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We consider a simple model of the ~-N scattering amplitude in nuclear matter, in which the inter-
mediate pion propagators appearing in m-N diagrams are dressed through the scattering of the pion
from the background nucleons. We use this model to calculate the differential cross section for the
exclusive (m, mN) knockout reaction with the geometry of the experiment especially chosen to max-
imize the possibility of observing renormalization of the 6 resonance in the nuclear interior.

The 5 isobar dominates both low-energy m-N scattering
and m-nucleus scattering. ' It is generally believed the
nuclear medium renormalizes the ~-N interaction, so that
the mass and width of the 5 need not be the same as
found in scattering from a free nucleon. Previously we
have used a simple model of this renormalization to calcu-
late exclusive (m. , irN) cross sections in distorted-wave im-
pulse approximation (DWIA), and compared the results
with recent data of Ziock et al. on ' C(sr+, m+p)"B.
The data were taken with the beam momentum k, the
outgoing pion momentum k', and the outgoing proton
momentum p' cop/anar. The outgoing pion and proton
energies, the beam energy, and the magnitude of the
momentum of the recoiling nucleus,

~

k —k' —p'~, were
kept fixed. Of the five kinematic variables characterizing
a three-body final state, two angles then remain free to be
varied in the experiment. The coplanar experimental
geometry fixes one of these angles (because it represents
the angle between the planes whose normals are k & p' and
k Xk'). The remaining angle was varied in order to sweep
the barycentric energy V s'—in the outgoing m. N-
subsystem —through the mass of the b„and thereby pro-
duce the resonance. The experimentalists had hoped in
this way to see a bump identifiable with the b,—perhaps
at v s'&1232 MeV.

In I (see Ref. 4) we used a deliberately schematic model
of nuclear b, renormalization —based on pure p-wave,
spin-independent m.-N scattering —to inquire whether an
experiment like that of Ziock et al. could hope to detect
nuclear renormalization of the h. We felt that if no ob-
servable effect was predicted with a schematic model, the
added complexities of a realistic theory were hardly likely
to improve matters. In fact, our simple model showed
that the experiment suffered from two defects originating
from its coplanar geometry.

(1) The range of variation of vs' obtained by varying
the angles between the outgoing particles (in coplanar
geometry) is too small to define the resonance, that is,
even the free resonance varies too little over the available
range to produce a clear resonance shape from which the
position and width may be deduced.

(2) In the DWIA, a pure p-wave n. Nt matrix contains-
the factor

H=(k' —k 'p'/1M) [k—k (k'+p' —k)/M] .

Unfortunately, H varies rapidly with the angle that is
used to sweep vs (and, in fact, it is this variation which
dominates the shapes of the theoretical and experimental
curves shown in Fig. 3 of I and repeated in Fig. 1 herein).
Thus the data reflect the p-wave nature of the ir-N
scattering near the 6 resonance rather than the energy
dependence of the resonance per se.

While concluding that the experiment contained no in-
formation on 5 renormalization in nuclei, we wondered
whether these defects could be remedied using noncopla
nar geometry. We found that by varying the dihedral an-
gle @ (between the vectors k&& k' and k&(p') as well as the
polar angles 8,8~, defined by

k '=kcosO„+ xsinO

p
' =kcosO„+ xsinOpcos@+ ysin8~sin@,

one might define a regime in which both the recoil
momentum and the vr Np-wave fac-tor H could be held
constant while v's' varies sufficiently to be of interest. As
we shall report in this paper, we have found such a re-
gime; we have recalculated our simple theory and present
the results in Figs. 2 and 3.

We now recapitulate our simple model of 5 renormali-
zation in nuclear matter which we used to test the (ir, rrp)
data for shifts of the energy and/or width of the 6 in fi-
nite nuclei. This is a deliberately oversimplified model in
which we have incorporated both "multiple scattering"
(MS) and "pure renormalization" (PR). By varying the
model's parameters we explore the dependence of nuclear
6 renormalization on various aspects of the problem that
we cannot as yet confidently calculate from first princi-
ples. An important oversimplification is our neglect of
the not-inconsiderable s-wave m.-nucleus interaction which
is expected to contribute to (m, AN) knocko. ut at energies
below the 6 resonance. Our philosophy in neglecting s
waves is that if one cannot observe renormalization of the
6 under ideal conditions, the situation will not be im-
proved by interfering processes. We shall next describe
the main ideas of our model, and then we will sketch how
we use it in a form of distorted-wave impulse approxima-
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FIG. 1. Reprise of Fig. 3 of Ref. 4: The fivefold differential cross section for the ' C(m+, ~+p}"Bknockout reaction as a function
of the invariant mass Vs of the outgoing ~+p pair, following the (coplanar} experimental protocol of Ref. 5. The experimental
points are the data of Ref. 5. The curve labeled "free" uses the unmodified m-N t matrix, Eq. (8); the curves labeled "with vertex"
and "without vertex" correspond to NL and PL in Fig. 2 and 3—the vertex function referred to is that controlling the off-shell
behavior of X(k) of Eqs. (5}—('7).

tion (DWIA) to describe (n, mN) knockout on finite nu-
clei.

The interaction of a pion with a nucleus traditionally
has been visualized as a combination of both MS and PR.
Multiple scattering theory posits a Schrodinger equation
for a particle interacting with scatterers (nucleons) via
two«body potentials. In this picture, the m-nucleus optical
potential is represented as a sum

V,p, ——gt'N+g gt'NGtJN+ . , (3)
I (J

where t' q is the m-N scattering amplitude on isolated nu-
cleon "i," and 6 is a Green's function. Alternatively,

the presence of the nuclear medium may well modify the
rr-N scattering amplitude appearing in Eq. (3) from its
free value, for example by modifying the fundamental
aNN coupling which gives rise to t~N, or by modifying
the pion and nucleon propagators in intermediate states.
This latter class of effects is pure renormalization. It is
easy to see that either MS or PR could shift the resonance
in elastic m-nucleus scattering.

The traditional distinction between MS and PR effects
is artificial. Nevertheless we feel there is something to be
learned from the study of a simple model in which the
MS-PR distinction can be made. The simpliest model of
this kind is a separable representation of the m-N matrix,
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FICr. 2. The fivefold differential cross section for the ' C(m.+,a+pi "Bknockout reaction as a function of the invariant mass v s'
of the outgoing m+p pair, for constant nuclear density, p. The labels NL and PL stand for finite-size (nonlocal} and zero-range (point-
like) m-N vertices, as described in Fig. 1 and the text. The label free stands for p=O.
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series of diagrams, we obtain various subsets of the per-
turbative expansion of the renormalized t matrix, T~N,
deperiding on how we define the optical potential. The
empirical m-nucleus optical potential combines effects of
both MS and PR. [It would also be possible, in principle,
to define an optical potential which exhibits only MS ef-
fects by means of the formal expression Eq. (3).] As a
matter of convenience we use the pure p-wave part of the
empirical optical potential; in principle we could demand
self-consistency between this and T' N, but in practice we
do not. A difficulty we cannot resolve without deeper
understanding is how to continue the empirical optical po-
tential off the energy shell; since this continuation deter-
mines how strongly X(k) affects T' N, it is necessary to
resolve this question in a definite manner. We shall guess
that the off-shell continuation may be written

FIG. 3. Local-density approximation (LDA) results for the
fivefold differential cross section for nonlocal and pointlike m-N

vertices. Also shown are results for free (p=0) case and for ~ of
Eqs. (11) and (12) taken to be constant (nonresonant case).

{kI Vp, (k ) Ik)=k U ( Ik )c(k )p,
where U (

I
k

I
) is the m'NN vertex form factor [normalized

to U (0)= 1], and p is the local nucleon density.
The free m.-N t matrix in this separable model is

The b, isobar arises from the summation of an infinite
series of m-N graphs which diverges when the barycentric
variable v s equals the 5 mass. In nuclear matter we ex-

pect the rrNN vertex function to be modified, and the nu-

cleon propagator to be affected (at least) by Pauli block-
ing. However, the dominant effect, and the one we focus
on here, comes from the renormalization of the free pion
propagator (k —m )

' to

b,p(k) = [k —m —X(k)] (5)

where m is the pion mass and k=(k, k) is the four-
momentum of the virtual pion. The irreducible self-
energy X(k) is given, to first order in the z-nucleus opti-
cal potential, by

X(k)=2ko{k
I

V,p, (k )
I
k) .

When the modified pion propagator (5) is inserted into the
expression representing the m.-N t matrix as an infinite

where the fundamental rrNN interaction is represented as
a vertex amplitude (for our purposes, pure p wave), i.e., a
nonlocal coupling,

3

H NN —— g fdr fdr'N+(r)crt;N(r)V, n;(r').
i=1

& k'14N(k')
I
k) =k' kU(

I
k'I»(

I
k

I
)«v»

where

k =(s+m —M )/2vs

dk "k"
U (k")fX P

(k ) rn (k—")— (10)

We ignore the inessential complication of the nucleon
spin. [The expression Eq. (10) for r(Ms ) is derived using
off-shell two-body unitarity rather than the Lippmann-
Schwinger equation with a separable potential. ] When we
replace the free pion propagator (k —m )

' in Eq. (10)
by the renormalized propagator (5) (Pauli blocking of the
nucleon propagator is neglected on the grounds that the
dominant intermediate states have momenta far above the
Fermi momentum), we obtain the (approximately) renor-
malized m.-N t matrix

{k'
I

T N(vs, e,P)
I
k) =k'.k

x~( Ik'
I

)U( Ik
I
)«~~ e p)

is the barycentric pion energy expressed in terms of the
barycentric ~ Ntotal ener-gy Vs (M is the nucleon mass,
m is the pion mass), and where «v s ) is given by

r

«V s ) = ~ A,
' ——,m[1+(M m)/s]k—

where

dk "k" k"
«vs, e,p)=. A,

' —3~[1+(M —m )/s]k f (ko) —m2 —(k") [1+pc(e)U (k")]
(12)
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plays the role of a b, propagator in nuclear matter. The
effects of the nuclear environment are included in Eq. (12)
uia the local density approximation (LDA) which neglects
the variation of the nuclear density over the volume of the
~-N interaction, so that the density p in (12) may be re-
placed by p(R) at the point R which is the barycenter of
the m-N subsystem. Note that the energy e refers to the
intermediate-state n-N scatterings, and is generally dif-
ferent from k (s') defined in (9) above.

In what follows we shall be referring to two choices of
the off-shell continuations of the self-energy X(k): In the
curves labeled NL (nonlocal) the off-shell behavior of
X(k) is controlled by the same vertex function U(

I
k

I
)

that appears in the numerator of Eq. (12) (and which con-
trols the high-momentum behavior of the integral);
whereas in the curves labeled PL (pointlike), U (

I
k

I
) = 1 is

assumed. For economy, we give the vertex functions the
usual monopole form

u(I kI)=1/(1+1 /A ), A=750Mev/c. (13)

z~k'k'z'Ik'I II'I
& ITf Idk 'dQydQ»

(15)

for the exclusive knockout reaction, where & I T~; I ) is
the usual squared, summed, and spin-averaged t matrix.

In Table I we give sets of angles and energies, for fixed
nuclear recoil momentum

I
P

I

=
I
k —k' —p'

I
and fixed

p-wave factor H at which it would be appropriate to per-
form measurements similar to those of Ref. 5. The recoil
momentum

I
P

I
is set to coincide with the peak of a lp-

shell nucleon wave function (in momentum space) in order
to minimize the variation of the data resulting from the
bound-nucleon wave function, since nuclear structure is

Note that in principle the strength and range of the m.NN
coupling could differ from those appropriate to isolated
nucleons. About the renormalization of the strength
6 NN we can say little of interest since obviously any ma-
jor change in G~NN would modify the b, 's parameters by
an unknown amount. However, because U(

I
k

I
) differs

from unity only at large momenta (or equivalently, at
short distances) we expect the range 1/A to be less strong-
ly renormalized than the position and width of the b, .

From Eq. (11) for the renormalized m-N t matrix, we
evaluate the exclusive (m, np) knockout amplitude

T~ — ' — 'p' M —ik M & 4R
X ~[Ms', e',p(R)]e'" " ~ ', (l4)

where 4(R) is the (bound state) wave function of the pro-
ton in the target nucleus. The gradient operates only on

The momenta and energies appearing in Eq. (14) are
laboratory quantities; primed (') means "final state" and
unprimed means "initial state. " Equation (14) contains
the effects of pion distortion in the final state, but
neglects them in the initial state. It also neglects the dis-
tortion of the final proton wave function. (These omis-
sions are justified since the neglected distortions will af-
fect mainly the overall magnitude of the cross section
rather than its shape. ) From (14) we obtain the differen-
tial cross section

not the focus of this experiment. It is necessary to make
the p-wave factor 0 as large as possible in order to max-
imize the counting rate. Conversely, if this factor is given
its maximum possible value, there is little variation possi-
ble for ~s'. The value chosen, H=4X10 (MeV/c), is
the largest consistent with a reasonable range of ~s'.
Note that the experimental protocol was extended by
varying the energy of the incoming pion in order to in-
crease the range of variation of ~s'.

We calculated the fivefold differential cross section
d oldk 'dQqdQ~ of Eq. (15), where k ' is the total ener-

gy of the outgoing pion, and k' and p' are the momenta
of the outgoing pion and proton, respectively. Also, dQ&
and dQ& are the corresponding elements of solid angle.
To determine the importance of the density variation
(within the local density approximation introduced in I),
we calculated the differential cross section first for fixed
nuclear density p (assuming various values for P), and
then in LDA. The fixed-density results are shown in Fig.
2, and the LDA results in Fig. 3, as functions of ~s'. In
Fig. 2 we show two forms of the results for each p. These
forms differ according to the assumed model of the off-
shell extension of nuclear n.-N scattering in intermediate
states, as explained above and in I. The curves labeled NL
and PL refer to the two choices of off-shell continuation
of the pion self-energy X(k) described above. In Fig. 3
(LDA results) we also distinguish between the two kinds
of off-shell behavior in intermediate states. In both fig-
ures we exhibit for reference the impulse approximation
using the unmodified (free) n Nt matrix -from our model
(whose parameters were adjusted to give the position and
width of the isolated 6).

The range of v s' produced by varying the beam energy
and various angles under the most experimentally advan-
tageous circumstances begins well above the free 5 mass,
1232 MeV, because of the kinematic constraints we have
had to impose. Thus, although the =100 MeV range of
Vs' achieved in our proposed protocol impmved consider-
ably on the =30 MeV range of vs' of the experiment of
Ziock et aI. the new experiment would measure the
upper tail of the resonance and therefore would be less
sensitive to small shifts in its position. It will be seen
from Fig. 2 that there is a striking difference in magni-
tude between the curves labeled NL and those labeled PL
indicating that the latter are far more strongly renormal-
ized than the former. The same is evident in Fig. 3, with
the PL curve lying much lower (on an absolute scale) than
the NL curve. Does this mean that the revised experi-
ment can distinguish a shifted from an unshifted 5'? We
feel that only in the event that the absolute cross sections
can be determined to 10% accuracy or better, will it be
possible to make useful statements about the nuclear re-
normalization of the A. (Of course we do not imply that
the theory presented here is capable of anything like 10%
accuracy. Its schematic character and neglect of distor-
tion allow, at best, agreement within a factor of 2 or so.)

The reason for this is that there is insufficient difference
in the shapes of the two LDA curves (NL and PL), or for
that matter, between them and the impulse approximation
("free"), for the shapes to make a reliable signature. The
alert reader will note that for some ranges of V s' there are
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TABLE I. Angles and energies for revised experimental protocol in exclusive (m;ey) experiments.
Units: MeV for energies, MeV/c for mornenta, degrees for angles.

T =300 T~ ——225 P =125
H =40000 (MeV/c)

Hp

45.0 34.8 169.9 1262

H =40000 (MeV/c)2

Hp

T~= 325 T~ ——225 P = 125
H = —40000 (MeV/c)'

Hp

46.8
48.3
56.3
S7.6
58.8
60.1

61.3
62.6
63.8
65.0
66.2

37.3
39.1
49.0
50.5
52.0
535
54.9
56.3
57.7
59.1

60.5

174.1
166.2
157.3
157.6
158.2
159.2
160.5
162.2
164.5
167.4
171.9

1275
1280
1310
1315
1320
1325
1330
1335

. 1340
1345
1350

72.7
73.8
74.9
76.1

77.2
78.3
79.4
80.5
81.6
82.7

30.4
32.6
34.7
36.7
38.6
40.S
42.2
44.0
45.7
47.3

167.2
163.3
161.4
160.6

, 160.7
161.4
162.7
164.8
167.8
172.6

1310
1315
1320
1325
1330
1335
1340
1345
1350
1355

H =40000 (MeV/c)2

Hp

T~=350 T~ ——22S P = 125

vs'
H =—40000 (MeV/c)

Hp

51.0
S3.5
54.8
56.0
57.3
58.5
59.7
60.9
62.1

63.2
64.4
65.6
66.7

41.0
43.8
45.1

46.5
47.8
49.1

50.3
51.6
52.8
54.0
55.2
564
5?.6

171.1
165.0
163.6
162.8
162.4
162.5
162.8
163.5
164.6
166.1
168.2
171.1
177.0

1297
1307
1312
1317
1322
1327
1332
1337
1342
1347
1352
1357
1362

69.2
70.3
71.4
72.4
73.5
74.6
75.7
76.8
77.8
78.9
80.0
81.1
82.1

27.1

29.1

31.0
32.8
34.5
36.2
37.8
39.4
40.9
42.4
43.8
45.2
46.6

176.2
165.7
161.7
159.5
158.2
157.7
157.6
158.0
158.7
159.9
161.5
163.6
166.3

1307
13I2
1317
1322
1327
1332
1337
1342
1347
1352
1357
1362
1367

H =40000 (MeV/c)
Hp

T~ =375 T~ ——225 P = 125

vs'
H = —40000 (MeV/c)

Hp vs'

54.6
55.8
57.0
58.2
59.4
60.5
61.7
62.8
63.9
65.1

43.1

44.3
45.4
46.6
47.7
48.8
49.9
51.0
52.0
53.1

178.3
173.0
171.0
169.9
169.5
169.6
170.2
171.4
173.4
177.7

1319
1324
1329
1334
1339
1344
1349
1354
1359
1364

69.1

70.2
71.2
72.3
73.3
74.4
75.4
76.5
77.5
7.8.5

29.4
31.0
32.5
34.0
35.5
36.9
38.2
39.5
40.8
42. 1

165.8
162.3
160.2
158.9
158.2
157.9
158.0
158.5
159.2
160.3

1319
1324
1329
1334
1339
1344
1349
1354
1359
1364

two sets of angles which give the same value of Vs ',
e»gns Be-

cause the LDA is to some extent a distorted-wave approx-
imation, and because the momentum p =k'+ p' —k of the

plane-wave Born approximation must be replaced with a
gradient operator, it is by no means obvious that both sets
of angles should yield the same exclusive differential cross
section. However, as we noted in I, distortion effects on
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the shape of the differential cross section vs Vs' are actu-
ally not very large for exclusive (vr, mN) knockout, and we
see this confirmed in the fact that our I.DA calculations
with either set of angles give almost the same cross sec-
tions when &s', P ~, and

~

H
~

are the same. Typical
differences are & 1% for the NL (finite-size vertex) curve,
and & 10% for the PL (pointlike vertex) curve in Fig. 3.

Finally, one of the things that convinced us that the
data of Ziock et a/. were useless for detecting shifts in
the mass or width of the 6, was that when we assumed
the ~-N t matrix had no variation at all with ~s' (that is,
was nonresonant) but depended only on H from Eq. (2),

we obtained as good fits to the data as when the resonance
was present. To convince the reader that the experimen-
tal protocol we propose herein does not suffer from this
defect, we included the curve labeled "const. r" (that is,
nonresonant p-wave m.-N scattering) to show that for the
new protocol the theory is flat, as it should be.
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