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The influence of dispersive, medium effects on pion-nucleus elastic scattering is investigated in a
simple model. The pion-nucleus interaction in the impulse approximation is represented by an opti-
cal potential whose form is motivated by field-theoretic considerations and th'0 properties of the 533
resonance. The intermediate 633 spectrum is described by a mean spectral energy, E „where the
shift E, represents the average of the 633 nucleus mean field, Uz, over the nucleon and pion wave

functions. We calculate the real part of E, as a function of mass number A and pion energy co, as-

suming that Uq is numerically the same as the nucleon-nucleus shell-model potential. We compare
our theory to more conventional ones, showing that the mean spectral energy is an important correc-
tion for pion-nucleus elastic scattering.

I. INTRODUCTION

The subject of dispersive effects in pion-nucleus scatter-
ing refers to the influence of the nuclear medium on the
energetics of the intermediate states that form the pion-
nucleus scattering amplitude. Deciding how to incorpo-
rate dispersive effects is not straightforward either in
theory or practice, which is evident from their long histo-
ry in both multiple scattering theory and also in the
many-body approach to nuclear structure and scattering.
Today the importance of dispersive effects is ac-
knowledged in many, but not all, of the modern treat-
ments of pion-nucleus scattering. The purpose of the
present paper is to propose a practical method for dealing
with dispersive effects and to explicate their importance
in a model.

One would expect dispersive effects to be most impor-
tant in theoretical treatments of projectile-nucleus scatter-
ing when the elementary amplitude is strongly energy
dependent. One of the most dramatic examples occurs for
the case of the pion, where the rapid energy dependence in
the region from 100 to 300 MeV arises from the 633 reso-
nance. The half-width of this resonance is S5 MeV. Nu-
clear energies, whether one considers binding energies, nu-
cleon kinetic energies, or the potential energy associated
with the mean field, range from zero to about 50 MeV.
The energy dependence of the pion-nucleon amplitude is
thus comparable to the energy scales associated with the
nucleus. This implies that dispersive effects should be in-
cluded in the impulse approximation and that they can
have important consequences. Understanding the ener-
getics of the nucleon propagating in the nuclear medium
while it is interacting with the pion and the interaction of
the delta with the core nucleus are questions of under-
standing the dispersion of the interacting pion-nucleon
pair, and is the subject of this work.

The original treatment of the dispersion of the inter-

mediate nucleon in the impulse approximation for the
scattering amplitude can be found in the works of Chew
and Wick and Chew and Goldberger. The question was
how to approximate the propagator G~ (m) defined by

Gg (co ) = (co+ —Ko Hg )—
where Ko is the projectile kinetic energy and H~ is the
target Hamiltonian. The presence of Hz in the propaga-
tor renders G~(co) a many-body operator and thus un-
manageable in practice. In order to have a computation-
ally feasible theory, Gz(co) must be approximated by a
two-body operator. The essence of the argument found in
Chew and Wick and repeated in Chew and Goldberger is
simply that at sufficiently high energies Xo will dominate
over H~ and one can neglect H~.

The impulse approximation for the scattering ampli-
tude was soon replaced by multiple scattering theory for
the optical potential. The formal theory for the optical
potential was derived in the pioneering work of Watson,
motivated by the early pion-nucleus scattering data em-
erging from the Brookhaven Cosmotron. On the question
of approximating the many-body Gz(e) by a two-body
operator, he quotes the earlier argument of Chew and col-
laborators. '

The first application of the Watson multiple scattering
theory for the optical potential which clearly demonstrat-
ed the validity of this approach to intermediate energy
nucleon-nucleus elastic scattering was performed by Ker-
man, McManus, and Thaler. In their derivation of the
multiple scattering theory they also quote Chew and col-
laborators on the approximate treatment of the propaga-
tion of the struck nucleon. In their Appendix IV, they
make some important points which we shall stress in this
work: that the choice of the nucleon propagator is at the
disposal of the theorist, that this choice defines the pertur-
bation theory, and that the criterion which distinguishes
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between choices is the rate of convergence of the perturba-
tion theory.

Because the nucleon-nucleon interaction is slowly vary-
ing with energy for energies greater than about 100 MeV,
dispersive effects which modify the intermediate propaga-
tion of the struck nucleon were believed to have only a
small impact on nucleon-nucleus cross sections at inter-
mediate energies. Interest in these effects thus lay dor-
mant for many years. High precision measurements at in-
termediate energies and a desire to learn about other
specific effects, such as correlations between target nu-
cleons, eventually led to a reexamination of this problem.
In this connection, it was pointed out that the lowest-
order optical potential can naturally be expressed as a
three-body problem, the three bodies being the incident
nucleon, the struck nucleon, and the rest of the nucleus.
Replacing the rest of the nucleus by a single particle po-
tential leads to a model in which the correct collision
kinematics and the effect of the nucleon-core binding en-
ergy can be included.

The nucleon-core binding potential has been a topic of
much interest in nuclear structure theory and, in particu-
lar, in nuclear matter theory. In nuclear matter theory,
the choice of the spectrum for the particles (and holes)
controls the rate of convergence of the perturbation
theory. Although the exact answer is formally indepen-
dent of the treatment of these dispersive effects, the result
of a real calculation, which truncates perturbation theory
at a finite order, depends upon the particle spectrum used.
For the pion-nucleus problem, we find the parallel result.
However, because of the rapid energy dependence of the
two-body amplitude, the validity of the predicted cross
sections depends much more critically on the choice of the
intermediate spectrum chosen for the nucleon and the
delta.

The sensitivity of the pion-nucleus interaction to the
treatment of the nucleon-residual nucleus interactions has
been investigated by several authors. In Refs. 8 and 9 the
three-body approach to the pion-nucleus optical potential
was implemented in the context of a pion-nucleon poten-
tial interaction. In these works, the kinematics of the
three-body problem are simplified by the small value of
the ratio of the pion mass to the nucleon mass. The con-
clusion of these works is clear. The nucleon-residual nu-
cleus interaction causes a large change in the pion-nucleus
differential cross sections in comparison with results of a
standard impulse approximation.

All versions of the delta-hole model' ' emphasize the
dispersive effects. For example, in Ref. 11 the interaction
of the delta with the residual nucleus is parametrized by a
potential with real and imaginary, central and spin-orbit
pieces. It is the medium modifications of the delta propa-
gation, and, in particular, the difference between the
nucleon-riucleus and the assumed form of the delta-
nucleus interaction that constitutes the second-order,
phenomenological part of the model.

Evidence that dispersive effects play an important role
in pion-nucleus scattering presents several choices. One
can omit this effect, guaranteeing a slowly convergent per-
turbation series. At the other extreme, one can include
the dispersive effects into the first-order optical potential

and solve the three-body problem. Even with the
kinematic simplifications that result from the light mass
of the pion, this is a formidable numerical problem. ' In-
corporating the delta-nucleus interaction i la the delta-
hole model is also numerically formidable' ' and limits
one to the resonance region.

A third option is to seek an approximation that incor-
porates the physics but stops short of a full three-body
calculation. We have chosen this route and have j.mple-
mented it so as to incorporate some of the field theoretic
aspects that are absent in many of the other theories. A
momentum space optical model program has been
developed which performs the Fermi averaging integra-
tion, includes the dispersive effects considered here, and
yet is sufficiently efficient so that we are able to make sig-
nificant applications and extensions of the theory. Such
an approach will allow us to apply our theory to light and
heavy nuclei from energies well below to well above the
533 resonance region and permit inclusion of higher-order
terms explicitly in the optical potential. We anticipate fu-
ture extensions to a global approach that encompasses
elastic, single, and double charge exchange and to scatter-
ing from nuclei with spin.

In Sec. II we show how the formalism of Refs. 13 and
14 leads one to choose an unperturbed propagator for the
nucleon and the delta. By the choice of this propagator
one is naturally led to the consideration of dispersive ef-
fects. We also discuss how dispersive effects may be in-
corporated into models which assume potential pion-
nucleon interactions, delta models, or field theoretic
Chew-Low or bag models. Basically, the propagation of
the delta (or pion-nucleon interacting pair) and the surface
localization of the pion-nucleus interaction are used to ap-
proximate a spatially varying delta or nucleon potential by
a constant in space which depends on co, the energy of the
incident pion. This quantity, E,(co, A ), we call the
"mean spectral energy" as it determines, on the average,
the spectrum of the intermediate states which occur in
summing interactions (be they potential or field theoretic
in nature) to produce the t matrix in the impulse approxi-
mation. The propagator (or "energy denominator") which
contains E,(co,A) we call the "mean spectral propaga-
tor."

In Sec. III, we present results for pion-nucleus scatter-
ing and demonstrate the importance of including
E,(co,A) in the propagator. As E,(co,A) shifts the en-
ergy at which the t matrix is evaluated, we present dif-
ferential cross sections at selected energies and also total
cross sections and forward scattering amplitudes as a
function of energy. We find that E,(co,A) alters the dif-
fractive character of cross sections near the resonance re-
gion and has a non-negligible effect on cross sections
below and above the resonance region.

In Sec. IV, we discuss these results and draw con-
clusions. Since the pion-nucleus interaction is sensitive to
the treatment of the dispersive effects, elastic scattering
data are useful for constraining their treatment in various
models of the pion-nucleus interaction. Data near the for-
ward direction in the nuclear-Coulomb interference region
are particularly important, as they allow extraction of the
strong forward scattering amplitude.
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II. MEAN SPECTRAL PROPAGATOR

Gg(r', t', r, t) =+g(r')exp[ —tE~(t —t')]+g(r) (2.1)

where t —t is the time difference counted in the direction

Our treatment of the dispersive effects is based on an
optical model description of the projectile-nucleus interac-
tion. It incorporates the improvements in the traditional
multiple scattering theory that have been stimulated by
the availability of pion beams over the last decade. The
light mass of the pion has led to an impioved understand-
ing of the role played by relativistic kinematics in multi-
ple scattering. ' This discussion, which originally' pro-
ceeded under the appellation of "angle transformation, " is
incorporated as a frame transformation of an off-energy
shell, nonlocal, two-body t matrix. The requirement of
relativistic quantum field theory that the pion be allowed
to propagate both forward and backward in time leads us
to view the optical potential as the proper self-energy in a
Klein-Cxordon equation. '3' '7' In this framework, the
multiple scattering approach can be truncated so that the
crossing symmetry of the two-body amplitude guarantees
the crossing symmetry' of the pion-nucleus amplitude.
The unitarity relations' for the optical potential show
that inclusion of the many-pion intermediate states gen-
erated by the Klein-Gordon equation yields an optical po-
tential with simple and reasonable reactive content, while
truncation of the theory according to the number of pions
present at a given time would yield an optical potential
with spurious reactive content.

Many of the other commonly available optical model
theories of pion-nucleus scattering are built around the
fixed scatterer approximation, in which the nucleons and
633 have infinite mass. In order to go beyond this approx-
imation and systematically include binding effects, disper-
sive effects, nuclear fermi motion, and the recoil of the
633 and nucleon, one must employ the momentum space
techniques we use here.

In Refs. 13 and 14, a framework is developed for treat-
ing the pion-nucleus problem field theoretically, giving an
expansion of the optical potential in terms of propagators
and meson-baryon vertices. Reference 14 extends Ref. 13
to include a finite nucleon mass and thus more correctly
incorporates the target dynamics. %'hen this is done, the
nucleon hole propagator is given by

hi'+p(r) =Ep+p(r) . (2.3)

In the conventional many-body theory, the Hamiltonian
h& is taken to be the same Hamiltonian which produces
the bound states %z(r) and the set %„(r)e%z(r) forms an
orthonormal, complete set. This leads to a perturbation
theory which, when ladder diagrams are summed, has the
Bethe-Goldstone reaction matrix as the basic pion-nucleon
interaction. Our approach of Refs. 13 and 14 is close to
this except that we do not include the Pauli operator in
the effective two-body interaction. The Pauli principle is
systematically and convergently included in higher orders
of the optical potential in our approach.

If the delta has finite mass, then its propagation in a
state a is given by

G (r', t', r, t) = 4 '(r')exp[ —iE (t' —t)]

with

(2 4)

h 4 =E 4 (r) . (2.5)

Just as one must choose an h& in Eq. (2.3), one must
choose an h in order to define the unperturbed propaga-
tor in a perturbative approach. In potential model
theories or the Chew-Low ' theory, the 633 is not an in-
dependent degree of freedom and the dispersive effects are
defined in terms of hi'. In the simple delta model" or the
dynamic combination of this model with the Chew-Low
model represented by the "cloudy bag, " one must choose
both h~and h

Combining the above expressions for the propagators
we may evaluate the optical potential. The pion-nucleus
optical potential in the impulse approximation can be
written as

of the hole line and Ez is the binding energy of the hole.
The propagator for a finite mass nucleon in a state of
momentum p is given by

G~(r', t', r, t) =%&(r')exp[ iE—&(t' t)—]8(t' t)—%~(r),

(2.2)

where the states %&(r) satisfy a single particle Schrodinger
equation

( k„'~ X(m)
~

k )=g J d3k„'d k„%z(k„')(k„'k„'
~

t(co)
(
k k„)%~(k„), (2.6)

where %z(k„) is a bound state nucleon wave function and t (co) is an appropriate field theoretic, off-shell pion-nucleon t
matrix. For the following discussion, we need not specify the exact form of the pion-nucleon t matrix. However, near
resonance all t matrices can be well approximated as separable, i.e., by the simple delta t matrix. Thus to simplify the
presentation we will use the form

( kQ'„~ t (co)
~
k*„)=U t(k') P', p U(k),

co++E~ —Mg P /2Mt, —Ug(R)— (2.7)
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where co is the incident pion energy; Ez is the binding en-
ergy of the struck nucleon appearing in Eq. (2.1); k and P
are the relative and center-of-mass inomenta, respectively;
R is the center-of-mass coordinate conjugate to P; and
v(k) is the form factor (including implicitly the spin and
isospin dependence) for forming a delta. The generaliza-
tion of the following discussion to other models of the
pion-nucleon interaction is straightforward. In Eq. (2.7)
U~(R) is the mean field of the b.33 arising from its in-
teraction with the nucleons in the nucleus. The width of
the 633 resonance is included in M~.

As we argued in Sec. I, introducing the nucleon and b 33
mean fields into the pion-nucleus optical potential re-
quires, for practical reasons, an efficient and quantitative-
ly accurate approximation scheme. We will attempt to
accomplish this by replacing U~(R) in Eq. (2.7) by a spa-
tial constant, E,(co,A). Thus, our approach is unlike the
delta-hole model in which the full interaction U~(R) ap-
pears in the delta propagator. %"e outline below a pro-
cedure for calculating E,(co,A) so that the difference
U~(R) Em, (co,—A) will be small and can be treated as a

V(R) = VoI I+exp[(R —Ro)la] J (2.8)

with Vo ———51 MeV, Ro ——1.272 '~ fm, and a =0.67 fm.
In a more comprehensive description, for which Uq(R) is
identified with specific pieces of the b,33 self-energy, ' the
same methods could be used to determine the correspond-
ing E~,(co,A).

To determine Em, (co,A), we expand the propagator in
Eq. (2.7) and keep only the leading correction term in
Ug(R),

correction. We propose to incorporate this difference

along with other effects at a later stage in the higher-order

part of the optical potential.
The quantity U~(R) is not well known, and determin-

ing it is one of the interesting pursuits of contemporary
nuclear physics. One expects that Uq(R) closely resem-

bles the nucleon-nucleus shell model potential, V(R).
For our calculations we ignore the isovector, spin-orbit,
and imaginary part of U~(R) and take U~(R)= V(R)
where

(
P' 1 P =- P' 1 P

cu++Eg —Mg P /2M' —//g—(R't ur++Eg —Mg P /2M' )—

+ P'
+ 2 Ug(R) 2

P
(

1 1

a)++Ra —Mg P'/2M' a)—++Eg —M~ P'/2M~ )—
(2.9)

where k is given by

k =+2M'(co+ —Mg+Eii) . (2.11)

We examine first the modifications to U~(R) caused by
the delta (pion-nucleus center-of-mass) propagation. We
define U~(R) by

2ikIR —R, I

U, (R)Id'R, ', = (R
~

SG
~
R),

(4n iR —R; i)
(2.12)

The second term on the right-hand side is the leading
correction term in U~(R) and, if we Fourier transform to
coordinate space, it can be written as

i&
I
&'—R,. I

i&
I
R—R,. I

(R'(56 (R)=Jd'R;, Ug(R;)~! 2

(2.10)

duces in Eq. (2.12) a U~(R) which is complex. We see
that there is little smearing of U~(R) by the delta propa-
gation.

We also repeated the calculation including the width of
the delta in M~ in Eq. (2.10). This gives k both a real
and imaginary part. These results are also given in Table
I. We see that the smeared potential Uq(R) is now even
closer to the original potential, Uq(R).

With this demonstration that the delta (center-of-mass)
propagation will not appreciably modify the potential, we
look for the spatial constant that most closely approxi-
mates the effect of U~(R). We employ the fact that, for
energies in the resonance region, the pion-nucleus interac-
tion is surface dominated. Making use of standard per-
turbation theory (or the two-potential formula for scatter-
ing states) the average correction to the optical potential is
given by the matrix element of the correction term with
distorted pion waves, Pi—+, (r ),

with the right-hand side calculated from Eq. (2.10). The
difference between U~(R) and U~(R) is a measure of the
smearing of U~(R) by delta (pion-nucleon center-of-mass)
propagation.

We calculate U~(R) from Eq. (2.12) for T = 164 MeV.
First, we neglect E~ and the width of the delta and take
M~ to be real. The results are given in Table I. At
T =164 MeV, co+M~ is slightly larger than M~, and
the value of k given in Eq. (2.10) is purely real. This pro-

TABLE I. Values of U(R) and U(R) for 165 MeV pions on
Ca.

2.0
4.0
5.0
5.8

—49.5
—31.9
—13.9

5.21

—50.0 —1.67 i
—33.5 +1.35i
—13.6 —0.58 i

4.10—0.51i

—49.6 +0.12i
—31.9 +0.41i
—13.9 —0.11i

5.18—0.16i

R (fm) U (MeV) U(I =0) (MeV) U(I =94 MeV) (MeV)
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2

a)++Et' M—t, —(P )/2M'

Xgfd rQ r d rttP~ (r„')gtt(r~)v (r' r&—)U&(r~)v(r re—)P~ (r )f~(r&),
B

(2.13)

tv++Eg —Mg —(P )/2M'

X fd RP„'(R)gg (R)p(R)Uq(R) . (2.14)

We are led to define the mean spectral energy by

E,(tok, A) fd Rgt, *(R)gt+, (R)p(R)

= fd Rpk "(R)pk+(R)p(R)Ug(R) . (2.15)

The mean spectral propagator, G, (co), may then be de-
fined by

G, (cv)—:
1

co++E~ —Mg P /2M', —E,(cv, A ) +i rt—
(2.16)

This propagator and the full delta propagator including
Ut, (R) will clearly give the same average change in the
optical potential, (5X), to second order in E~, (co,A), as-
suming U~(R)=U~(R). By virtue of its appearance in
the full propagator we hope to include some of the effect

where we have assumed for simplicity an s-wave pion-
nucleon interaction and have eliminated the delta propa-
gation from the integration in accordance with our result
of the previous paragraph. The form factor v(r) is the
Fourier transform of v(k) in Eq. (2.7). This form factor
is of short range in coordinate space ' and it will thus
serve to set r' =-r& and r =-r&. Neglecting this addition-
al smearing gives

2

Wk(R) =R p(R )g(2l + 1)ptI, *(R)ptk(R) .
I

(2.17)

We see that Wk(R) is a smooth function which is peaked
in the surface of the nucleus where the interaction is local-
ized. We also see that U~(R) is reasonably linear over the
important range where Wk(R) is nonzero, thus giving
support to approximating it by its average over. this re-
gion. Because Ut, (R) has a larger half radius tha-n p(R),
U~(R) is still large where Wk(R) peaks and will lead to a

large value for E,(co,A). Note that Wk(R) is complex,
which means that E,( o,cA)is also complex, even when
U~(R) is real. We shall ignore ImE, (co,A) in the fol-
lowing discussion because this adds to the (half) width of
the 633 resonance, which is already quite large. Eventual-
ly, ImE, (co, A) should be considered along with estimates
of Im Ug (R ).

We have calculated E,(tv, A) for ' 0, Ca, and Pb

of U&(R) from higher-order terms in the expansion of
Eq. (2.8). We propose to use the delta propagator defined
in Eq. (2.16). One could also allow the mean spectral en-

ergy to depend on other quantities such as the total
momentum P or the partial wave of the delta in order to
better approximate the effect of U~(R).

The mean spectral energy, Eq. (2.15), is an intuitive re-
sult; it is the potential U~(R) averaged with the probabili-
ty of finding a nucleon at R, p(R), and the probability of
finding the pion at R, Pq *(R)gk (R). In Fig. 1 we show
a typical plot of p(R), Wk(R), and U~(R), where our
choice for U~(R) is given in Eq. (2.8) and where the
weight function Wk(R) is defined by

l.2

0.8

I
I ~ ~ ~ ~

r(fm)

-20—
X

-40

FIG. 1. Quantities that are needed to calculate the mean spectral energy E,(co, A) for ' 0 at T =164 MeV. The solid curve is
Re@'g, (R), the short dashed curve Im Wk{R), the long dashed curve p{R), and the dot-dashed curve Uq{R). 8'k{R) and p{R) are read
on the upper scale {arbitrary units); U~{R) is read on the lower curve.
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50 IOO (50 200 250
IO

-20—

-40—

FIG. 2. The real part of the mean spectral energy E,(co, A)
for ' 0 (the solid curve), Ca (the dashed curve), and ~ Pb (the
dot-dash curve) as a function of the pion laboratory kinetic ener-

using pion distorted waves based on the program2 pIRK
and the lowest-order optical potential constructed from
the free pion-nucleon scattering amplitude and realistic
densities. In Fig. 2 we plot E,(co,A) for these three nu-
clei. We see that E,(co,A) is nearly independent of A
and is a smooth function of co. At resonance, the pions
are limited to the far nuclear surface near the 10%%uo densi-
ty point, and thus E,(co,A) is smaller in magnitude than
at the other energies where the pion can penetrate further
into the nucleus and thus sample Uq(R) where it is
stronger. The dependence on co is so smooth because, as
noted earlier, U~(R) extends out relatively far into the
nuclear surface. The insensitivity of E,(co,A) to A and
co gives indirect evidence that replacing U~(R) by a spa-
tial constant, which depends upon the target and the pion
energy, is a reasonable approximation to have made.

averaging as in Ref. 27 takes only moderately longer than
the expansion approach. By performing the fermi in-
tegration, we treat the operator character of P (i.e., the
delta recoil) without approximation.

An important practical difference between the potential
models (or the simple delta model of Ref. 11) and the field
theoretic approach is that the pion-nucleon form factor
has a much higher momentum cutoff in the field theoretic
approach. The low momentum cutoff of the potential
models has been shown to arise from an improper treat-
ment of the s- and u-channel nucleon poles in the pion-
nucleon amplitudes in these models. This higher momen-
tum cutoff has. two effects on pion-nucleus cross sections.
First, it results in a slightly decreased radius' of the opti-
cal potential resulting from the smaller range of the pion-
nucleus interaction. Second, the fermi integration will ex-
tend over a larger range of momentum. This alters the ef-
fective energy at which the pion-nucleon t matrix is
evaluated. Since the nucleon-nucleus interaction also
alters the energy at which the two-body interaction is
evaluated, the quantitative importance of these dispersive
corrections is not completely independent of the choice of
the pion-nucleon form factor. There are also other quali-
tative differences' between our approach through the
Klein-Gordon equation and one utilizing an optical poten-

I oo—

IO—

III. PION-NUCLEUS SCATTERING

co, =co+E~ Em, (co,A) P —/2(M~+co)—, (32)

where we have replaced M~ in the recoil term by M~+co
so that the results will remain valid at energies away from
resonance. For the numerical results in this section we
take the t matrix from Ref. 21. We also perform the fer-
mi averaging over the momentum of the struck nucleon
exactly utilizing a technique developed in Ref. 27. Simi-
lar results could be obtained utilizing the expansion tech-
nique of Ref. 28 but the exact evaluation of the fermi

In this section, we examine the effect of the dispersion
correction on pion-nucleus elastic scattering cross sec-
tions. The optical potential is calculated according to Eq.
(2.6). The mean spectral propagator prescribes that the r

matrix be taken of the form

(k'k'„
i
t(co)

i
k k„)=5(P' —P)(k'

i
t(co, )

i
k),

(3.1)
(

where the off-shell pion-nucleon r matrix is to be evaluat-
ed at the energy co, given by

O, l

I

40
I I

60 80

8 (deg)

0
C, 0

I

l00
I

I 20

FIG. 3. The elastic differential cross section for elastic
scattering of m+ from ' 0 at a laboratory kinetic energy of 114
MeV. The data are from Ref. 31. The solid curve is the result
of using the mean spectral propagator, the dashed curve uses the
three-body energy denominator, and. the dash-dot curve sets
both the binding energy E~ and the mean spectral energy
E,(co, A) equal to zero. The Coulomb interaction is included.
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tial in a Schrodinger equation, especially at energies well
below resonance.

In Figs. 3—5 we depict elastic differential cross sections
for m+ scattering from ' 0 at 114, 162, and 240 MeV.
The solid curve is the full calculation utilizing the mean
spectral propagator defined in Eq. (2.15) with the mean
spectral. energy as depicted in Fig. 2. The single particle
wave functions and binding energies are from Ref. 29.
The dashed curve is the result of using the "three-body"
energy denominator ' ' which derives from the mean
spectral propagator by setting E,(co, A) equal to zero.
Because E,(co,A) tends to cancel Ez in the propagator,
we also show results (the dot-dash curve) for the case
when both E,(co,A) and Ez are set to zero. The data are
from Ref. 32.

The first and most general conclusion one can draw
from these curves is that the inclusion of dispersive effects
is important in pion-nucleus physics, and that the way in
which dispersive effects are treated can alter predicted dif-
ferential cross sections significantly. This is certainly true
in the resonance region and also below resonance as can be
seen in the results at 114 MeV. The role of the dispersive
correction above resonance is still significant but relative-
ly less important than at the lower energies.

We also plot in Fig. 6 the total, total elastic, and total
inelastic cross sections for ~+ scattering from ' 0 as a
function of energy. The data for the total cross section
are from Ref. 33. In Fig. 7 the real and imaginary parts
of the forward scattering amplitude f(0) are depicted.
The points are the forward scattering amplitude extracted
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FIG. 5. The same as Fig. 4 except the energy is 240 MeV.
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FIG. 4. The same as Fig. 3 except the energy is 163 MeV.

FIG. 6. The total, total elastic, and total inelastic cross sec-
tion for ~+ scattering from ' 0 as a function of pion kinetic en-
ergy. The solid curves are the result of using the mean spectral
propagator and the dashed curves result from the three-body en-

ergy denominator. The Coulomb interaction is turned off. The
data are from Ref. 33.
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FIG. 7. The real and imaginary parts of the strong, forward
scattering amplitude for m+ elastic scattering from ' 0 as a
function of pion laboratory kinetic energy. The solid curves are
the results of using the mean spectral propagator and the dashed
curves result from the use of the three-body energy denomina-
tor. The Coulomb interaction is turned off. The points are
values off(0) that are extracted in Ref. 34 from data.

from data in Ref. 34. Near resonance (T —160 MeV) we
note the following. First, the forward differential cross
section is not particularly sensitive to dispersive effects.
This is because the imaginary part of the optical potential
is dominant at this energy and is determining the differen-
tial cross section in this angular region. When one is ex-
actly at the peak of the resonance, the imaginary part of
the amplitude is stationary. This fact, combined with the
fact that the nucleus is already very black, explains why
the positions of the minima are not particularly sensitive
to dispersive corrections. The depths of the minima, how-
ever, are strongly dependent on their treatment. As one
can see from Ref (0) in Fig. 7, the real part of the scatter-
ing amplitude is rapidly passing through zero for
T —125 MeV. When one turns on the Coulomb poten-
tial, the net real amplitude for positive pio'ns passes
through zero at T„-160 MeV, which is the energy at
which the angular distribution looks most diffractive. As
the energy is varied away from resonance the minima are
filled in by an amount equal to the square of the real part
of the total amplitude. For these reasons, Coulomb-
nuclear interference measurements and angular distribu-
tions are particularly sensitive indicators of dispersive ef-
fects.

At the energies below resonance, the dispersive effects
play the largest role. In this region both the real and
imaginary parts of the two-body amplitudes are rapidly
energy dependent. This can be seen in the curves of f(0)
vs energy, in the total cross section curves, and in the dif-
ferential cross sections at 114 MeV. At energies above the
resonance the sensitivity to the treatment of dispersive ef-

fects is somewhat less than at resonance or below. The to-
tal cross sections and the forward differential cross sec-
tion do show a sensitivity to the dispersive effects as the
imaginary part of the two-body amplitude is strongly en-
ergy dependent in this region.

From Fig. 7, one sees that the experimental determina-
tion of Ref (0) for several nuclei over an extended energy
region would be of great use in understanding the role of
dispersive effects in a quantitative way. This can be ac-
complished by taking data in the far forward angular re-
gion and extracting the real part of the strong amplitude
by its interference with the known Coulomb amplitude.
Because the energy dependence of Ref (0) is nearly linear
for T & 120 MeV (unlike the energy dependence of the
depth of the diffractive minima), one need measure
Ref (0) at only three or four energies in this region. Data
on nuclei with X not equal to Z would help to understand
the isovector pieces of the pion-nucleus interaction.

An amplitude analysis of the extent data on ' 0 and
4oCa was performed in Ref. 34 to determine the strong
forward scattering amplitude. The results for ' 0 are
plotted in Fig. 7. We see that the data confirm the peak-
ing of Ref(0) at low energy and indicate a need for the
mean spectral energy, E,(ro, A).

IV. CONCLUSIONS

The half-width of the b, 33 resonance is 55 MeV, a num-
ber which is comparable to typical nuclear energies. It
has long been known' that nuclear medium effects which
can alter the energy of the pion-nucleon ainplitude would
have significant effects on pion-nucleus cross sections.
The dispersive effect of the nucleon-nucleus interaction
acting on the nucleon while it is interacting with the pion
has been examined in the context of a three-body potential
model in Refs. 8 and 9. We study in a field theoretic
model an alternative and much simpler way of treating
the delta-nucleus potential which enables us to incorporate
its effects on elastic scattering while simultaneously incor-
porating full relativistic kinematics and performing exact-
ly the fermi averaging integral (which includes an exact
treatment of the delta recoil).

This approach, as it presently stands, is to be augment-
ed by a second-order optical potential. Our approach is
sufficiently flexible to allow a simultaneous treatment of
elastic scattering, and single and double charge exchange
along the lines of Ref. 35. Because the lowest-order po-
tential is calculated theoretically in the present approach,
the phenomenological energy shift of Ref. 35 would not
be needed. This will make possible a study of the sys-
tematics of the second-order processes and should prove
helpful in sorting out the underlying dynamics of the
higher-order physics. Microscopic calculations of the
second-order terms may be made following the theory of
Ref. 14.

The mean spectral propagator is an efficient way to in-
clude in the impulse approximation modifications caused
by the b.33 nucleus mean field. We are looking at several
possible improvements on this treatment. In Eq. (2.14) we
use the short range (in coordinate space) pion-nucleon
form factor to motivate our approximation. We did not,
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however, use the p-wave structure of the coupling. If we
keep the difference between an s-wave and p-wave cou-
pling to intermediate states, we would expect E,(co,A) to
be different for pion-nucleon s waves and p waves. We
have also not yet included the spin-orbit part of the delta-
nucleus interaction. We are presently developing tech-
niques for incorporating this potential. Finally, the use of
a propagator which includes the delta-nucleus interaction
will, we expect, have important consequences for inelastic
scattering, including charge exchange reactions. Since in-
elastic scatterings can result from differences in ampli-
tudes (as in charge exchange) or can be particularly sensi-
tive to the relative strengths of various partial waves
(which are altered differently by energy shifts in the t ma-
trix), we expect to see interesting modifications caused by
the use of an improved, lowest-order delta propagator.

We have found that the dispersive effects have a sub-
stantial impact on the cross sections, both differential and
total, which are predicted by theories. These dispersive
effects alter the energy at which the two-body amplitude

is evaluated in the impulse approximation. Their treat-
ment is intimately connected with the choice of the unper-
turbed propagator in perturbation theory, and hence the
definition of what is meant by first order and second or-
der. We have proposed a simple way of incorporating a
major part of these dispersive effects into the first-order
optical potential without the necessity of solving a three-
body problem or using the delta-hole model through the
use of a mean spectral energy. We have noted that addi-
tional measurements of the real part of the strong, for-
ward scattering amplitude, f(0), would provide valuable
experimental input into our understanding of the role of
the delta-nucleus interaction. -
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