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Relativistic treatment of the spin difference functions in inelastic proton nucleus scattering
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Spin observables for inelastic proton nucleus scattering are calculated in plane-wave impulse ap-
proxirnation both nonrelativistically and using the Dirac equation. The relativistic treatment yields
nonzero spin difference functions that vanish in the nonrelativistic case. We identify the origin of
this important contribution of the relativistic treatment, and stress its universal character. We treat
500 MeV proton scattering from ' C as an example.

I. INTRODUCTION

In recent years a relativistic treatment, based on the
Dirac equation, of proton-nucleus scattering has provided
a better description of medium energy data than the tradi-
tional nonrelativistic models. ' It is not surprising then,
due to the very natural way in which the Dirac equation
incorporates spin, that the most dramatic effects occur
precisely in the spin observables. In elastic scattering,
however, the number of independent spin observables is
highly constrained, and only by studying inelastic transi-
tions can we uncover the full richness contained in the
spin observables.

Our first study of inelastic scattering, using the relativ-
istic approach, was for the collective excitations. Since
in the collective case, the dynamics responsible for driving
the transition is already present in elastic scattering, these
elasticlike reactions did not re~eal any new physics not al-
ready present in the elastic case. In order to uncover new
physics we now focus on reactions for which the transi-
tion itself is the fundamental driving mechanism of the
reaction, for example 0+ to 1

+—excitation. In the present
work we concentrate precisely on these transition dom-
inated excitations. We show that the spin difference func-
tion, defined in Ref. 4,

~, —=(Q &)+t (& A—) =(D +D— )+i (D„, D,„), —

is very sensitive to differences between the relativistic and
nonrelativistic treatments and how, even in a simple plane
wave impulse approximation (PWIA) treatment, the rela-
tivistic formalism already has the necessary features to
give b,,+0, while in the nonrelativistic case we obtain
6,=0 in plane wave local on-shell impulse approxima-
tion. By using symmetry principles to write the transition
amplitude, we are able to isolate those pieces which are re-
sponsible for a nonzero value of 5, . We show how those
pieces arise from the lower components of the wave func-
tion introduced by the Dirac treatment. A different ap-
proach to many of these same questions is presented by
Shepard, lost, and McNeil.

We start in Sec. II by using a general, model indepen-
dent, formalism to write the 0+—&J =1 transition ampli-
tude. All spin observables can then be easily calculated,
and we explicitly display the spin difference function. In

Sec. III we perform a PWIA calculation for inelastic
scattering using a nonrelativistic model, and we point out
the notable absence of those terms necessary for obtaining
a nonzero spin difference function. In Sec. IV we repeat
the same calculation using a relativistic model and show
the appearance of the previously absent terms and their
close connection with lower components. In Sec. V we
generalize our method to arbitrary J. Our conclusions
and some sample calculations for 500 MeV proton in-
cident on ' C are given in Sec. VI.

II. GENERAL FORMS AND SPIN OBSERVABLES

In this section we start by writing the 0+—+J= I transi-
tion amplitude using a completely general, model indepen-
dent formalism which only assumes a rotational and pari-
ty invariant interaction. In Ref. 6 it is shown that the
most general transition amplitude that one can write for
the 0+—+1+ process, respecting the above symmetries, is
given by

A(1+)=A„(Xn)+A„„(Xn)(o' n)

+Aux(X K)(o"K)+Aeq(X q)(o"q)

+ Aqtc(X q)(tT K)+Axe(X K)(o. q),

where tl and K are unit vectors in the direction of the
momentum transfer q=k —k' and average momentum
K= —,

' (k+k'), respectively, n=q&&K, and neglecting the

Q value of the reaction they consistute an orthogonal sys-
tem [to keep the effect of the Q value and maintain ortho-
gonality, q should be defined as the transverse momen-
tum; q=(k —k') —KK.(k —k')/lC ], o is the spin opera-
tor of the projectile, and X is the polarization (axial) vec-
tor of the target defined by

The A's are scalar functions of the energy and momen-
tum transfer.

In a completely analogous way we can write the most
general form for the 1 amplitude. Assuming only, as in
the 1+ case, a rotational and parity invariant interaction,
the amplitude can be written in terms of the six remaining
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operators of the 0+~J=1 process, i.e.,

A(1 )=Ax(X.K)+A~(X q)+Ax„(XK)(cr n)

+ A~„(Xq)(o"n)+A„x(Xn)(o"K)

+A„~(X.n)(o"q), (3)

where in this expression the polarization (polar) vector of
the target is given by

XM
-=I I-M &«+

I

A great advantage of separating the target and projec-
tile space contributions to the amplitude lies in the calcu-
lation of projectile spin observables. In calculating spin
observables we adopt the standard definition given by

and

[(1—D„„)+(D —D )]= 4
[ A„/ . (11)

dQ

The full set of spin observables assuming only the projec-
tile spin is monitored is given in Table I.

We stress that the above results are model independent,
they were obtained from the general structure of the am-
plitudes (1) and (3), which follow just from assuming a ro-
tational and parity invariant interaction. In the following
two sections we concentrate on two specific models, viz. ,
the nonrelativistic and relativistic, respectively, in order to
evaluate the above amplitudes.

D~& —,
' Tr(o——~AcrpA t), III. NONRELATIVISTIC AMPLITUDE

where a,P=(o,n, q,K), oo =—1, and Doc ——1 so the unpolar-
ized cross section is

do.
dQ

= —Tr(AA ) . (6)

If no property of the final state besides energy, angular
momentum, and parity is determined, then a trace, within
the target space, of the form Tr[(X A)(X B)t] must be
performed which by using the definition of X can trivially
be done, to obtain

Tr[(X A)(X B)t]=A.B. (7)

(Q »= (D«+De, )——
T

4 Re(A«Ax +A xA
' ),

or more compactly the spin difference function

b„=(Q—8)+i (P —Ay)

(A«Ax, +A«A,*,),

while for the 1 case the relevant spin observables are

This result implies in terms of (1) or (3) that only those
amplitudes in which X is dotted into the same vector will

be able to interfere. The remaining traces, in the space of
the projectile, can then be performed in the standard way.
Of particular importance in our treatment are spin observ-

ables sensitive to differences between the relativistic and

the nonrelativistic models and therefore useful in provid-

ing insight into the importance of relativity. As we shall

see in the following sections these are for the 1+ case

(P —Ay) =(D D,„)—
T

4 Im(A«Axq+A«Aqq),

We consider the excitation of a nucleus, originally in a
0+ state, to a final JM state with parity mf by means of
its interaction with a proton with initial momentum k and
final momentum k. The transition amplitude, in a non-
relativistic plane wave impulse approximation (PWIA)
treatment, is given by

t =do+d ~(n) . (13)

A convenient parametrization of the two-body t matrix,
in the c.m. frame, is given by the Wolfenstein representa-
tion. In this case the above coefficients, which are opera-
tors in the projectile space, can be written explicitly; the
scalar operator is given by

do ——A (q)+iqC(q)(o" n),

while the axial vector operator by

d=[8(q)o+iqC(q)n+q D(q)(o".q)g+E(q)(cr K)K],
(15)

where now cr is the spin operator of the projectile. By ex-
iq x„

panding e " in spherical harmonics and by writing the
inner product in (13) in terms of its spherical components,
we can isolate the part of the operator which acts on the
target particle; we write

e " "t„=g 4ni'( —1}'+'+'j((qx„)
jmls

X [F~(x„)o;(n)]J [Y~(q)d, ]~*

n=1

where t„is the NN t matrix. In the space of the target
particles, this operator can be expressed in terms of the
unit matrix and the three Pauli matrices, i.e.,

4 (A„x.A~ )
dA

(10)
where s takes only the values zero or one,

We now choose to express the one-particle nuclear
operator in a second quantized formalism
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g Ji(qx. )[~i(x.)~s(n)),~ = g &Jf~f I Jl(qx)[I'i(x)~s(1)l, ~ I J;~; &~,,~, ~,;
n=1 j;m;

jfmf

&Jf I Iji(q»[ I i(x)mrs(1) li I Ij~ & [ii, &,.],~
J

where j=(2j+1)' and where ai and a&~ are particle creation and annihilation operators for orbits of the target,
respectively, and the hole creation operator a~~, which is related to the annihilation operator by a time reversal transfor-
mation, is given by

In the above expression [ai ai ]i is the only remaining target operator, and we can then take matrix elements betweenJf J ~ JPf

initial and final target states, we obtain

& JM
I
[a a ] I

0+&=A (jfj;)5 5 (19a)

where the nuclear structure amplitude Az(jf,j; ) is given by

AJ(Jf Ji ) = & Jl I[~if i',. ]~I Io& (19b)

We can now write the full transition amplitude in a very simple form, namely a nuclear form factor times an operator in
the projectile space

A~M = g Gjl. (q)[ I'i(q)d, ]~M
ls

where the nuclear form factor is given by

(20a)

and

GJls(q) g 4~i ( 1) AJ(jf Ji )&Jf I IJl(qx)[ ~l(x)~ (1)]J
I IJ

JisJf J

I

&jflljl(qx)[I'i(x)~, (I)bllJ &= s~IJ J&10IoI~f0& ~ If jf pi(q»
27r

s I J
pl(q)= f x dxgf'(x)Ji(qx)gati;(x) .

(20b)

(20c)

(20d)

We note that the above expression for the amplitude still
depends on the magnetic substate of the target (normally
not measured in an experiment); it is more convenient,
however, in order to evaluate all spin observables, to treat
nuclear and projectile parts on an equal footing by writing
the amplitude as an operator in the target and projectile
space. This can easily be done since the matrix elements
are already known; we write [I'i(q)d, ]1,—M Tl e( M) (23)

So far everything has been completely general. We now
specialize to the J=1 case, but in Sec. V return to the
general case.

The operator [ Fi(q)d, ]1 M in (22a) is now a spherical
tensor of rank one, and therefore we should be able to find
a vector TI, such that

J
A J g I

JM & A JM &
0+

I

= & GJls (q )~IJls (21)
where e(M) are the standard circular polarization vectors
defined by

(22a)

and the nuclear polarization tensor operator by

where the rotational invariant operator QJ~, is defined as
J

~Ill, = g ( —1) [I'i(q)d. ]J, M&m
M= —J

e(1)= — (x+iy),
2

e(0)=z,
e( —1)= (x—iy) .

2

(24)

r,M=
I
JM&&0+

I
. The fact that s =0 or 1 implies a set of four different vec-
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tors. These are easily calculated and given by

1/2

doq (l = l,s =0)

' 1/2
3

Ag ——
8m.

1
d (i =0)

4m
T1s 1/2

i(qxd) (i =1) (s =1) .

(25)

Aq„——i
1/2

3
qC(q)Gizmo(q),

' 1/2
3

A

(q)Gizmo(q)

[d —3(d q)q] (i =2)
8m

1/2
3

AnK =l
8m

[B(q)+E(q)]6]]](q),

We note that for I =1, Tt, transforms like a polar vector
while for l&1 it behaves like an axial vector [remember d
is an axial vector (15)]. Furthermore, for the 1+ state X is
an axial vector which implies that the rotational invariant
operator QJt, =TI, X behaves like a scalar for l&1 and
like a pseudoscalar for l =1. Conversely, for the 1 state
X transforms like a polar vector and therefore the parity
properties of Qql, are reversed. The requirement that the
full amplitude AJ should be a true scalar operator (we are
assuming a rotational and parity invariant interaction) is
carried by the parity Clebsch (lO, I;0

~
lfO) in the nuclear

form factor [Eq. (20)]. For the 1+ state only even values
of i are allowed, while for the 1 case only odd ones sur-
vive. By using the explicit values of d [Eq. (15)] we ob-
tain the following closed form expression for the 1+ am-
plitude as given in Eq. (1), with

A„(q)=iqC(q)G+(q), G+(q)= [v 26~o~(q)
1

8m

+ 6&2i(q)] ~

Ann(q)=B(q)6+(q) 6—(q)=— [Gioi(q)
1

4n

—v 26&2&(q)l

Ax~(q) = [B(q)+«q)]6+(q»
A«(q) =[B(q)+q'D(q)]6 (q),

Aqtt(q) =
Axq (q) =0,

and we have used

(cr.X)=(X n)(a"n)+(X q)(cr q)+(X K)(o"K) .

(26)

(27)

The form of the amplitude conforms, as it should, to the
model independent case obtained in Sec. II. The most in-
teresting part of our result is the fact that the two cross
term amplitudes r4q& and Azq, allowed by general invari-
ance principles and essential for obtaining spin observable
differences [Sec. II, Eqs. (8) and (9)], are absent in a
PWIA treatment. We stress, however, that this result
holds even in a distorted wave eikonal treatment to first
order in the spin orbit distorting potential, and a nonzero
value can be obtained only through explicit inclusion of
nonlocal effects.

In a completely analogous way we can write the result
for the 1 amplitude, in the form given in Eq. (3), where
in the present PWIA treatment the amplitudes are given

1/2
3Ax„—— i — B( q)G)))( q), A„q——0 .

8m

As in the 1+ case, the absence of the A„z term has pro-
found consequences for the relations between spin observ-
ables. In particular the spin difference functions defined
in (10) and (11) are both zero.

IV. RELATIVISTIC AMPLITUDE

In this section we address the same problem as in the
preceding one, now, however, within the realm of a rela-
tivistic plane wave impulse approximation (RPWIA). The
transition amplitude is now given by

where k (k ) is the initial (final) momentum of the projec-
tile,

' 1/2E +m
2m o"k

E+m

u (k') = E'+m
2m

' 1/2

cr k'
E'+m

(30)

are free Dirac spinors for the projectile and t„is, aside
from numerical factors, the Lorentz invariant nucleon-
nucleon amplitude written as

t„=ts+ t~yl'y„(n)+tTo I'"o„„(n)+tt, y'y'(n)

+ t~1'r"1 '(n)r&(n) . (31)

All five amplitudes are functions of the Lorentz invari-
ants s and t = —q, n refers to operators in the target or
nuclear space, and we use the Bjorken-Drell' convention
for the gamma matrices. By following Ref. 11 we can re-
cast the transition amplitude in a form that conveniently
separates the spin dependence from the particular com-

A&M ——u (k')(JM
~ g e "y y (n)t„~0+)u(k), ' (29)

n=1
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bination of upper and lower components involved; we
write

f=rv, g= —4,1

f =is, g =2rT2 2

y y (n)t„=g If +g'[o"o(n)]II,I „(n),
v=1

(32) 3 — 3—f =&A& g rv»

f =rp g =2~T .

(34)

1 0 1 0
I1——1= 0 1, I2 ——y =

0 1
I 3=y'=

1 0
0 1

—1 0

where the structure matrices I „aredefined by We note that in (32) the transition amplitude takes a very
simple form since only a central and a spin-spin term are
present (compare to the full Wolfenstein decomposition).
The additional structure in the amplitude comes from the
structure matrices I which have no dynamical content
other than to specify the particular upper and lower com-
ponent combinations.

From here on we proceed as close in spirit as possible to
the nonrelativistic case. We start by expanding e " in
spherical harmonics to obtain

e "y y (n)t„=g g 4ni'( —1) +'+'h, '(q)ji(qx )[Y~(x„)o,(n)]jm[Yi(q)oslj'mr v(n)I v
v=1 mls

h,"(q) =, f"(q), s =0
=g"(q), s =1 .

We continue by writing the one-particle target space operator in a second quantized formalism

(35)

A

g Jp(q x)[Y (xI„) o( )n] JI „(n)=—g (QJ. ~j~((qx)[Yi(x)o;(1)]JI „(1)~)g~)[aJ aj ]J~ .
n=1 Js Jf J

(36)

At the end, just as in the nonrelativistic case, the amplitude is written as a nuclear form factor times a projectile space
operator, i.e.,

4

~gM =u (k') g g Ggg, (q)[Y((q)cr, ]q~t u (k),
v=1 ls

(37)

or, by introducing the nuclear polarization tensor operator XJM (22b) as an operator in the target and projectile space
4

A, = g g G,„(q)u'(k )n„,(~,X)r.u(k),
v=1 ls

where

(38)

Gf~(q) = g 4mi ( —1) + +'+ Az(jf j)hs (»q)(QJ~~ j~t(qx)[Yt(x)~, (l)]JI „(1)~~QJ), ,J
(39)

and the rotational invariant operator QJl, - was defined in
(22a).

Note, however, that in the present form the single parti-
cle wave functions are four-component Dirac bound
states. The prescription we use for calculating the lower
bound state component is as simple as the Dirac formal-
ism allows. We write the Dirac bound state, on complete-
ly general grounds for a particle in the presence of central

scalar and fourth component of a vector potential, as

uj~(x) 5'~g(x)

iw g (x) O' I (x)
(40)

where uj~(x) and mji (x) are real functions which satisfy a
set of coupled differential equations and I' is the other I



32 RELATIVISTIC TREATMENT OF THE SPIN DIFFERENCE. . .

X +d (1+a)
uJI(r),

r r
(41)

where

Ir=+(j + —,') for 1 =j+—,',
and where S(r) and V(r) are the central scalar and vector
potentials in the Dirac equation for the bound state orbi-
tals.

So far everything has been completely general. Now we
specialize to the J=1 case. The general case is addressed
in Sec. V. In Sec. III we found the structure of the rota-
tional invariant operator QJI, by making the appropriate
change in (22) and (25), namely d, —+o;; we have in the
present case

J =1,1s

1/2

(X q), (1 = l,s =0)

with the same j. By assuming, however, that

p~((x) =u~2(x)S'J((x)

is a known nonrelativistic bound state wave function, the
lower component can easily be obtained; it is given by

1
m&I (r) =

E+m +S(r) V(r)—

rule out the 1=1 terms from the 1+ case and the 1&1
from the 1 case. These assertions were justified by the
presence of the parity Clebsch in the nuclear form factor.
In the present relativistic case, however, all four terms are
allowed to contribute. The previously forbidden "pseu-
doscalar" terms are now able to contribute since they ap-
pear in conjunction with the structure matrices 3 and 4
which imply an amplitude linear in the lower components,
carriers of the necessary parity change. The confirmation
of these assertions resides again in the parity Clebseh con-
tained in the nuclear form factor. In general, and due to
the presence of lower components, we have four types of
parity Clebsch's. These are

(10;1[0~lfO) and (10;1
~
ljO) for v=1,2

(10;1 0
~
lfO) and (10;lgO

~
lfO) for v=3, 4 .

We then observe that for the 1+ case, where 1;+lf=even,
the 1=1 terms will be zero, as before, for v=1,2 but
nonzero for v=3, 4; in a similar way we have that for the
1 case, where 1;+ lf =odd, the 1 =even terms will vanish
for v=1,2 but will be nonzero for v=3, 4. In general we
have

(cr X), (1=0)1

&4~
' 1/2

& (qxo), (1=1) (s =1) .

(1+)
v= 1~2

1=0,2
s=1

l=1
s =0, 1

v=3, 4

1=1
s =0, 1

1 =0,2
s =1

[(cr X)
1

v's~

We argued then, on the basis of a rotational and parity in-
variant interaction, that the transition amplitude should
behave like a scalar operator, and, therefore, we should

I

It is not surprising, then, that precisely those previously
absent terms will make the interesting contributions to the
relativistic amplitude. In particular we note that in sharp
contrast to the nonrelativistic case, there exists a spin in-
dependent contribution to the unnatural parity 1+ case.

After some straightforward spin algebra we can display
our results:

(i) For the 1+ case, in terms of the general structure given in Eq. (1), we obtain

1/2

A+ —— G~~~(q) A+ = [G ]p)(q)+6 [g)(q)]
3 iK 3 iqK

8m m 2m E+m
' 1/2

3
~nn ~KK

8m
' 1/2

3
Aqq

——
4m.

Gill(q) An [G101(q)+G121(q)]+ [G&o&(q)+G121(q)]2ltl 4m E+m

27tl
Gizmo(q» AEK [G101(q)+G121(q)l

3
~qK =

4m'

1/2 t

Gizmo(q)

Aqq = [G Ioi(q) —
2G Izi (q)l

(43)

AK ———e
3

8m

' 1/2
E 4G»&(q), A~ac Ax~ —0 . ——
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(ii) While for the 1 case, where the amplitude is given by Eq. (3), we obtain

I(C 3 qIC6+(q» ~x =
171 2m E+m

2
q 6' (q), &, = 6 ('(o(q) — 6»o(q)

4m (E+m)
2

~re. = ( —/) 6 I'('((q) +

A&z —— 6 (q), A&z = — 6//o(q)
/qE

m
' ~" 2m E+m

(44)

6' (q» ~.x =/6('('((q»2'

and we have defined

16+ (q) = [~26 $()/(q) +6 (2((q) ] +J/g =
8m

[6 /o/ (q) —~26 (z/ ( q) ]
1

4n

6'"(q) =&z/* 6J/. (—q)+
Pl

1/2(3J —l + 1)(1+5/J )

8n(s + 1)

(45)

6' (q) =(zJ/ [6J/ ('q) 61/ (q)] .

The left-hand side contains those amplitudes linear in the
lower components and therefore absent from a nonrela-
tivistic treatment. In contrast, the right-hand side con-
tains those amplitudes which arise only from upper-upper
and lower-lower coupling and are, therefore, in the spirit
of a nonrelativistic approach. They do not add any new
features not already present in the nonrelativistic answer,
in particular the cross term amplitudes A/r~ and A&/r of
the 1+ case as well as A„~in the 1 case are zero for the
right-hand sides, as before. But they are present on the
left-hand side. The full transition amplitude, of course,
consists of the coherent sum of both contributions.

The new and remarkable features of the RPWIA ap-
proach have, as we mentioned before, their origin in the
linear coupling of the lower components. The appearance
of nonzero terms, so important for obtaining spin observ-
able differences, is simple and natural. They arise from a
consistent relativistic treatment of the upper and lower
components on equal footing, no ad hoc assumptions are
necessary, and no exchange effects are needed. We fur-
ther mention that from the possible four Lorentz invari-
ant amplitudes (pseudoscalar and axial in the spin in-
dependent case and vector and tensor in the spin depen-
dent one) only two of them, namely the axial and tensor,
are responsible in feeding these new terms. In particular
the axial amplitude drives the Aq~ term, while the tensor

does the same for the A/rq and A„zterms.

V. GENERAL CASE

J
QJ/g —— g ( —1) [Y/(q)d, ]g MXgM

n= —J
with

(22a)

X,M ~

Jm&(O+ ~,
and with parity properties given by

I+mfm.QJ/, m. =( —1) Qg/, ,

where mf is the parity of the final state. As before, those

In the present section we extend our previous results to
the general J case. It might seem difficult to obtain re-
sults close in spirit to the J=1 case, since some of our
previous assertions [e.g. , Eq. (23)] are only valid in that
particular case. %"e will prove, however, that by working
in a particular frame, namely one in which the rnomen-
turn transfer points along the z axis "q frame, " we will be
able to recover the same structure in the amplitude as in
the J=1 case, and with it all its previous conclusions.
We focus our attention in the rotational invariant opera-
tor, defined in (22) by
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operators that change sign under parity will not contri-
bute in the nonrelativistic case but will contribute in the
relativistic case by appearing in conjunction with terms
linear in the lower components.

v=3,4

+JJO
2J+1

4~

2J+1
JJ1=1

8m

(XJ q),
1/2

Xq (qX~r),

Natural
parity

I=J
s =0, 1

l =J+1
s =1 +J,J—1, 1

' 1/2J+1
8m

(cr.Xg ) + 2J
J+1

1/2

Unnatural
parity

I =J+1
s =1

I =J
s =0, 1

X(XJ q)(o"q) . ,

If we now choose to work in the q frame we can write

' 1/2

+J,J+1,1—

' 1/2

'(tr XJ)—
1/2

2(J+1)
J +

[+l(q)d, ]J,—M = 2l +1
4m. X(XJ.q)(tr q) . .

X(IOs, —M
i J, —M)d, M . (46)

The presence of the Clebsch-Gordan coefficient in the
above expression and the fact that s takes only the values
0 or 1 implies that only three magnetic substates, namely
1, 0, and —1, can be populated at all no matter how large
the value of J is; this in turn allows us to write

Aside from numerical factors, this is just the J= 1 result
(42). From here on, then, everything follows in exactly
the same way as before: The amplitude will only contain
the appropriate numerical changes, while the structure of
the spin observables (Table I) will remain unchanged.

VI. EXAMPLES AND CONCLUSIONS

We have seen that certain "mixed" amplitudes [e.g. ,
Axq and Aqx. of Eq. (1) and A„q of Eq. (3)] vanish in a
nonrelativistic treatment of 0+~1—nuclear excitation by
protons in a plane wave treatment when off-shell effects
and exchange effects are omitted, but do not vanish in the

Xd, , (47)

1.2 ——

The fact that only three values of the polarization tensor
are needed, and inspired by our previous J= 1 discussion,
we define the target space operator

1

Xg —— g ( —1) e( —M)XJ~,

which, as before, also satisfies

Tr[(Xg.A)(XJ B)t]= A B . —0.4—
%'e stress, however, that the above operator does not
behave as a vector since its components do not transform
in the proper way, in particular they do not even close
under rotations; in fact its rotational properties are known
and given by

—0.

t

0.5 t.O

J
DMM(&»~M . (50) q(fm )

Nevertheless, we shall see that XJ plays the same role in
the amplitude as the polarization vector in the J=1 case
does, and therefore all conclusions will follow in exactly
the same way. In particular, by evaluating QJI, in the q
frame, with d, =o.„weobtain

FIG. 1. A relativistic plane wave impulse approximation
(RPWIA) calculation of the spin difference functions (P —A)
and ( Q B) for 500 MeV prot—ons exciting the 1+ (12.71 MeV)
T=0 state in ' C as a function of momentum transfer. The
maximum momentum transfer shown corresponds to a c.m. an-
gle of 23.48. The interaction strengths and structure parame-
ters are discussed in the text.
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FICx. 2. Same as Fig. l for the inelastic cross section.

corresponding relativistic treatment using the Dirac equa-
tion. These nonvanishing terms are essential for spin ob-
servables such as P —A. In the relativistic treatment the
situation is saved by the lower or "small" components
that have opposite parity from the upper components.
Hence, the new terms are linear in this lower component.
Earlier attempts to obtain a nonvanishing P —3 in the
0+~1+ reaction in a nonrelativistic theory have invoked
exchange. ' %'e have seen that the Dirac treatment leads
to differences between P and A even without exchange.
These two explanations are complementary since ex-
change is expected to contribute at low energy but to de-
crease in importance with increasing energy, while by con-

trast the significance of the relativistic contribution
should grow with energy. A complete treatment should
combine both effects as well as off-shell effects in the ele-
mentary NN t matrix.

The formal discussion of spin observables we have
given is instructive, but the ultimate test of the theory
must be confrontation with data. Since the purpose of
this paper is frankly pedagogic, we will not attempt de-
tailed comparisons, but it is important to see what general
size we obtain for the spin observables. As a model, we
study the 1+ (12.71 MeV T =0) and the 1+ (15.11 MeV
T =1) states in ' C excited by 500 MeV protons. '3 For
the T = 1 case both P —A and Q —8 are essentially zero
in the Dirac plane wave treatment. This is a "dynamical
zero" and arises from the very small size of spin orbit
terms in the T= 1 nucleon-nucleon force at 500 MeV.
For the T =0 state the situation is quite different. Figure
1 shows the RPWIA (relativistic plane wave impulse ap-
proximation) calculation of P —A and of Q —8 for-500
MeV protons on ' C exciting the 1+ T =0 state. In the
absence of a relativistic shell model, the transition form
factor (39) was based on nonrelativistic nuclear wave
functions. We assume a pure .single particle excitation
from a p ~ to a p'~ nuclear orbital with the upper com-
ponents for these orbitals given by harmonic oscillator
wave functions with a characteristic length of 1.5 fm.
The lower components were obtained through Eq. (41) us-
ing the free space relation. We stress that although a real-
istic calculation should include the strong scalar and vec-
tor potentials in the distortion as well as in the calculation
of lower components (41), nonvanishing spin observable
differences arise just from the structure of the Dirac equa-
tion (i.e., presence of lower components) and independent-
ly of the strong potentials. The I.orentz invariant NN
amplitudes we used were calculated from Amdt' phase
shifts and the relativistic transformation developed in Ref.
9. We see that P —A and Q —8 are sizable. (Recall that

0.6 0.6 0.

4

I i t l

0 0.5 1.0 1.5 2.0
—0.6 I I I

0.5 1.0 1.5 2.0 0 05 1.0 1.5 2.0

q(fm ) q(fm )

FICi. 3. Same as Fig. 1 for the remaining spin observables as labeled.
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both are bounded by 2.) Although the effects of distor-
tion can change these shapes in significant ways, particu-
larly at the larger angles, the qualitative futures of the
spin difference observables remain. In particular, one can
see from the RPWIA cross section shown in Fig. 2 that
the structure in Fig. 1 is nat coming from the structure in
the cross section but is intrinsic to P —2 and Q B.—
Other spin observables are shown in Fig. 3 in the RPWIA.
The same geometric and dynamical input is used as in
Fig. 1. Again we see considerable structure in the spin ob-
servables. Preliminary studies indicate that the addition
of distortion and of strong potentials does not qualitative-
ly change the spin observables but does lead to modest im-
provement with the data. But, of course, most of these
observables are also nonvanishing in a nonrelativistic
treatment. [See Eq. (26).]

Many of the same spin observables that we have studied
here, and in particular the spin differences, have been
studied for the purpose of detailed comparison with data
by Sparrow et al. This study includes the effects of dis-
tortion, but is at 150 MeV where the competition with ex-

change is probably still significant.
In conclusion, we have shown how a relativistic treat-

ment of inelastic scattering gives spin observables (partic-
ularly P —A and Q B—) that are zero in the correspond-
ing nonrelativistic treatment. This is even true in a plane
wave impulse approximation, and, although distortion
changes the details, it does not affect the underlying
dynamic origin of the effects. From this we conclude that
careful theoretical and experimental studies of these spin
observables may serve as a sensitive test to distinguish be-
tween relativistic effects, off-shell effects, and exchange
effects. Because of the importance of distortion in de-
tailed studies, and because distortion is largely a geometric
question, experimental studies should include elastic and
inelastic cross sections along with the spin observables.
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