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It is shown that in both the nuclear shell model, considering explicitly proton and neutron degrees
of freedom (seniority scheme), and in particle-core coupling model calculations, 2+ levels with sym-
metric and antisymmetric character in the constituent unperturbed basis result. Besides the excita-
tion energy for such 2% levels, the E2 decay properties also are studied. Constructive and destruc-
tive interference between the two distinct E2 matrix elements results for the 2] (symmetric) and 23
(antisymmetric) levels, respectively. Applications are shown for the Cd (Z =48) and the N =84 nu-

clei.

I. INTRODUCTION

Recently it was shown, within the framework of the
proton-neutron interacting boson model (IBM-2), that be-
sides the symmetric proton-neutron states (identical to
IBM-1 states), a large class of states with mixed-
symmetry character does arise.'~® This is a consequence
of the fact that although the total boson wave function
has to be symmetric under the interchange of all vari-
ables, a mixed-symmetry character can arise for both the
spatial (sd part) and the proton-neutron charge part of it.
Mathematically, this can be formulated via the reduction
of the U(12) group containing both proton and neutron
bosons, as U(12)DU,,(6)xSUP2)D... "% In both
the theoretical'~® and experimental!®~!? studies of such
mixed-symmetry states, most interest has gone into the
study of 1% levels. Recently, Zamick pointed out'? that in
the 1f,, nuclei some of the even-even Ti isotopes show
1% states with a character, similar to the mixed-symmetry
states in IBM-2, and some of the authors'*!3 also showed
that near 4~100 (*®Pd) such a 1% level could be well
described within the nuclear shell model.

It is the purpose of this paper to point out the general
character of the existence of mixed-symmetry states
wherever two distinct basic blocks are used to construct
the nuclear wave functions (Sec. II). This is most easily
formulated within the nuclear shell-model properly, using
a single-j shell or degenerate j shell (see Sec. III), but also
within the particle-core coupling model such states do
arise (Sec. IV). In both Secs. III and IV we concentrate on
the J"=2% states, the wave functions describing these
states, and their E 2 properties.

II. GENERAL TWO-COMPONENT SYSTEMS

Before concentrating on particular nuclear model appli-
cations, we shortly describe a general nuclear two-
component system. If each subsystem is characterized by
only a single Ot and 2% state, i.e., described by states
[0%(1)), |2%(1)), the combined system only contains
the

|0t (1)0*(2);0%)

|2+(1)0%(2);2%) |0 (1)2+(2);2)
and

[2F(1)2%(2);1)

basis states. Here, one notices that for angular momen-
tum 2%, three basis states do result. Depending on the
unperturbed energy of the 0% and 2% excitations in the
separate systems and on the residual interaction, this par-
ticular two-component system can be solved numerically
for its energies and wave functions. If now the
[0*(1)2%(2);2%) and |2%(1)0%(2);2%) states are de-
generate in energy and the |2%(1)2%(2);2%) state has a
much larger unperturbed energy, which is often not too
far from realistic situations (see Secs. III and IV), even in-
dependent of the residual interaction ¥, between the two
subsystems, a symmetric and antisymmetric eigenstate
will result, i.e., one obtains

|2t =L2[ [0+(12+(2)2+) + | 2+(1)0+(2);2%)1,
@.1)
+y_ L ook 1)+ [+ (1)0+(9)-+
|22>—‘/§[|o (1)2%(2);2%) — | 2H(1)01(2);2%)] .

(2.2)

The electric quadrupole electromagnetic decay properties
(E 2 decay) are now described by an operator which is the
sum of two components, each acting in one of the subsys-
tems, i.e.,

T(E2)=e,T(E2;1)+e,T(E22) , 2.3)

where e,,e, are the effective charges in the different sub-
systems and T (E2;i) denotes the operator acting in the
ith subsystem. The reduced transition matrix element for
decay towards the 0% ground state |0i ), being almost
purely the |0%(1)0%(2); 0% ) basis state, then becomes
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(0f || T(E2)||2])

1
=72[<0+(1)||T(E2;1)||2+(1))e1

—(=1){0*(2)||T(E2;2)|]27(2))e,] . (24
If the separate systems have reduced matrix elements of a
similar structure (both being particlelike or holelike in fer-
mion space) and thus the same sign, coherence or incoher-
ence results for i =1 and i =2, respectively. If e;~e,,
the coherence and incoherence is optimal.

We now discuss in detail applications of two-
component systems that have often been treated in
describing low-energy nuclear structure:

(i) lowest seniority (v=2) shell-model calculations
where both active protons and neutrons are present in a
single j-shell approximation,

(ii) particle-core coupling where a two-particle (-hole)
fermion cluster is coupled to the collective excitations of a
surface quadrupole harmonic vibrator.

III. THE NUCLEAR SHELL MODEL:
LOWEST SENIORITY (v =2) CALCULATIONS

A. Excitation energy in a single-j shell

Recently, we have pointed out how in a single-j shell
starting from two valence proton particles (or holes) and
two valence neutron particles (or holes) collectivity arises

in an exact solvable model.’* If we now extend the calcu-
|

VWE<2;- I _KQW.QVIZj)

lations to cases where one has n, protons and n, neu-
trons, but still considering seniority v =2 configurations
for describing the lowest 2% states, the basic configura-
tions, already taking into account the pairing properties of
the identical nucleon interaction in a single-j shell, are

H]vv 2’2+) '(]ﬂ’ v-—O’O )

| Gerzs2t )5 | Gy lo a0t ) (3.2)

respectively. It will now be studied how the 2; gets
lowered (becomes collective) in the vibrational and transi-
tional nuclei by taking the appropriate combinations of
(3.1) and (3.2) and diagonalizing within the 2X2 model
space for the 2} and 2 levels, i.e., one obtains

Iz;r’-).:— | [(jv v= 212+(.]v v—0y0+]2+)

(3.1

(3.3)
,23‘)5 I[(jfr u—0’0+(.’v v= 2’2+]2+>

as unperturbed 2%+ configurations. Taking into account
that these configurations describe seniority v =227 states
within a series of isotopes (i.e., Sn nuclei) or isotones
(i.e., N=50, 82 nuclei), the unperturbed energy is almost
constant. If we take the extra approximation to use
for conﬁguratlons (3.3) the same unperturbed energy, i.e.,
ezzeg+:ez+ the 2X2 model space is easily

dlagonahzed when using as a residual proton-neutron in-
teraction a quadrupole force —«xQ.-Q, (with

L, =[Vmo/fir, ]ZYZ(’r‘p)). The coupling matrix element
becomes

= K<(J1r v 2’2+HQ7H .111' v= 0:0+><(.’v v= 2’2+“Qv|l(1v —010+>

5
172
S PVA ALV P N R 1/2<j 1Qallin) Gul|Qyl i) (3.4)
5 m n" v QV Q.’r—l ﬂv—l T mw m v v .I‘V ’ .

where we call the quantity between curly brackets
F(Q,,Q,) and N, (=n,/2) and N, (=n,/2) describe the
number of nucleon pairs. The matrix to be diagonalized
then becomes

& Vv
V., & (3.5)
with eigenvalues
EQ})=6—¢X {NNI Ny 1—N” I/ZF,
Q, Q,
(3.6)

and corresponding eigenvectors, the linear combinations
(see Fig. 1),
[2)=

L2 +
528 +e |28 )) (3.7

22
VT\’.V
T e nv .
(JT‘ v:252 ("’)\1:2"2 an N
21
- o”
n 0
(0% ;0° ()% ;0

FIG. 1. The unperturbed, seniority v =2 proton and neutron
shell-model configurations [see Egs. (3.1) and (3.2)] and the two
J7=2% levels obtained after diagonalizing the quadrupole
proton-neutron interaction within the two-level model space of

Eqgs. (3.3).
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The value of €;=1, e,=—1 for particle-particle (or hole-
hole) combinations of protons and neutrons; €;=—1,
€;=+1 for particle-hole (or hole-particle) combinations
of protons and neutrons. In the IBM-2, the lowest 2+
state, i.e., 2{ is always defined as the symmetric combina-
tion of proton and neutron boson wave functions. Thus,
in a simple way, a lowest symmetric 2{" level with a
specific N,N, dependence for the excitation energy
E(2{) results. For small N,,/Q,, N,/Q,, the E(2}) en-
ergy will at first lower according to a N,N, dependence.
The correction terms V' 1—(N,/(},) and V' 1—(N,/Q,)
will gradually weaken the lowering and result into a
minimal excitation energy at midshell occupation
N,=Q,/2, N,=Q,/2. Recently, Casten'~'® has point-
ed out a very striking observation that quantities such as
E(2{), E(4})/E(2]), etc. lie on a smooth curve when
plotted as a function not of N,Z but of the product
N_.N,. At least in the vibrational (transitional) region,
the above simple shell-model calculations predict such a
behavior for E (2}).

In Figs. 2 and 3, we have carried out the above analysis
in a theoretical way, in order to point out that indeed all
E (27) energies follow a smooth behavior when plotted as
a function of the product N,N,. Moreover, fits have
been carried out for the Te, Xe, and Ba nuclei!® using ex-
pression (3.6) with

(i) a constant value of « for all nuclei (Fig. 4);

(ii) a slightly different k for each series of isotopes (Fig.
5).
In the calculations, a value of €)=1.344 MeV has been
used, which is the average of eg+ [=1.477 MeV; the aver-

o
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FIG. 2. The energy for the lowest 2% level [Eq. (3.6)], in
units of (k/5)F, as a function of the number of neutron pairs N,
and of the number of proton pairs N,,.

0
Nr
° 1
VN
- x 3 7
w
©Q
x
2l
z
2
>
(L]
@
w
z
w
o3
Zz
=)
z
m
L~ .
5 | ] 1 ] ] 1 ] 1 1
0 4 8 12 16 20 24 28 32 36
N Ny

FIG. 3. The energy of the lowest 2+ level [Eq. (3.6)], in units
of (k/5)F, as a function of the product N,N, for nuclei in the
(Ngy=1) to (N,=8) region.

L i T T T T T T T T

10— X
—o— Experiment /
/
—%— Theory < P
3°
z
>
o
4
w
ik —
z
=]
=
=
204 N
w

00 L | 1 | 1 | 1 | 1 |

60 64 68 72 76 80

FIG. 4. Detailed fit, using Eq. (3.6), to the Te, Xe, Ba, and
Ce nuclei, with the degeneracy Q,=16, Q,=16, using a con-
stant value of (x/5)F =0.365 MeV.
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age of E(2f) in the N =82 nuclei with 52<Z <62)]
and €), [=1.210 MeV; the average of E(2{) in the Sn

nuclei with 60 <N <80]. We took, moreover, degenerate
single-particle states thereby using Q,=,=16. The
average value of the fitted parameter (k/5)F=0.365 MeV
(see Fig. 4) can easily be converted to a value of k, using
the j— « estimate in calculating the factor F(Q,,{,)
which gives a value of F~12 for the harmonic oscillator
N =4 shell. One then obtains as the strength of the
proton-neutron shell-model quadrupole interaction the
value of k=0.15 MeV, which is very near the value used
in calculating nuclear shell-model spectra in odd-odd Sb
and I nuclei.?°

B. E?2 decay properties

Using the wave functions from the two-level shell-
model calculation, as discussed in Sec. III A, one easily
calculates the E2 matrix elements, using the electric
quadrupole operator T(E?2), i.e.,

T(E2)=elrly, (7)) +eir2y,(7,) . (3.8)

The result becomes

172

Nfr Qﬁ’_N‘lr
(OF || T(ED)| |2 ) = - [ [—¥
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FIG. 5. See caption to Fig. 4, but now different « values have
been used for the different series of isotopes, i.e., we have
used the values «'=(k/5)F Te (k'=0.386); Xe (x'=0.388); Ba
(k'=0.362); Ce (k' =0.340); Nd (x'=0.328); Sm (k'=0.312) ('
in MeV).

(G507 || T(E2)||(2)%52F)

V2 Qqy
T ’-JY—(—‘;—-:—N—) ]1/2((j.,)2;0+]|T(E2)|l(jv)2;2+) J , (3.9)
with
(o 50* || TED|p 52+ Y= Ayl = —V/57m (szJ:(;:(ijf)+3) REYS 610

If we assume identical j,=j,=j (as was done in Sec.
IITA for the study of Te, Xe, and Ba nuclei with
60 <N < 80), Eq. (3.9) reduces to

(Of||T(E2)||2])

172
=LA- N (Q,—N,) oF
v2 Q,—1 "
12
N,(Q,—N,)
+€; ——Y—‘)—T—‘- ef}, (3.11)
—
which, for N, =N, =1, reduces further to
OFITEDI2H) == dlef+eed) . (12

Here, the coherence in the E2 matrix element for the
lowest 2{" level becomes clear and results in a charge
F, _F . o

er+e, whereas for the antisymmetric 2% level, the

charge el —ef results. For the charges, normally used,
this results into a B(E2) ratio favoring the 2{" decay over
the 25 decay by almost ~10. In the more gener-
al case A; #A4; we have plotted the experimen-

tal B(E2;0 —2{)"? values versus [N,(Q,—N,)/
(2,—D]'? to test Eq. (3.9) [or Eq. (3.11) when 4; =4, ],

i.e., if a constant slope and identical intercept with the or-
dinate result, which should be the case for constant fer-
mion charge ef,ef. In Figs. 6 and 7, we give the experi-
mental results for the Z =50 region (Ru, Pd, and Cd us-
ing Q,=11, and Te, Xe, and Ba using {1,=16, respective-
ly).”® From both figures one observes that a straight line
could well be fitted to the Te, Xe, Ba and the Ru, Pd, Cd
nuclei when the number of valence nucleons is not too
large (then the assumption of vibrational energy spectra is
a good approximation). One observes that a larger slope
shows up for a larger number of valence neutrons and also
that the intercept with the ordinate increases with increas-
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FIG. 6. Plot of the experimental values of B(E2;0; —2;)!/2
(in units eb) as a function of [N,(Q,—N,)/(Q,—1)]'/2 for the
Ru, Pd, and Cd nuclei (nuclei with a fixed value of
[N(Qy—N,)/(Q,—1)]'?) in order to determine the proton
fermion charge e and the neutron effective charge ef, using
Egs. (3.9) and/or (3.11). We have used the degeneracies Q,=11,
Q,=16.

ing number of valence protons. From these observations,
one can conclude that a larger effective proton and neu-
tron fermion charge ef,ef is needed to accommodate the
low-lying 2; level within the simple description of a two-
level shell-model calculation. From the shell-model
values of 4 ;j, and 4; for the different mass regions, one
obtains for the j,=3 (Q,=16) and j, =5 (Q,=16)
orbitals the values (7)=0.10 efb and (v)=0.10 efb,
respectively, for the coefficients multiplying the
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FIG. 7. See caption to Fig. 6, but for the Te, Xe, and Ba nu-
clei using ,=16, ,=16 as degeneracies.

N-dependent factors in Egs. (3.9) and (3.11). From a fit
to experimental B(E2;0; —2{) values in N=82 nuclei
(*Xe,...,'"Sm) and to the Z=50 nuclei
("128n, ...,'%Sn) one determines (w)=0.202 eb,
(v)=0.161 eb. With these values, the calculated
B(E2;0{—2{) values in Te, Xe, and Ba nuclei, as shown
in Fig. 7, are given in Table I. Here, one observes on the
average too small theoretical values, especially for nuclei
with a large number of valence protons and neutrons.
This again shows the limitations of the simple shell-model
approach of Sec. III A for a detailed reproduction of the
data.

TABLE I. Table of experimental B(E2;0{—2{")'/? values (Ref. 19) according to Eq. (3.9). The
quantity X,=[N,(Q,~N,)/(Q,—1)]'? (p=m,v) is calculated for the 50—82 region, i.e., Q,=0Q,
=+ (82—50)=16. The theoretical value is denoted by the relation

B(E2;0{ —21)i{*=

X Am)+X,(v)({r)=0.202 eb, {(v)=0.161 eb) .

Nucleus A N, N, X, X, B(E2;0f —»21)2  B(E2;0f -2
Te 122 1 6 1 2 0.816(7) 0.524
124 5 1.915 0.755(7) 0.510
126 4 1.789 0.691(8) 0.490
128 3 1.612 0.614(2) 0.462
130 2 1.366 0.539(10) 0.422
Xe 120 2 8 1.366  2.066 0.959(57) 0.609
122 7 2.049 0.894(50) 0.606
124 6 2 0.949(37) 0.598
126 5 1.915 0.889(34) 0.584
128 4 1.789 0.831(30) 0.564
130 3 1.612 1.000(40) 0.535
132 2 1.366 0.663(23) 0.496
134 1 1 0.583(51) 0.437
136 0 0 0.424(94) 0.276
Ba 126 3 6 1612 2 1.354(73) 0.648
128 5 1.915 1.222(132) 0.634
130 4 1.789 0.614
132 3 1.612 0.860(96) 0.585
134 2 1.366 0.837(11) 0.546
136 1 1 0.694(11) 0.487
138 0 0 0.466(4) 0.326
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Within the IBM-2, in the vibrational limit, general ex-
pressions for the E2 matrix elements can be derived
which are valid for a nuclear Hamiltonian which is invari-
ant under rotations in F-spin space*~%2!"22 (F.spin sym-
metric Hamiltonian). For the E2 transitions from the
lowest symmetric 2; state and from the lowest mixed-
symmetry 2% level (which we call 25, which conforms
with the restricted shell-model space) the following results
were obtained:’

(BN, +eBN V5
(OF || T(E2)|)2{ ) = "\/N ,
(3.13)
172
N,N,5
(OF ||T(E2)||2F ) =(eZ —eB) —N

Identifying Eqs. (3.13) with the corresponding shell-model
results of Eq. (3.11), proton and neutron boson effective
charges e2,e? can be obtained as a function of proton and
neutron fermion charges eZ,ef and the number of proton
and neutron valence pairs N,,N,, respectively. For a
single-j shell,? this results into

172

s 1 N(Q,—N,) -
=Y | Naa—n | ¢
(3.14)
1 NQ,—N,) |'7?
ed— A el .
V10| N(Q,—1) v

The latter expressions are studied for the Z=50 and
the N=282 mass regions (Figs. 8 and 9). In the Z=50 re-
gion, we carry out the calculations both for the nuclei
with Z <50, for which both cases Q,=5 (l1gy,, orbit
only) and Q,r= 11 (the 1f5/2, 2p3/2, 2p1/2, and lgg/z orbi-
tals) are considered, and for nuclei with Z > 50, in which
case we take Q,=16 (the full 50—82 shell as a single de-
generate j=-= shell). This is performed for both
ef'=0.5¢ and ef=1.0e (or 1.5¢). From Fig. 8, an impor-
tant difference in the values of e2,e2 results, especially
when the proton and neutron number of pairs are largely
different. Moreover, values of the effective boson charge,
as calculated here, are of the right order of magnitude as
the ones used in realistic IBM-2 calculations for this mass
region,2*~2% especially for the choice ef=1.5¢, e£=0.5e.
Similar conclusions are obtained for the N =82 region
(Fig. 9) where now one observes that eg is a decreasing
function of N, and e an increasing function. Even tak-
ing into account the approximations used in obtaining ex-
pressions (3.14), a mass dependence (and thus a nuclear
structure dependence) of boson charges is clearly estab-
lished.

As a conclusion of the shell-model calculations of Sec.
III, it is clear from constructing proton-neutron coupled
wave functions, through the proton-neutron quadrupole
interaction, that symmetric and antisymmetric 2% states
arise in a very natural way. The dependence of the excita-
tion energy E(2{) in the vibrational and transitional re-
gion can be estimated to be a smooth function of the
product N,.N,. Moreover, calculating E 2 reduced transi-
tion probabilities a quenching for the antisymmetric
25 —symmetric Of transition compared to the symmetric

0.4
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EFFECTIVE BOSOQ CHARGE eBleb)
N
T

e
T

0 1 1 | 1 1 1 1 1
1 2 3 4 5 6 7 8
Ny
T T T T T T T T
(b)
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—_——— Qu=tt
————— Q=16 Np=1
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EFFECTIVE BOSON CHARGE ePleb)

00

FIG. 8. (a) The boson proton (eZ) and neutron (e2) effective
charges, obtained from the two level shell-model E2 matrix ele-
ments, using Eq. (3.14), in the Z =50 mass region. The figure
gives results for both the Z <50 nuclei (using the 1g9,,; Q,=5
or full 1g5,, 2p1s2, 2P3s2, 1fs,2; Qe=11 shells) and for the
Z > 50 nuclei (using the full space 1g7,, 2ds,, 2ds., 351,
1hyy,2; Qx=16). The neutrons are put in the 50 < N < 82 region
(Q,=16). Results are given as a function of N, and N, using
the values ef=1.5¢, e£=0.5¢. (b) See caption to (a), but using
the fermion charges ef =1.0e, e£=0.5¢.
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FIG. 9. (a) The same caption as for Fig. 8(a), but now for the
N =84 mass region. For the proton degeneracy we use the full
50 < Z < 82 shell (2,=16) and for the neutrons, we consider the
2f1,2, 3P3s2, lhgp, and 1iy3,, orbitals (Q,=18). Results are
given as a function of N, and N, using the values ef=1.5¢,
ef=0.5¢. (b) See caption to (a), but using the fermion charges
ef=1.0e, e£=0.5e.

2{ —>symmetric Oi" transition results, making it clearly
difficult to observe such antisymmetric 2+ levels in vibra-
tional nuclei. Moreover, by equating the shell-model and
IBM-2 results, a N,(N,) dependence of the boson effec-
tive charges on the fermion charges occurs.

C. Comparison with a more realistic calculation

In the analysis carried out before, a number of approxi-
mations have been imposed:

(i) the assumption of degeneracy in energy for the pro-
ton and neutron 2; excited states;

(ii) the use of a separable proton-neutron quadrupole
force;

(ii1) the use of a single-j shell for both protons and neu-
trons;

(iv) the neglect of higher seniority (v=4,6,...) and
higher spin states (J"=4%, 6%, 8%,...).

If more realistic calculations are carried out, however,
the error in assumption (i) is negligible and is borne out by
the approximate equality of 2% excitation energies in a
series of single-closed proton and neutron shell nuclei for
a given mass region, i.e., Sn and N=82 2, energies in the
A ~130 mass region (see also Sec. II A). Also, the use of
a separable quadrupole proton-neutron interaction com-
pared to more realistic interactions in the Z=50, N=50
(Refs. 14 and 15) and the Z=50, N=82 (Refs. 27 and 28)
regions does not modify the formation of a symmetric and
antisymmetric 2% level in an important way. Of course,
the use of restricted model spaces and simplifications of it
as described under (iii) and (iv) have a rather large influ-
ence on the detailed energy spectra and electromagnetic
decay properties.!*27-28 However, the general conclusions
discussed above are not drastically changed.

When describing the B(E2;2{" —0;) values, using Eq.
(3.11), in Figs. 6 and 7, it is clear that even the single-j
shell results give a good overall description of the avail-
able data. This of course reflects the fact that the charges
ef and ef become “renormalized” as a function of Z (and
N) in order to accomplish good agreement over a large
number of nuclei (see Sec. III B).

We also point out that, concerning the NN, systemat-
ics, the good behavior obtained here by using the two-level
model may not be overestimated. After all, we have used
lowest order (v =2) seniority shell-model wave functions
and a realistic description of the lowest 27 level in vibra-
tional and transitional nuclei gives of course more com-
plex results. For deformed nuclei, the above nuclear cou-
pling scheme where the pairing force is the dominant
component of the nucleon-nucleon interaction is clearly
not the best starting point. Here, one will rather have to
start from a deformed potential.’ However, for the 2{
level, the basic content of the energy lowering and
B(E2;2} —0;") values are clearly contained within the
simple two-component proton-neutron system.

IV. PARTICLE-CORE COUPLING CALCULATIONS

As was pointed out in the Introduction, any model
description where two distinct building blocks determine,
when coupled, the low-lying nuclear levels, symmetric and
antisymmetric states will result. In the present section we
use the particle-core coupling model*® =3} where a few
(one, two, three,...) fermions are explicitly treated and
coupled to a set of surface quadrupole vibrational excita-
tions of the underlying core nucleus. Since the particle-
core coupling model has been discussed at length, espe-
cially by Paar and co-workers (see Refs. 30—32, and refer-
ences therein), we quote here some of the necessary ex-
pressions for the further discussion to be self-contained.
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A. Excitation energy in particle-vibration coupling

The standard particle-core coupling Hamiltonian reads

172
Exfiy 3 [boy +(— 1] _, 1Y (R)
iu

lr_

Hip=— 5

4.1)

where &£, denotes the particle-core coupling strength, #iw,
the quadrupole phonon energy [~E(2{) of the core nu-
s .
cleus], by, is the creation operator for the quadrupole sur-
face oscillations, and Y, (7;) describes the particle (fer-
mion) coordinates. With the present Hamiltonian, the
coupling strength &, is related to the quadrupole core col-
lectivity via the relation

dav 457 B(E2;2{ —07)12
5= <' >a =0 3 ,  (42)
dr [*%=° #w, 3ZeR}2

(or to the notation frequently used by Paar,* according to
£,=a,2V'5/fiw,). In Eq. (4.2), V denotes the vibrating
single-particle potential taken at the spherical equilibrium
shape. A typical estimate of the strength

<r%>%=0240—50 MeV

results in heavy and medium-heavy nuclei.**

Correspondingly, the E2 transition operator will con-
tain, besides the single particle term, also a collective term
and is written as

A
T(EZu)=3 ertY,, (%)

i=1

+B(E22 —01) b, +(— 10, _,],

(4.3)

where e; gives the fermion charge and B(E2)'/? the col-
lective vibrational charge, characterizing the collective
part of the E2 transition. Furthermore, one has the rela-
tion

2

B(E2;0{ —»2{)=p3 Z%;ZeR% , (4.4)
with

B Sty |1 4.5)

27 | 2¢, '

Within the particle-core coupling model, basis functions
contain a particle cluster wave function |(j)"aJM) (n is
the number of extra fermions) coupled to a collective
wave function, the latter denoted by the number of quad-
rupole phonons N and the collective quadrupole angular
momentum R, resulting in the basis wave functions

| G)Y'ad ,NR;IM ) 4.6)

In particle-core coupling, near closed shells, in many
cases a single-j shell (or a linear combination) determines
the proton (or neutron) fermion cluster wave function. In
the Cd nuclei, i.e., the two proton holes, coupled to the Sn

core states, move in the 1g9,, orbital whereas for the
N =84 nuclei, the two neutrons move in the 2f5,, 3p3 3,
lhg,,, ... orbitals, being close in energy. In both cases,
the separate subsystems are described by (i) fermion part

[(N5E0F); [ (H%2t),
(ii) collective part
|00;0F;0%); | 12;2%) , 4.7)

where |(j)%0%) and |(;j)%2%) describe the paired and
the one-broken pair fermion state’* and | 00;0F;0% ),
| 12;2%) the zero- and one-phonon quadrupole phonon
states, respectively. If we consider the approximate case
that the pair matrix element

| {(50T |V [ ()%0%) | ~fiwo, ,

which is indeed the case for both the Z=50 and N=82
regions, the 2% levels will result, when considering only
the basis states (4.7), from a two-level model diagonaliza-
tion with the basis states,

[ (j)20F,12;2%)
(4.8)
[(j)%2%,00;2%) .

So, one obtains the linear combinations

I 2?>=%2[ [(/)%0F,12;2%) +¢ | ()%2+,00;2+)] . (4.9)

In the case of two particle-core coupling, the lowest 2%
state has €,=—1, e,=+1 for the 25 level. As will be
discussed in Sec. IV A 2, in the 2;" decay, both the collec-
tive and two-particle contributions add up coherently and
therefore the 27 state can be called the “symmetric” state.
For two hole-core coupling, the opposite situation results,
i.e, €,=+1, =—1. The 0% ground state remains basi-
cally the

[0F )= | (j)*0%,00;0%) (4.10)

configuration. Before studying the E2 transition proba-
bilities from the states (4.9) to the 0% ground state, we
shortly discuss the results for both the Z=50 (Cd nuclei)
and the N=282 (N=284) regions.

1. The Cd nuclei

Although many detailed calculations have been carried
out*"3? using the two hole-core coupling model, we sim-
plify the present discussion in order to find out the basic
mechanisms at work. Taking into account a single-j shell
(the 1g4,, orbital) and up to three quadrupole phonon ex-
citations, we illustrate some numerical results for a case
where we take #iw,=1 MeV, £§,=2.5. The excited states
2{, 24, and 2; are shown in Fig. 10, and very much
resemble a typical even-even Cd nucleus. The wave func-
tions become
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| Or ) =-0.77 | (1g9/2 )20+,00;0+ )
—0.54|(1gs2)%2%,12;0%) ,
|21 ) =—0.55|(1gq2)%2%,00;27)

—0.56|(1g9/,)%0%,12;2%) ,
@.11)
|25 )=—0.23|(1gq,,)27%,00;27%)

+0.50| (1g5,2)%0%,12;2%)
+0.48 | (1g9,2)%27%,12;27F),

|27 ) =+0.54| (1g52)2*,00;2%)
—0.26 | (1g9,,)%0%,12;2)
+ higher components .

Compared to the | 2{") wave function, both the |25 ) and
|25 ) wave functions have an antisymmetric character,

K. HEYDE AND J. SAU 33

although distributed over the two levels (the 27 being the
better antisymmetric state).

2. The N=384 nuclei

The N=284 nuclei have been studied in detail (realistic
situation for both the neutron single-particle energies,
coupling strength, and phonon energies) before.>>3* Here,
we basically have redone the calculations of Ref. 35.
Since here, not a single-j shell but the 2f5,, 3p3,,, . .. or-
bitals are considered, some slight complications arise.
Thus, we call the neutron 2% excitation, the linear com-
bination,

[25)=a | (2f1)52F)+b | 3p3 )52t )4+ -+ .

(4.12)
Diagonalizing the particle-core coupling Hamiltonian of
Eq. (4.1), with the parameters as discussed in Ref. 35, one
obtains the following wave functions for the 0+ ground
state and the low-lying 27 levels:

|0F )=0.27 | (3p3,2)%0" ) +0.67 | (2f7,,)%0% ) +0.24 | (1hg ;)50 ) + - - -
—[0.31](3p3,,2f7,2)2%,12;0% ) +0.35 | (2f7,,)22+,12;0" ) + - - - ],

(4.13)

| 2§ )= —0.24|(3p322f7,2)2+,00;2% ) —0.33 | (2f7,5)%2%,00;2% ) + - - -
+[023 I (3p3/2)20+112;2+)+0-60 | (2f7/2)20+,12;2+>+ ce ] .

HBCd
20__ Lo Y p—
‘0
+*
x
s F
3
= + 0*
> 2 +
2 -
4
z
1.0— . ]
= 4
Q
—
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>
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L ” 2 4
ool o — —_ 0

FIG. 10. The low-lying excited J*=0%, 2%, and 4™ levels ob-
tained from a schematic two-hole core coupling calculation [us-
ing a single j shell (the 1g,,, orbital) and the values fiw,=1
MeV, £,=2.5 and up to three quadrupole phonons] for the Cd
region. A comparison is made with the lower part of the experi-
mental spectrum in '3Cd.

Here, one recognizes the symmetric structure

a| 3 By 1GiN2+,00;2+)
»i'

+b

3 [()?0H,12,2F)
J

(4.14)
For the other 23,27 levels (see Table I of Ref. 35), more
complicated admixtures occur, but for the 23 level a large
component

0.41|(2f7,2)%2%,00;2 ) +0.38 | (2f7,,)%0%,12;2+)

(4.15)
does result. Thus, we find two major components of the
| 2i) wave function, but with the opposite sign. There-
fore, the analysis for 2§ levels in some N =84 nuclei, as
carried out by Hamilton et al.,*¢ although using a purely
collective approach for both proton and neutron constitu-
ents of the nuclear wave functions (IBM-2) is not too far
from the results obtained from a semimicroscopic calcula-
tion as indicated here. Thus, even for more realistic
particle-core coupling calculations (Cd, N =84), besides
the lowest-lying strongly collective symmetric combina-
tion of particle and collective excitations, an antisym-
metric 27 level results albeit with a more strongly mixed
wave function to other configurations outside the purely
collective IBM-2—type subspace.

B. E2 decay properties

Starting from the above particle-core coupled wave
functions describing the different 27 levels (see Sec. IV A)
and using the E2 operator, discussed in Eq. (4.3), one easi-
ly calculates the reduced E2 matrix elements
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A'=(0f||T(E2)||12{)
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2 ~
=((j)%0+,00;0*|| 3 e;r?Y,(71)+B(E2;2f —01)(b} +b,)||[a | ()%0%,12;2% ) +b | (j)22+,00;2%)]

i=1

T—iGi+1)

=aB(E2;2{ —0{)"2V5+b2(r?);

172
3
4“ ]

The latter term reduces (in a single-particle limit; j;— o)
to —b%(ro)zAZBV (5/4m)e;, which for ro=1.3 fm
reduces to the expression — b0.35V'54%/%,;. So one ob-
tains for 4’ and B’ [B'= (07 ||T(E2)||25 )] the approxi-
mate expressions

A'=aB(E2;2{ -0)VV/5—-50.35V54%; ,
4.17)
B'=aB(E2;2{ —01)"2V54+b0.35V54% 3, .

Coherence and destructive interference thus results for the
symmetric 2% and the antisymmetric 2% particle-core
coupled states, respectively. In the particular situation of
the Cd (Z =50 region) nuclei and the N =84 (N =82 re-
gion) nuclei, the following results are obtained.

1. The Cd nuclei

In Table II, we give the B(E2;0{ —2{) values as taken
from Ref. 37. An averaged value of ~2000 e*fm* results,
giving rise to a collective charge, to be used in Eq. (4.17)
of

econ =B (E2;2} 07" )52V 5~45¢ . (4.18)

For the even-even Cd nuclei, one obtains the approximate
single-particle charge

e =0.35V54%% ,~20e, . (4.19)

In the particle-core coupling calculations,’®~3? effective

proton charges 1.5¢ <e, <2.0e have been used. Restrict-
ing to a single j shell (1g4,, orbital) [see Eq. (4.16)], renor-
malization will even imply a larger effective proton
charge. This means that for an equal mixing (for degen-
erate 2% levels in the unperturbed two-level model)
a=—b=1/V2 and since the collective and single-
particle charges are almost equal, a value for the matrix
element

TABLE II. Reduced E2 transition probabilities
B(E2;0{ —2{) for the even-even Sn nuclei (Ref. 37).

B(E2;0{f —>2i")

A (e*fm*)
112 2570
114 2300
116 2160
118 2180
120 2060
122 2020

124 1690

€; .
Uis Ui + 1(2j; — D(2); +3)]'2

(4.16)

(0 ||T(E2)| |2} )~V 2B(E2;2] —0)i*V5  (4.20)
or

B(E2;2f —0i )cy=~2B(E 2;2} —07 )sp 4.21)

results. This means that the coherence between the two-
proton cluster and the collective vibration is optimal and
almost doubles the B(E2) values in going from Sn to the
Cd nucleus with the same number of neutrons. Detailed
calculations for Cd nuclei, using a particle-core coupling
model description, give the same results. Similar results
were also obtained and discussed by Paar, starting from
perturbation theory.*""3? For the antisymmetric 25 state,
on the contrary, a very small reduced matrix element
(O ||T(E2)||25 ) will result.

2. The N =84 nuclei

In Table III, B(E2;0;f —2{) values, as taken from
Ref. 37, for the N =82 nuclei, are given. An averaged
value of ~3200 e*fm* is representative for this mass re-
gion. If we apply Eq. (4.17), but now for a typical value
of A =140, one obtains the effective charges

econ =B(E2;2{ —0{)1/2vV/5~55¢ ,
(4.22)
esp=0.35\/§A e ,~22e, .

In particle-core coupling calculations’*~32 effective neu-

tron charges 0.5e <e, < 1.0e have been used. Restricting
now even more to a single j shell [see Eq. (4.16)], renor-
malization will imply an even larger effective neutron
charge. For optimal mixing, a = —b =1/V2 one approx-
imately gets

1 1
(Oi*’||T(E2)||21+)= |T2558+72228 ]2556

or (4.23)
B(E2;2{ —0{ )y _s4~B(E2;2{ —07 )y _g, -

One notices that the B(E2) value remains almost con-

TABLE III. Reduced E2 transition probabilities
B(E2;0{ —2{) for the even-even N =82 nuclei (Ref. 37).
B(E2;0{ —2)
A (e fm*)
138 3800
140 2900
142 3900
144 2500
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stant, which is almost the case since for the N =84 2
levels compared with the N =82 2{ levels for the same
neutron number only about a 10% increase in the B(E2)
value results.

C. Comparison with more realistic calculations

As was discussed in Sec. III C, a number of approxima-
tions underlie the above discussion, especially when com-
pared with the more realistic cases such as the Cd and the
N =84 nuclei. Here, the approximations are the follow-
ing:

(i) the equality between the quadrupole phonon energy
fiw, and the pairing matrix element in a given j shell for
medium-heavy and heavy nuclei;

(i) the truncation of the shell-model space to a single j
shell (using only seniority v =0 and v =2 states) and of
the quadrupole phonon model space to zero- and one-
phonon states.

The more detailed calculations on Cd nuclei*!*? and on
N =84 nuclei**3’ give of course more levels and at the
same time a better description of the actual experimental
data (the '3Cd data in Fig. 10 can then be reproduced in a
much better way). The basic idea, however, of obtaining a
low-lying 27 level where both the single particle and the
collective component of the E2 decay operator act
coherently thereby producing a large B(E?2;2{ —0;)
value is retained.

V. CONCLUSION

In the present paper we have shown that symmetric and
antisymmetric couplings of two separate building blocks
occur naturally from the most simple two-level models, as
obtained within the proton-neutron shell model and in
particle-core coupling model calculations. Such two-level
models can be obtained as a good approximation, at least
for the lowest-lying 2% level as discussed here, to the ac-
tual shell-model situation in nuclei. It is the pronounced
pairing property within the identical nucleon systems and
the subsequent strong proton-neutron quadrupole interac-
tion which causes the symmetric and antisymmetric 2+
states to result. For the lowest 2% level, moreover (for

vibrational-like nuclei), a specific dependence for the exci-
tation energy E(2i") on the number of valence protons
and neutrons is obtained and is shown to correlate very
well with the experimental data in the Te, Xe, Ba, and Ce
regions with 60 <N < 80.

In calculating the E2 decay properties, both in the shell
model and in the particle-core coupling model, construc-
tive (for the 2;" level) and destructive (for the 25" level) in-
terference is obtained between the proton and neutron fer-
mion charges or between the fermion cluster and the
quadrupole core collective charges, respectively. Within
the shell model, when identifying the shell-model E2 ma-
trix elements for the lowest 2{" level to the 0% ground
state with the corresponding IBM-2 expression, a relation
between the proton and neutron effective boson charges
on the fermion proton and neutron charges as well as on
the number of valence protons and neutrons is obtained.

The above observations point out that a clear observa-
tion of such antisymmetric 2+ levels will be very difficult
to be carried out experimentally. Mixing with other, near-
by 2% levels will moreover spread out the E2 decay
strength. We expect that, from the present study (see Sec.
IID), the best cases for observing 2 antisymmetric states
will be the ones where a large difference between the num-
ber of valence protons and neutrons occurs. So, as we
pointed out in Sec. IV, in the N =84 nuclei, the 2;P level
could indeed be a good candidate as well as the analogous
23 level in the even-even Cd nuclei.
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