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Diffraction theory analysis of pion elastic scattering from the calcium isotopes
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We show that the experimental results for pion elastic scattering from the calcium isotopes in the
633 resonance region can be well represented at small angles in terms of the variables of diffraction
theory. The parameters describing the amplitude reflect physics that can be attributed to pion and

533 dynamics in a microscopic approach, as well as to details of the neutron and proton densities.
Using a phenomenological determination of the former, we show that the expermental results re-
quire a neutron skin in excess of that obtained from scaling the proton density according to the rela-
tive number of neutrons and protons. The experimental results are consistent with microscopic
Hartree-Fock densities, provided that the ratio of isovector to isoscalar optical potential is substan-
tially enhanced over the value obtained from the free pion-nucleon scattering amplitude. The. size of
this enhancement agrees with pion single-charge-exchange scattering from the calcium isotopes.

I. INTRODUCTION

Pion-nucleus scattering in the resonance region presents
two superficially contradictory appearances. On the one
hand, the interaction appears to be a complicated process
whose essential features are determined by an interplay
between various nonlocalities, isobar-hole collective states,
and a variety of interesting many-body effects. These in-
tricacies are most pronounced at the energies for which
the pion couples most strongly to elementary pion-nucleon
resonances, for example the 533 at a pion laboratory ener-

gy of about 180 MeV. In the last few years a great deal of
theoretical effort has been directed toward the develop-
ment of microscopic models that incorporate these ef-
fects. ' '

On the other hand, the pion-nucleon amplitude is very
strong in the region of the b, 33 resonance. The combina-
tion of a strongly absorptive interaction with a short
wavelength projectile suggests that the scattering process
displays a dominantly geometrical character and therefore
that the appropriate variables are those of diffraction
theory. Indeed, some of the earliest successful attempts to
represent pion elastic scattering involved the use of
Glauber's theory. '

Of course, one is not faced with choosing between two
incompatible alternatives, but rather deriding upon the
most convenient set of variables to answer the questions
being asked. In order to decide which representation is
appropriate it is important to have a detailed understand-
ing of the transformation between the two sets of vari-
ables. In this paper we examine how well the semiclassi-
cal theory represents elastic scattering and interpret the
results in terms of a more microscopic theory. One of our
main interests is to study the sensitivity of the cross sec-
tions to the choice of neutron and proton densities. The
semiclassical theory is appropriate for this purpose be-
cause it faithfully reproduces the sensitivity of the under-

lying theory to changes in the neutron and proton densi-
ties and because much of the study can be carried out
analytically. "

An analysis of neutron densities in the calcium isotopes
based on pion scattering data was made earlier in Refs.
12—14. The present analysis is similar to that of Ref. 13,
but is different in that we use a more refined version of
the analytical theory" (described in Sec. II). In Sec. III
we apply this theory to the extensive data set of Ref. 15
for 180-Mev ~+ elastic scattering from 40Ca, 42ca, 44ca,
and Ca. Interpretation of the semiclassical analysis is
given in Sec. IV. In Sec. V we examine the sensitivity to
neutron densities and show the relevance of the pion
single-charge-exchange (SCX) data' at 180 MeV from" Ca, Ca, and Ca. Justification of this analysis is
based on recent results' that show a simple, universal
scaling of the optical potential throughout the periodic
table in terms of a few phenomenologically determined
parameters.

II. ANALYTICAL THEORY

During the past few years it has been recognized by
several groups that diffraction theory for elastic scattering
has a very simple analytical representation in both the
low- (Refs. 11, 13, and 18) and high-momentum' '

transfer regions, and that only a few physically meaning-
ful parameters are needed to characterize the amplitude.
The analytical form of diffraction theory has been suc-
cessfully applied to proton-nucleus scattering. In this
section we wish to discuss the theory that we will app1y to
pion scattering in Sec. III; the results quoted are discussed
more fully in Ref. 11.

In the absence of the Coulomb interaction the differen-
tial cross section for elastic scattering is given by

= fI'(8)
[
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where, in the eikonal approximation,

J)(qR)
F(8)=ikR G (q)

q
(2) (12)

When the Coulomb residual interaction is taken into ac-
count, Eqs. (7) and (8) are changed by setting

b) ~b) [1+EVc(b) )lk ]:b—
)

and

G(q) =cosoo(qa) mqa

sinhmqa E~E Vc—(b)) (13)

to account for the focusing of the pions by the Coulomb
field, and setting

The amplitude has the well-known form of diffractive
scattering of a fuzzy black disk of radius R. The quantity
G(q) is the "Inopin factor" ' that damps the oscillations
of the cross section at large momentum transfer, which is
required when the edge of the disk is not sharp but is
spread out over a distance a. The quantity 0.0(qa) is given
by

2icro(qa) r(1+iqa)
I (1 iqa)—

(4)

The importance of a, bi, and Y is that they are related to
the optical potential U in a very, direct manner. The
equation

i
expiX(b, )

i

= —,
'

determines b), around which X(b) is given by

(7)

X(b)= — f U(+b +z )dz

= —(2maob )' U(b)/2k

and where U(b) is assumed to behave like

U(b)= U(b) )e

in a small region of the nuclear surface for b =b). The
quantities a and Yare then

X(b, ) ao

X'(b) ) 2b)
=—ap 1— (10)

The quantity R in Eq. (2) has a weak dependence on
momentum transfer, which is approximately

R (q) =R (0)—0.337a (qa)

For nuclei as large as calcium, the dependence on q may
be ignored in practice. The quantity R(0) is complex,
which means that the real and imaginary amplitudes will
fall off with q at different rates. When the Coulomb in-
teraction is included, the expressions are slightly more
complicated. "

In Sec. III we show how well the analytical expressions
for the amplitude represent the m+— scattering data. Rath-
er than tabulating R (0) and a we give instead the set of
parameters a, b), and Y, which are related to R (0) by

R (0)= Ib)+a[0.211+—,'ln(1+Y ) i tan —'Y]I

+ 1.645a

to take account of the fact that the pion kinetic energy is
changed in the nucleus by the long-range Coulomb in-
teraction.

The parameters a, b], and Y have unambiguous geome-
trical interpretations. The quantity b] locates the size of
the diffractive disk, which determines the frequency of
the oscillation pattern of the angular distribution. The
quantity Y determines the relative real part of the scatter-
ing amplitude, which is most sensitive to the depths of the
minima of the angular distribution. Finally, a determines

. the rate of falloff of the angular distribution through the
Inopin factor in Eq. (3). In order to obtain numerical
values for a, b) and Y from the data, the angular distri-
bution should be accurately measured for q extending to
at least the position of the first secondary maximum.

III. FIT TO ELASTIC SCATTERING

An impressive data set for m+— elastic scattering from
the calcium isotopes has been taken with the EPICS spec-
trometer at LAMPF. ' We have fit these data with the
parameters a, b&, and Y discussed in Sec. II. The version
of the theory we used incorporated the form of scattering
amplitude involving the Coulomb interaction. We tried to
get the best fit possible over the momentum-transfer range
out to the position of the second minimum (qb) &2m, cor-
responding to 8&55' for Ca). The results of the fit are
given in Fig. 1 for m+ and Fig. 2 for m. . The data
beyond 55' are not reproduced because they were not in-
cluded in the least-squares fit.

We fit the data for 0(55' only in order to establish as
accurately as possible the location of the first diffraction
minimum which, as discussed, then gives an accurate
value for b). The systematics of this feature of the data
reflects the details of the variation of neutron and proton
densities in the nuclear surface.

The best-fit parameters obtained from the analysis of
the EPICS data' at 180 MeV are given in Table I. Pa-
rameters obtained from the analysis of the SIN data on

Ca and Ca at the same energy can be found in Ref. 14.
Both sets of parameters are compatible within experimen-
tal errors. For simplicity our analysis is based on the
values quoted in Table I. In the Secs. IV and V we give a
detailed discussion of their meaning.

We close this section by giving a table of the forward
scattering amplitude that would be measured in transmis-
sion experiments or careful Coulomb-nuclear (CN) in-
terference measurements. When the Coulomb interac-
tion is included, the scattering amplitude may be written

and F(8)=Fp, (8)+FcN(8), (14)
ReX(b) )Y=
ImX(b) )

ReU(b) )

ImU(b) )

where Fz, is the point Coulomb amplitude. The empirical
results for ReFcN(0) and ImFcN(0) are given in Table II.



32 DIFFRACTION THEORY ANALYSIS OF PION ELASTIC. . .

IOO—

Ch

E

Cy
D

b

IO IO—
1

JQ
E

o
bD

O.OI I I I I I I

20 30 40 . 50 60 70 80
8(deg )

O.OI I I I I I I I

20 30 40 50 60 70 80
e(deg)

(b)- (c)-

IOO— IOO—

IO— IO—

E

Cg

b
Cl

E

b

O.I—

I I I I I I I I I I I I I

O.OI O.OI
20 30 40 50 60 70 80 20 30 40 50 60 70 80

8'(deg ) 8{dog)

FIG. 1. Elastic scattering of m. + mesons from the calcium isotopes. (a) ~Ca, (b) Ca, (c) 44Ca, and (d) 'Ca. The data are from
Ref. 15(a). The solid curves are fits of the analytical theory to the data.

TABLE I. Best-fit parameters for m
—elastic scattering from calcium isotopes obtained from the data

of Ref. 15 at 180 MeV. Quoted errors are purely statistical.

Isotope Pion bi (fm)

4.731+0.002
4.640+0.001

a (fm}

0.717+0.002
0.661+0.002

—0.118+0.006
—0.112+0.003

4'Ca 4.819+0.003
4.671+0.003

0.720+0.003
0.680+0.003

—0.092+0.007
—0.116+0.005

4.893+0.004
4.687+0.003

0.700+0.004
0.648+0.004

—0.099+0.013
—0.113+0.005

4sCa 5.002+0.004
4.715+0.003

0.645+0.005
0.627+0.004

—0.088+0.013
—0.093+0.005
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Transmission
ReFcN(0)

Forworward amplitude
ReFCN(0) ImFCN(0)

experiment'
ImFCN(0)PionIsotope

TABLE II. Values of forward-swar -scattering am l'p etude (in fm) at 180 MeV.

40C

"'Ca

8.0
—8.4

8.5
—8.6

15.8
14.5

16.3
14.7

4.9+1.6
—7.8+ 1.7

18.8+1.3
14.8+ 1.4

44C 8.7
—8.5

16.7
14.8

48C 9.1

—8.5
17.2
15.0

'Interpolated from Ref. 24
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TABLE III. Total cross section differences (in mb).

Isotopes

48Ca 40Ca

Fit to elastic
Pion ho ~

36
150

Transmission experiment'

Dog

30+ 13
160+12

44Ca 40Ca

'Reference 12.

13+13
100+12

We have not given the Coulomb-corrected amplitude,
which is easily obtained" by setting the Coulomb parame-
ter g to zero, because we believe that there may be other
effects of the Coulomb interaction not accounted for in
this procedure. The results for Ca are compared to re-
cent I.AMPF total cross-section data. One sees that the
values are in agreement, which implies among other
things that the variation of ReF(q) with q is given
correctly in the theory. Table III gives our empirical
values for the differences between total cross sections on

the calcium isotopes. They are within error bars of the
transmission data of Ref. 12.

IV. INTERPRETATION

%'e have shown that the analytical theory reproduces
quite well the details of the angular distribution from zero
degrees out to the position of the second maximum of the
differential cross section. Thus the quantities b1, a, and
1' carry most of the detailed information content of the
data. In this section we study these quantities based on
the optical model theory of Ref. 5, which includes impor-
tant dynamical effects arising at the level of second order
in density. Some of the gross features of the data can be
understood without the second-order dynamical effects,
and so we first examine the adequacy of the lowest-order
theory.

In order to relate the optical model to the eikonal re-
sults, it is necessary to cast the nonlocal potential into an
equivalent local form. The result of doing this, including
second-order terms, is given in Ref. 5(b) and this
equivalent lowest-order potential has the form

U( )= —k' X,'"+X,"' 1+ 2k' (r)

2

(r) e.X "—'+A,"' 1+ 6 ( )'p n''
1 1 2kz g ( )

' p (15)

where e =+—,
' for m+—, respectively, and where

p(r) =p„(r)+pp(r),

bp(r)=p„(r) —pp(r) .

(16a)

(16b)

tity Y. In this paper we add 57 perturbatively, i.e.,
evaluated at an average value b of b. As a correction to
Xp

X( b) ~X(b)+AX (b ),

477
0

(j) 8m
eo, and A&

—— e~
P& Pr

with bo, b I, eo, and e
&

related to the free pion-nucleon
scattering amplitude f N by

AN b0+b 1(t T+(CO+elf'T)k'. k,
where p and T are, respectively, the pion and nucleon iso-
topic spin operators. The quantity p1 in Eqs. (15) and
(17) arises from the frame transformation from the pion-
nucleon to pion-nucleus center-of-mass system, and it is
given by

P1 ——(1+co„/M)/(1+co /AM), (19)

where cu is the pion laboratory energy and M the nucleon
mass.

The Wallace correction, which is needed to improve
the correspondence between the eikonal theory and the
solution of the Klein-Gordon equation, may be included
as a correction to either X or U. The Wallace correction
is particularly important in order to understand the quan-

The A, parameters are related to the free pion-nucleon
scattering amplitude by

k Ao ~=4mpibo k ki =8'&b

it has the form

5X (&)=
3 f U (b,z)+ U2(b, z) dz .

8k 00 63~ y dy

(21)
As a correction to U, the Wallace correction may be ex-
panded in powers of p and bp and has the same distinc-
tive dependence ' ' on these quantities as the dynamical
second-order terms in U. The resulting set a, b~, and Y
leads to a scattering amplitude that agrees well with the
exact solution of the Klein-Gordon equation. "

Consider first the case of Ca. For this nucleus N =Z,
and the Coulomb repulsion among protons is responsible
for pushing the Hartree-Fock proton density outward at
the surface slightly beyond the neutrons. One might
therefore expect the angular distribution for m+ to be
more compressed than that for m, since the target is
more spread out. A careful comparison of Figs. 1(a) and
2(a) shows that just the opposite is true empirically [this is
also easily seen in Table I, where b1(m+) & b1(n )].
Furthermore, we see that the larger value of b1 (for m )

corresponds to the smaller value of a. Because the density
falls more rapidly for large r, this is also opposite to what
one would naively expect.
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TABLE IV. Coulomb-corrected impact parameters and values of a compared to theory.

. Isotope

4'Ca

Pion bl (exp)

4.64
4.73

a

4.75
4.62

bl b

4.92
4.84

a (exp)

0.66
0.72

a(b, )

0.68
0.71

4'Ca 4.67
4.82

4.78
4.71

4.99
4.92

0.68
0.72

0.68
0.78

"Ca 4.69
4.89

4.80
4.78

5.02
5.00

0.65
0.70

0.67
0.69

" Ca 4.72
5.00

4.83
4.89

5.12
5.14

0.63
0.65

0.66
0.68

'Trajectory correction in Eq. {12)applied to bl(exp).
Solution of Eq. (7) with lowest order U, Coulomb energy shift included.

'Diffuseness at radius determined from calculation b.

b)(n+)=4. 75 fm .

Similarly, for m we find

b, (n )=4.62 fm .

(23)

(24)

We see now that the m+ probes properties of the optical
potential at a radius slightly larger than that of the m.

which is what one would expect intuitively if the protons
in Ca extend beyond the neutrons as in the Hartree-Fock
theory. If we compare the diffuseness at these radii, using
Eq. (10) and numerically differentiating the density ma-
trix expansion (DME) Hartree-Fock densities, we find

One can understand these trends as an effect of the
Coulomb interaction in the scattering zz, z7 Because the
Coulomb repulsion bends the m. + classical trajectory away
from the nucleus, the effective impact parameter increases
by an amount given quantitatively in Eq. (12). For ~Ca
we find, taking (b ~ ) =4.69 fm,

1+
EVc(b, )

k
=1.024 . (22)

Thus for m. + scattering, the amplitude becomes sensitive
to the diffuseness at a radius (see Table IV)

values of the lowest-order optical potential and the data is
5=0.25 fm. This corresponds to a relative displacement
of the minima in do/dfl by an angle of 68=1.5'. A
similar feature was found by Zeidman in his study of
the calcium isotopes based on a numerical solution of the
relativistic Schrodinger equation.

What is the reason for this discrepancy 6? It could sig-
nify either a deficiency in the nuclear densities or a diffi-
culty with the reaction theory. With regard to the nuclear
densities it should be recalled that the Hartree-Fock densi-
ty is only an approximate representation of the proton dis-
tribution. Although the DME theory is generally in
agreement with -electron-scattering and p-atom experi-
ments, significant fluctuations about the mean field densi-

10

10

a(m+)=0. 696 fm .

Similarly, we find

(25)

a(m. )=0.692 fm . (26)

These values are both close to the empirical results of 0.66
and 0.72 fm, respectively.

We thus see that some of the mixing of the strong in-
teraction with the Coulomb interaction is well understood.
In addition to this Coulomb effect, there is the modifica-
tion in Eq. (13) that is less well understood and discussed
in connection with Figs. 3 and 4 below.

Consider now the extent to which the values of b& in
Table I are compatible with the lowest order U, which is
given as the solution of Eqs. (7)—(11) and (15)—(21). We
have solved these equations using the DME theory for
p„(r) and pz(r) and give the results in Table IV. From this
table it is evident that the difference 6 between the b&

0.1
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l
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I I

40 50

8 (deg)

g 0

60
I

70 80

FIG. 3. Elastic scattering of m.+ mesons from Ca. The solid
curve is an optical-model calculation using the theory of Ref.
5(b) with second-order corrections taken from Ref. 17. Data are
from Ref. 15(b). The dashed curve includes the Coulomb energy
shift in Eq. {13).
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FIG. 4. Elastic scattering of m. mesons from Ca. Solid

and dashed curves are calculated as in Fig. 3. Data are from
Ref. 15(b).

ty could occur in the nuclear surface, the region of the
nucleus to which 180-MeV pion scattering is most sensi-
tive. However, these fluctuations increase the density in
the surface, and cannot therefore be the source of the
discrepancy 5.

The values of Y obtained from the free pion-nucleon.
scattering amplitude using Eq. (11) are compared to the
empirical values in Table V. One notices that the latter
are considerably smaller than the theoretical values of Y;
This means that the depths of the minima in the lowest-
order optical-model theory will be too shallow. Because
of the sensitivity of the quantity Y' to the real part of the
scattering amplitude in the medium, this discrepancy is a
particularly good indicator of medium modifications to
the b,33 resonance.

Thus the discrepancies in b~ and Y presumably reflect
the need for medium modifications to the pion-nucleon

amplitude. There are many possible sources for these
corrections in the theory, "and these are not yet corn
pletely sorted out. However, the corrections have been
determined phenomenologically' in terms of the second-
order optical potential U' ' using an analysis of the exten-
sive data set on elastic scattering, SCX, and double-charge
exchange (DCX) at 164 MeV. This theory incorporates a
lowest-order optical potential derived from free pion-
nucleon scattering and a second-order optical potential
whose form is derived from theory and specified in terms
of a few parameters. The position of the h3z resonance
was found to be shifted by 35 MeV in the medium,
presumably by kinematic and dispersive effects of the
medium. The theory demonstrates that one set of param-
eters characterizes the pion-nucleus interaction
throughout the periodic table in terms of the neutron and
proton densities. As it is important in Sec. V to have an
optical-potential theory that correctly describes the
scattering from the calcium isotopes at 180 MeV, we ex-
amine next how well the second-order optical potential
determined at 164 MeV in Ref. 17 describes the 180-MeV
calcium data.

Extension of the eikonal theory to include U' ' is
possible. ' ' However the theory becomes quite complicat-
ed in this case and for our present purposes we solve the
Klein-Gordon equation directly. %e show in Figs. 3—6
the elastic scattering of m

—+ from Ca and Ca. Figures 3
and 4 show that the scattering data are well reproduced by
the second-order parameters' for 4OCa. Skyrme III densi-
ties ' were used for the calculation. The dashed curve
shows the effect of the Coulomb energy shift of the
lowest-order optical potential evaluated according to the
prescription in Eq. (13). The effect of the Coulomb force

10

10

Isotope

40Ca

TABLE V. Values of Y compared to theory.

Pion

—0.12
—0.11

—0.32
—0.53

10—
Cy
U
b
U

~Ca —0.12
—0.08

—0.33
—0.46

Ca

48Ca

'Solution of Eq. (11),with Wallace.

—0.12
—0.09

—0.09
—0.08

—0.33
—0.55

—0.35
—0.58

01
10

I

20 30
l I

40 50

8 (deg)
60 70 80

FIG. 5. Elastic scattering of m+ mesons from Ca. Solid
curve is calculated as in Fig. 3. Data are from Ref. 15(b).
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of nuclear wave functions, especially of the neutrons. Be-
cause the m. interacts more strongly with neutrons than
m+ in the resonance region, it is possible in principle to
extract information about neutron densities from elastic
and total cross-section data. There have been several at-
tempts to do this. ' ' However, these analyses had the
drawback that the pion optical potential was taken purely
from theoretical models. Recent studies of pion SCX
have been made and these data are beginning to provide a
phenomenological characterization of the isovector pion-
nucleus interaction, which is needed to justify the pro-
cedures used. The analysis of Ref. 17 found a large
correction to the isovector optical potential and a
moderately small correction to the isoscalar optical poten-
tial. We can estimate the size of the corrections to U by
dropping the less important Laplacian and s-wave terms
to find

g(1)+g(2) P ~ g(1)+g(2) P
0 0 P 1 1 Pk Po' 2 Po

(27)

0.1
10

I

20 30 40 50

& (deg)

60 70 80

FKy. 6. Elastic scattering of m mesons from Ca. Solid
curve is calculated as in Fig. 3. Data are from Ref. 15(b).

The imaginary part of U is most important in determin-
ing b~ [see Eqs. (7) and (8)], and at the self-consistent
point p(b&)/po=0. 1. Taking into account the 35-MeV
energy shift presumably arising from isobar propagation
and using the A, values of Ref. 17, we find

Im(ko +Ao p/po)/Imago =1 06 (28)

is small, but the trend of the theory is opposite to that of
the data. Thus the data are better described without the
correction in Eq. (13), and one understands why
phenomenological descriptions often neglect this term.
We expected the correction in Eq. (13) to be a good ap-
proximation ' to the Coulomb modification to the
strong interaction and do not understand why the data do
not reflect it. Figures 5 and 6 show m

—+ scattering from" Ca. Again, the optical-model theory with medium
modifications is seen to reproduce the data very nicely.
The main discrepancies are in the depths of the minima
for sr+. scattering and the shift of the theoretical angular
distributions toward smaller angles, particularly notice-
able in the case of ~ scattering from Ca.

The residual discrepancy between theory and experi-
ment at 180 MeV in Figs. 3—6 is to some extent due to
the fact that we used the parameters of the second-order
optical potential determined at 164 MeV. However, there
is also a strong sensitivity to the nuclear densities, and the
discrepancies may also, in part, be of this origin. One of
the main purposes of this paper is to see to what extent
different densities could lead to improved results. Be-
cause the diffraction theory faithfully reproduces the sen-
sitivity of the optical-model theory" to changes in density
we will next use the data in conjunction with the analyti-
cal eikonal theory to study this sensitivity.

V. NEUTRON DENSITY
IN THE CALCIUM ISOTOPES

One of the most tantalizing prospects of the use of
pion-nucleus scattering data has been to probe the details

Im(XI '+XI 'p/po)/Imk, '~"——1.29 . (29)

y =—X,',"/X,,"' . (31)

The estimate in Eqs. (28) and (29) for 164 MeV gives
y=1.22 instead of the free value y=1.0. In this paper
we need the value of y for 180 MeV pions. We present
below a simple procedure to determine it directly from the
data.

For our study of neutron distributions, we will relate
the variation of the parameter b1 through the calcium iso-
topes to the separate variation of the neutron and proton

These are only estimates because we have not included the
Wallace corrections or the Laplacian terms that will
slightly modify the strength of the isoscalar and isovector
terms. Because the ratios differ significantly from 1

(especially for the isovector strength), the medium modifi-
cations must be taken into account in an analysis to obtain
neutron densities.

In our analysis the main interest is to study the effect of
the large renormalization in Eqs. (28) and (29). There is
some minor nucleus dependence to the renormalized
strength arising from the fact that p(b) and the Laplacian
terms vary through the calcium isotopes, but we shall ig-
nore these. Thus, we take U(b ) to have the following
form

k
"

o(pb ) eA, I
'b p( b )—, (30)

where A, 0 and k1 are taken to be constant throughout
(1) (1)

the calcium isotopes. As we shall see below, our results
are sensitive to the scattering dynamics only via the ratio
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TABLE VI. Values of P; determined from experiment {Eq.
34). Statistical errors are of the order of a few percent.

right-hand side of Eq. (33) may then be entirely deter-
mined from the information in Table I,

Isotope

48C

Pion

1.14
1.57 (b bl )/gl

e

40g40 /& (b —b 0)/ag Q) e 1 1

a'b' (34)

1.08
1.26

42Ca 1.03
1.12

"tl a b ImU (b~ )=Q ab' ImU'(b') (32)

densities. This may be accomplished by noticing that Eq.
(7} defining b~ is identical for all isotopes. Then using the
explicit form of Eq. (8) for g(b) gives a condition which
relates b& and a to the imaginary part of the optical po-
tential:

and the results are given in Table VI. The quantities a in
Eqs. (33) and (34) refer to ao, whereas the a in Table I are
related to ao by Eq. (10). We take ao to be the same as a
in evaluating Eq. (34). This does not lead to significant
errors because the correction, given in Eq. (10), is small
with little variation among the calcium isotopes. The b&
in Eq. (33) are actually the Coulomb-corrected b ~,
evaluated according to Eq. (12), but because we evaluate
the P; for m+ and n. separately, these Coulomb correc-
tions may be ignored.

We now want to solve the left-hand side of Eq. (33) for
p'„(b& ) and p~(b, ), i.e.,

where a' is the 1/e falloff distance from b& of U. Equa-
tion (32) allows us to evaluate ImU' in the surface of the
nucleus from the numbers in Table I. It is more revealing
to compare U at a common point in the nucleus b ~, and
in order to do this we write Eq. (32) as follows

ImU'(b~) a b~ ImU (bt ) ImU'(b&)

ImU (b, ) a'bI ImU (b, ) ImU'(b'()

(33)

Im U'(b ),~+ ) =p, (~+}
ImU (b„m+)

Im U'( b ),m )
=P;(n ) .

Im U (b„m).

(35)

We choose b~ ——4.7 fm. We have assumed that the densi-
ties fall exponentially in a small region of the surface in
the vicinity of b, according to Eq. (9). The ratios on the

For U we use Eq. (30) and express results in terms of y
defined in Eq. (31). Taking y to be constant throughout
the calcium isotopes, we find

i 40
pr/pv =

i 40p./p

40

P+(I+y/2) —13 (1—y/2) —(1+y/2)(1 y/2)(P —P—+)
pp'

40

2p
P (1+y/2) —P (1—y/2) +(1+y/2)(1 —y/2)(P —P )

(37)

(38)

p (4.7)/p (4.7)=1.03 (39)

To the extent that the proton density in nuclei is well
described by the Hartree-Fock theory, Eq. (37) determines

y phenomenologically. Once y is known, Eq. (38) can be
used to determine the variation of the neutron density
through the isotopes of calcium in the surface. We use
the measured charge-exchange cross sections as an in-
dependent check on our results.

To evaluate y from Eq. (37) we take p„/p~ for Ca
from the DME theory, p„/p„=0.941. Whereas this ratio
is model dependent, it occurs in a relatively minor correc-
tion. We need also as input the ratio of p~ /pz at r =4.7
fm. The proton densities have been accurately determined
from electron scattering and p -atom measurements.
We find

and from Eq. (37}we find y=1.3. This is just a bit larger
than the estimate y=1.22 using Eqs. (28) and (29) at 164
MeV. Using this value of y and the p„ /pz from the
Negele-Vautherin DME theory, we find the values of
p'/p for neutrons and protons given in Tables VII and
VIII.

Table VII indicates the sensitivity of the extracted den-
sities to the isospin-dependent corrections in O' '. Table
VII (top half) gives the results for protons. In the first
column are the ratios p~(i)/p~(40) evaluated on the basis
of analysis of p -atom data taken at LAMPF and elec-
tron scattering data. These numbers are the "exact" re-
sults to which the pion-scattering data must be compared.
The second column gives the results of the full analysis
including U' '. The pion results compare to within +5%,
which is an index of how seriously we should take the
neutron-density results. The third column in Table VII
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48C

"Ca
"ca

p atom'

1.03
1.08
1.05

TABLE VII ~ Effects of adding U .

p~/p~ at r =4.7 fm
m+ nucleus

1.03
1.03
1.01

m+ nucleus (no U' ')

0.93
0.93
0.99

48C

"ca
4'ca

'Reference 34.
Reference 35.

p+ nucleus

1.80
1.46
1.24

p'„/p4' at r=4. 7 fm
++nucleus

1.69
1.31
1.15

~+nucleus (no U' ')

1.80
1.35
1.17

(top halfl shows what we get by turning off the isospin-
dependent pieces of U' ', i.e., by putting y = 1 in Eqs. (28)
and (29). There is a 10%%uo decrease in the values for Ca,
and this verifies the importance of U' ' for making a de-
tailed assessment of the densities from pion elastic scatter-
ing.

In Table VII (bottom half) we show the importance of
U' ' for the neutron densities. The first column shows
the ratio p„'/p„calculated from the results of an
analysis of proton-nucleus scattering. The second
column is our analysis of the m-nucleus scattering data.
The pion ratios are consistently below the proton-
scattering results by 5—10%%uo. Note that adding U' ' has
a smaller effect on the neutrons than it has on the protons
and that it makes the disagreement with the proton-
scattering analysis even greater.

Table VIII compares various models and the empirical
analyses of proton and neutron densities. The protons are
compared in Table VIII (top half). The first two columns
are the same as those in Table VII (top half) and the last
two are theoretical predictions of the Negele-Vautherin
and SKIII (Ref. 31) Hartree-Fock theories. There is

reasonably good agreement. In Table VIII (bottom half),
for neutrons, we again reproduce the first two columns of
Table VII (bottom half). The last two show the Hartree-
Fock densities. The middle column labeled "scaled" is the
result that would be obtained in the absence of a neutron
halo; i.e., the neutron and proton densities were assumed
to be everywhere proportional to X/Z. One sees that the
analysis of the pion-scattering experiment confirms the
existence of a neutron halo, but that the halo is not as pro-
nounced as in the Hartree-Fock theories.

One might be more comfortable with the analysis at
180 MeV after comparing the theory to pion charge-
exchange data. This is done in Fig. 7. The data' are as
yet preliminary, but the figure shows that by including the
isospin-dependent terms in U' ', we improve the repro-
duction of the single-charge-exchange data. For this cal-
culation we used the Negele-Vautherin DME Hartree-
Fock densities. It is pleasing that the same corrections in
U' ' lead to a simultaneous improvement in theory for the
elastic and the SCX data. Within the same approxima-
tions which lead to Eqs. (1)—(11) the pion single-charge-
exchange cross section at 0' reads

'2

(0 ) = yakR [1—0.577(a&/a~ —1)] .do . 1 bp
dQ sex 2 X—Z p

(40)

where a and R denotes the average value for m+ and vr

scattering. The value of hp/p has to be evaluated at the
self-consistency point b&. The factor within square brack-
ets takes into account the different rate of falloff for p
and bp. Equation (40) reproduces approximately the "ex-
act" results of Fig. 7, which were obtained by solving nu-

merically the K.lein-Gordon equation. Our type of
analysis of m+/m. elastic scattering differential cross sec-
tions can therefore easily be tested against the single
charge exchange cross sections.

We have also compared our results to the Hartree-
Fock-Bogoliubov calculations of Decharge and Cxogny.
We find theoretical . values intermediate between the
Negele DME and SKIII results, except for p„ /p„, which
are slightly larger than the DME results in Table VIII.

pp/pp at r =4.7 fm

p atom m. +N DME' SKIII'
48C

"Ca
4'Ca

1.03
1.08
1.05

1.03
1.03
1.01

1.06
1.03
1.01

1.15
1.07
1.04

p+N
p'„/p„at r=4.7 fm
m+ N Scaled DME' SKIII

48Ca
4'Ca
"Ca

1.78
1.46
1.24

1.69
1.31
1.15

1.44
1.29
1.15

1.88
1.43
1.21

2.01
1.48
1.17

'Reference 28.
Reference 31.

TABLE VIII. Comparison to Hartree-Fock theory.
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Cy

b i.o—

44
l

48

FIG. 7. Pion single-charge exchange from the calcium iso-
topes. The dashed curve is the theory of Refs. 5(b) and 17
without isospin-dependent terms in U' '; the solid curve includes
the full O' '. The data are from Ref. 16.

VI. SUMMARY AND CONCLUSIONS

We have shown that resonance-energy pion-nucleus
elastic scattering is well described at small-momentum
transfer (q (1.15 fm ') by the analytical theory of Ref.
11, including Coulomb effects. This theory parametrizes
the data in terms of three numbers: a diffuseness a, a
strong absorption - radius b'~, and a ratio of real-to-
imaginary components of the optical potential F

We compared the empirical quantities a, bI, and F to
values obtained from a theoretical model that builds the
potential from realistic densities and the free pion-
nucleon-scattering amplitude. Qualitative reproduction of
the empirical results was obtained for a and bi, but the
necessity of making corrections for isobar propagation
and interaction was observed in trying to understand K
It was shown that the optical potential previously deter-
mined for 165-MeV pion elastic scattering also worked
well at 180 MeU, giving confidence in the underlying op-
tical model. Small anomalies in the Coulomb modifica-
tion of the strong interaction are not understood.

Having come to a phenomenological understanding of
the scattering dynamics, we used the theory to examine
the neutron and proton densities in the calcium isotopes.
By examining the variation of b& for m

— scattering and
using empirically determined strengths for the isovector
and isoscalar optical potentials, we deduced values for
p„"~~~(bi)/p„~~~(bi ), the ratio of neutron (proton) densities
in the surface of Ca compared to that in Ca. The pro-
ton densities compared favorably to the empirical densi-
ties, and the neutron densities showed evidence of a neu-

tron halo. Comparison to Hartree-Pock densities revealed
that there is nearly as much spread among the different
Hartree-Fock theories as there is between the empirical
and Hartree-Fock densities.

Making use of the Hartree-Fock densities, we made pre-
dictions for single charge exchange at 180 MeV. We
found that the theory predicts too little charge exchange
unless the isovector interaction is substantially enhanced,
consistent with the analysis at 165 MeV. The enhanced
isovector interaction was important for obtaining the
empirical Hartree-Pock proton density in Ca.

Previous analyses of pion-scattering data to obtain neu-
tron densities have been criticized because the variation
of the optical potential throughout the isotopes that was
used in the analysis had not been tested empirically. We
have based the results of this paper on a theoretically de-
rived optical potential that has been shown' to scale
throughout the periodic table in a manner consistent with
the elastic and charge-exchange data.

It is of interest to understand the extent to which the
discrepancies between theory and experiment in the densi-
ties of Table VII are due to the Hartree-Fock theory and
due to the scattering theory. An improved analysis of the
scattering data could be made by working directly with
the solution of the Klein-Cxordon equation rather than the
eikonal theory. A procedure similar to that of Rhf. 35
could lead to an assignment of errors on the density distri-
bution. It mould be interesting to make an analysis at a
variety of energies; the strong energy dependence of the
pion-nucleon amplitude would permit different regions of
the nucleus to be explored at the different energies. Hav-
ing the charge exchange and elastic scattering available
would be important to fix the isovector terms in the opti-
cal potential.

One should not expect to reproduce in detail the results
of the Hartree-Pock theory. This is clear because of the
variation in the predictions of the different effective in-
teractions. Perhaps even more significant would be the
fluctuations about the mean-field densities recently dis-
cussed in Ref. 30. A striking discrepancy between
electron-scattering results on Pb/ Tl and the mean-
field predictions has been observed for the 3S orbit and
attributed to corrections of this origin. Eventually
theoretical models that combine the nuclear structure and
reaction theory at a deeper level may lead to useful in-
sight. Development of momentum-space methods that
may be capable of handling such extensions are under
way. '
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