply Eq. (4.17), but now for a typical value
of A = 140, one obtains the effective charges

112
114
116
118
120
122
124

2570
2300
2160
2180
2060
2020
1690

&«2'0i+2i+ )

( e'fm'}

3800
2900
3900
2500
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stant, which is almost the case since for the %=84 2+i

levels compared with the N =82 2i+ levels for the same
neutron number only about a 10% increase in the B(E2)
value results.

C. Comparison arith more realistic calculations

As was discussed in Sec. III C, a number of approxima-
tions underlie the above discussion, especially when com-
pared with the more realistic cases such as the Cd and the
N =84 nuclei. Here, the approximations are the follow-
ing:

(i) the equality between the quadrupole phonon energy
Scot and the pairing matrix element in a gt'ven j shell for
medium-heavy and heavy nuclei;

(ii) the truncation of the shell-model space to a single j
shell (using only seniority U =0 and u =2 states) and of
the quadrupole phonon model space to zero- and one-
phonon states.

The more detailed calculations on Cd nucleis "t and on
N =84 nuclei ' give of course more levels and at the
same time a better description of the actual experimental
data (the "sCd data in Fig. 10 can then be reproduced in a
much better way). The basic idea, however, of obtaining a
low-lying 2+ level where both the single particle and the
collective component of the E2 decay operator act
coherently thereby producing a large 8(E2;2i+~0i+)
value is retained.

V. CONCLUSION

In the present paper we have shown that symmetric and
antisymmetric couplings of two separate building blocks
occur naturally from the most simple two-level models, as
obtained within the proton-neutron shell model and in
particle-core coupling model calculations. Such two-level
models can be obtained as a good approximation, at least
for the lowest-lying 2+ level as discussed here, to the ac-
tual shell-model situation in nuclei. It is the pronounced
pairing property within the identical nucleon systems and
the subsequent strong proton-neutron quadrupole interac-
tion which causes the symmetric and antisymmetric 2+
states to result. For the lowest 2+ level, moreover (for

vibrational-like nuclei), a specific dependence for the exci-
tation energy E(2i+) on the number of valence protons
and neutrons is obtained and is shown to correlate very
well with the experimental data in the Te, Xe, Ba, and Ce
regions with 60&% & 80.

In calculating the E2 decay properties, both in the shell

model and in the particle-core coupling model, construc-
tive (for the 2i+ level) and destructive (for the 2q+ level) in-
terference is obtained between the proton and neutron fer-
mion charges or between the fermion cluster and the
quadrupole core collective charges, respectively. Within
the shell model, when identifying the shell-model E2 ma-
trix elements for the lowest 2i+ level to the 0+ ground
state with the corresponding IBM-2 expression, a relation
between the proton and neutron effective boson charges
on the fermion proton and neutron charges as well as on
the number of valence protons and neutrons is obtained.

The above observations point out that a clear observa-
tion of such antisymmetric 2+ levels will be very difficult
to be carried out experimentally. Mixing with other, near-

by 2+ levels will moreover spread out the E2 decay
strength. We expect that, from the present study (see Sec.
III), the best cases for observing 2+ antisymmetric states
will be the ones where a large difference between the num-
ber of valence protons and neutrons occurs. So, as we
pointed out in Sec. IV, in the N =84 nuclei, the 2&+ level
could indeed be a good candidate as well as the analogous
2s+ level in the even-even Cd nuclei.
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