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A microscopic model for the alpha-particle-nucleus optical potential is presented and applied to
a- Ca scattering. Starting with the M3Y force as the basic nucleon-nucleon interaction, the single-
channel contribution to the optical potential is calculated by means of the fish-bone model which
treats the antisymmetrization between the projectile and the target nucleus in an approximate way.
The applicability of the fish-bone model to the a- Ca system is tested by comparison of resonating
group calculations with fish-bone model calculations. The potential terms arising from the coupling
of the elastic channel to other reaction channels have been calculated in the framework of the nu-

clear structure approach using random-phase approximation transition densities for intermediate ex-
cited- states. The elastic scattering cross sections calculated from the microscopic potentials repro-
duce gross structures of the experimental data. . However, the model cannot account for the whole
absorption.

I. INTRODUCTION

Elastic scattering of alpha particles from nuclei has
been known to be a very important tool in nuclear physics
for a long time. The description of the process in the
framework of the optical model has been studied exten-
sively. In particular, phenomenological and semimicro-
scopic analyses of excellent cross section data have been
performed for a- Ca scattering. ' Unfortunately, such
analyses can give only poor information about the alpha-
particle-nucleus potential for two reasons: (i) The alpha
particle is strongly absorbed at the nuclear surface, lead-
ing, therefore, to potential ambiguities at small radii. (ii)
The optical potential is always nonlocal due to exchange
terms and due to the coupling of the elastic channel to
other reaction channels. For simplicity, however,
phenomenological and semimicroscopic analyses are based
on local potentials. This approximation works rather well
for nucleon-nucleus scattering. In the case of composite
particle systems, however, the nonlocality is an essential
feature and can be simulated by local potentials only
under severe approximations which lead to ambiguities in
the potential. This situation is not satisfactory, since the
optical potentials are the main input to many other reac-
tion calculations. Although all ambiguous potential solu-
tions produce the same elastic cross section, they lead to
rather different results in reaction calculations, and one
has therefore to ask for physically reliable potentials.

Because of these circumstances, the microscopic calcu-
lation of the optical potential for composite particle
scattering is motivated not only from theory but also from
a practical point of view. Today, there exist many papers
in which the real part of the alpha-particle-nucleus optical
potential has been successfully calculated by folding some
sort of nucleon-nucleon interaction into the projectile and

target nucleus matter densities. More sophisticated
approaches stress the importance of the Pauli principle
using the resonating group method to determine the real
part of the optical potential. " In these calculations a
phenomenological imaginary part is added to the real po-
tentials in order to describe the elastic scattering cross sec-
tions. Only in the last few years have microscopic calcu-
lations of the imaginary part of the alpha-particle-nucleus
potential been reported. ' ' The results of these calcula-.
tions are promising, although complete agreement with
the experimental cross sections has not been achieved.
However, concentrating on the imaginary part, these au-
thors have paid less attention to the real part which, in
any case, dominates the interaction.

In this paper we report a calculation of the a- Ca opti-
cal potential which treats the real as well as the imaginary
part of the potential on a microscopic basis. The dom-
inant contribution to the real part is given by the folding
term which is calculated by using the fish-bone model. '

This model takes the antisymmetrization between projec-
tile and target nucleons approximately into account. The
imaginary part is calculated within the nuclear structure
approach' ' '" to the optical potential neglecting the
Pauli 'principle. As in Refs. 11 and 12, the coupling of all
energetically open inelastic channels described by
random-phase approximation (RPA) wave functions are
included.

This paper is organized as follows. In Sec. II the model
is described. Since the fish-bone model was never applied
to a- Ca scattering, Sec. III is devoted to test its applica-
bility. to this scattering system. In Sec. IV some calcula-
tional details are given. The results of our calculations for
incident alpha-particle energies of E=26,1, 31.0, and 36.1

MeV are reported in Sec. V. Finally, Sec. VI contains a
brief summary and conclusions.
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II. THE MODEL

In contrast to the nucleon-nucleus system there does
not exist a unique definition of the optical potential for
composite particle scattering on the basis of a many-body
field theory. Therefore, one has to start from the formal
derivation of the optical potential given by Feshbach'

U, ,(r, r') =(r+&%'~
~
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where P denotes the projection operator onto the elastic
channel and Q= 1 P. T—he elastic channel is character-
ized by the antisymmetrized ground state wave functions
%~ and 4'~ of the target and projectile, respectively, to-
gether with the relative distance r(r') between the two col-
liding nuclei. In Eq. (1), Vis the microscopic interaction
between the target and projectile nucleons and M is the
antisymmetrization operator of the complete scattering
system.

The first term of Eq. (1) is a folding term and corre-

sponds to the resonating group potential when only one
channel (the elastic channel) is considered. Describing the
direct potential contribution to the elastic channel, this
term dominates the optical potential and has been the sub-
ject of many publications. Due to the exact treatment of
the antisymmetrization, the calculations become rather
lengthy and, hence, are only feasible for certain simple
systems like the o.-a, n-' 0, o.- Ca, etc. In order to also
treat more complicated systems and to reduce the calcula-
tional effort, one has to look for suitable approximations
which are simple but nevertheless contain the essential
features of the resonating group method. Recently,
Schmid' proposed the fish-bone model, which seems to
fulfill these requirements.

In the fish-bone model one represents the resonating
group exchange kernel on the basis of norm-kernel eigen-
states up .' Here, p labels the partial waves and v is a
counting index for the norm-kernel states with given p. If
one neglects a certain group of interaction terms, one ob-
tains a very simple approximation to the resonating group
potential which still retains the most important effects of
antisymmetrization. ' In partial-wave projection the first
term of Eq. (1) becomes
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Here, n'~' is the number of completely Pauli-forbidden
states in the partial wave p.

The second term of Eq. (1) describes the coupling of the

where T denotes the kinetic energy operator and Vg' the
direct local part of the resonating group potential. The
fish-bone matrix Mz~' is easily constructed by the norm-
kernel eigenvalues qp

(p)Mpp„——gp (3)

The terms neglected in the fish-bone model can be partly
compensated for by renormalizing the basic nucleon-
nucleon interaction. This has been shown for light cluster
systems by several authors. ' The extension to o;- Ca
is straightforward and will be discussed briefly in the fol-
lowing section.

Investigations of three-cluster systems ' suggest the
use of an off-shell transformation in order to reduce
Pauli-induced three-body forces. With regard to applica-
tions of the optical potentials in reaction calculations,
where Pauli-induced three-body forces will occur, we have
used the off-shell transformed version of the fish-bone
model. ' The transformation modifies only the fish-bone
matrix M' 'slightly to M' ',

elastic to all nonelastic channels. Neglecting antisym-
metrization and considering second order contributions to
the optical potential with respect to the effective
projectile-target nucleon interaction, only the imaginary
part of Eq. (1) is given by

(5)

where %~ denotes the intermediate target excited states of
energy E~. g~(r, r') is the intermediate projectile Green's
function calculated at the energy E E~, and V„z i—s the
projectile target-nucleon interaction. Expression (5) is
treated in the same way as in Refs. 11 and 25. In our cal-
culations we have restricted the sum over X in Eq. (5) to
all energetically open inelastic channels.

The contribution of the second term of Eq. (1) to the
real part of the optical potential can be formulated similar
to expression (5). But now, one has to sum over all ener-
getically open and closed channels, respectively. Calcula-
tions show that the sum over the closed channels con-
verges in the case of the real part Vq(r, r') of the second
order optical potential only very slowly, thus increasing
the numerical effort greatly. On the other hand, restrict-
ing the sum to open channels only does not yield a reliable
approximation to V2(r, r'). Hence, we have simply
neglected V2(r, r') in our final calculations knowing that
the error made by this approximation should be only of
the order of 10', since the real part of the optical poten-
tial is dominated by V~.
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V~~'(r) = V~„(r)[a+bP'] . (6)

Here, V~„ is the local resonating g'roup potential for pure
Serber mixing and P' is the Majorana exchange operator

III. THE FISH-BONE MODEL FOR a- Ca

In analogy to previous papers, ' ' we consider the +-
" Ca scattering in order to test the model proposed in Sec.
III. It is obvious that in our calculations the fish-bone po-
tential will play an essential role. Until now there existed
no experience with the o;-" Ca fish-bone optical potential
because all applications have been restricted to lighter
cluster systems. Hence, a brief test of the applicability of
this potential to the e- Ca scattering is required.

Following Ref. 17 we make a comparison with available
resonating group calculations. "' As a reference calcula-
tion we use the work of Sunkel, which is based on a two-
nucleon interaction of near Serber mixture (80%) without
hard or soft core. We assumed an oscillator model for
both the a particle and the Ca nucleus with a width pa-
rameter of P=0.25 fm in order to obtain the correct
rms radius of Ca. To compare the fish-bone with the
resonating group model we take VD

' in Eq. (2) to be the
loml part of the resonating group potential using the
same parameters as in Ref. 7.

As a criterion for the quality of the first order potential
we consider the rotational bands of Ti which can be in-
terpreted as quasimolecular states of the a-" Ca system.
Resonating group 'calculations ' describe those resonances
quite well. The fish-bone optical model shows a rotation-
al band, too. However, there exists an additional even-odd
splitting (Fig. 1) similar to the a-' 0 system. This defi-
ciency can be compensated for by introducing a Majorana
termin V' ',
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which interchanges the positions of the a and the Ca
cluster. The origin of this term has been discussed in Ref.
17. Using a =0.762 and b = —0.036 we obtain quite good
agreement between theory and experiment (Fig. 2).

At this point it seems appropriate to make some re-
marks on features of the a- Ca fish-bone potential in
comparison with the orthogonality condition model of
Saito. From Fig. 1 it can be seen that the rotational
band of the orthogonality condition model using the same
basic interaction lies about 2 MeV below that of the fish-
bone optiml potential. This indicates that the partly-
Pauli-forbidden states, which are taken into account in the
fish-bone model, give rise to some sort of barrier. Such an
effect has been observed in light cluster systems and has
led to the concept of a Pauli barrier. Furthermore, there
appears a change in the slope of the rotational band (Fig.
1). The increased moment of inertia in the fish-bone opti-
cal model is directly connected with the displacement of
the wave functions to greater radii by partly-Pauli-
forbidden states.

FIG. 2. Comparison of experimental and calculated rotation-
al bands in Ti. ~, experiment; Cl, fish-bone optical
model using the local resonanting group potential with a Ma-
jorana term.

IV. CALCULATIONS

A. The folding potential V~

In the preceding section it was pointed out that the
fish-bone model reproduces the rotational spectrum of
"Ti rather well. This property of the a- Ca fish-bone
model Hamiltonian gives us some confidence that it is
also suited to describe the o.- Ca scattering in the single
channel approximation (in analogy to the a-' 0 system' ).
Starting from the M3Y effective nucleon-nucleon interac-
tion of Bertsch et al. ,

e —4r —2.5r

Uoo (r) = 6315 —1961
4r 2.5r

MeV,

- P'

023 4 5 6 7 8 9
( [scale i(l+1)]

FIG. 1. Comparison of experimental and calculated rotation-
al bands in Ti. —, experiment; Q ———,resonating
group model; 0, fish-bone optical model; and 4 ———.,
orthogonality condition model using the local resonating group
potential of 75% Serber mixture (Ref. 27).

VF was obtained by folding Upp into the ground state
density distributions of Ca (Ref. 31) and the a particle. 3

Then we multiplied the folding potential with a parity
dependent normalization factor X in order to construct
the direct potential VD of the fish-bone model. The nor-
malization factor was adjusted to reproduce the J =0+
and J =1 resonances at E, =6.41 MeV and 6.67
MeV, respectively. Thus the direct potential Vg' has the
form
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FIG. 3. Comparison of experimental and calculated rotation-
al bands in Ti. e, experiments;, fish-bone optical
model using a folding potential calculated with the M3Y force
(Ref. 30).

Vz'(r) = [0.8713—0.0424( —1) ]Vz(r), (8)

where l is the orbital angular momentum quantum num-
ber. Figure 3 shows the reproduction of the rotational
bands by using this direct potential.

(3,E„=3.73 MeV) at E =30 MeV which require a re-
normalization factor of X„=0.7.

V. RESULTS

A. The second order potential 8'2

The second order potential is highly nonlocal. In order
to get a feeling for the structure of the nonlocal potential
we show in Fig. 4 perspective drawings of 8'z(r, r') for
zero angle r.r'= rr' at several energies. From these
graphs it is obvious that 8'z tends to a local potential but
there are also large nonlocal contributions. The second
order potential for alpha-particle-nucleus scattering is
highly dependent on the intermediate Green's function. "
In order to give an impression of the importance of the in-
termediate Green's function we also show in Fig. 4 the
imaginary part at EI ——31 MeV calculated in Ref. 11.
This calculation differs only in the use of different poten-
tials generating the propagators and a different normali-
zation of the a-target nucleon interaction. The latter is
mainly responsible for the different size of the potential at

B. The intermediate Careen's functions

The Green's function describing the propagation of the
system in intermediate states was generated from the
fish-bone potential V~. Due to the nonlocality of V&, an
additional difficulty occurs bemuse the Green's function
in partial-wave expansion loses its simple separable form,
thus increasing the numerical effort greatly. In order to
reduce the computer time we have calculated the Green's
function only in energy steps of 2.5 MeV and have then
taken for every intermediate channel the propagator of the
nearest energy value calculated. The numerical calcula-
tions were performed with the code GREFUL. A
phenomenological imaginary part of 0.01 V~(r) was add-
ed to the direct potential VD in order to damp potential
resonances, thus simulating an energy averaging of the op-
tical potential. For further information on this imaginary
part we refer to Ref. 25.

C. Calculation of 8'2
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The second order potential is calculated as described in
Ref. 11 using Ca RPA vectors for the intermediate
states %'~ in Eq. (5). These vectors were obtained from a
3%co basis including multipolarities A, (6. All open in-
elastic channels were included in the sum of Eq. (5).

A very important input to our calculations is the
a-target nucleon (n) interaction V„. We use the same
V„~ as in previous papers, "'

( 310 le —0.422r +319 2e —0.505r
)
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which was derived by folding the M3Y force, Eq. (7), into
the a-particle ground state density distribution. For the
normalization factor we take the parity independent fac-
tor of Eq. (8), N« ——0.8713, in order to have consistent in-
teractions in the first and second terms of the optical po-
tentials. This normalization is consistent with inelas-
tic cross-section calculations for Ca(a, a') Ca*

j
r

1 l2 3 4 5 6 7 8 9 10 11

FIG. 4. Perspective drawing of the nonlocal second order
imaginary optical potential 8'2(R, R') for zero angle
R-R'=RR' at several incident alpha particle energies (solid
line). At 31.0 MeV the dashed line denotes 8'2(R, R') calculat-
ed in Ref. 11.
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the nuclear surface.
A very interesting point is the energy dependence of the

second order potential. However, due to the complex
structure of the nonlocal potential it is rather difficult to
fix it. If we restrict our considerations to the localization
point r=r', we observe an imaginary part at the nuclear
surface which increases with increasing energy, thus indi-
cating an increasing absorption. Due to the shielding ef-
fect of the absorption on the nuclear surface, the nonsys-
tematic behavior of the imaginary potential at small radii
should not influence the global trend of the absorption.

B. Calculation of the elastic differential cross sections

The complex structure of the nonlocal potentials re-
quires a complete nonlocal calculation of the differential
elastic cross sections. ' Any localization procedure used
in similar previous works' '" will lead to doubtful results.
In Fig. 5 the theoretically calculated elastic differential
cross sections are compared with experimental data' at
several energies. In order to show the influence of the

second order potential Wq on the differential elastic cross
sections we also show cross sections calculated with the
first order fish-bone model alone. It is obvious that the
inclusion of 8 z improves the agreement with experiment
considerably. The gross structure of the angular distribu-
tions is well reproduced by the microscopic optical poten-
tial. In particular one obtains the characteristic energy
behavior around 90' quite satisfactory. But looking on the
absolute values, the theoretical cross sections are always
too high, thus indicating too little absorption in our
model. This deficiency is not surprising since we take
into account only inelastic channels, but there is a large
number of other open channels like, e.g., transfer reaction
channels which will also considerably contribute to the
absorption. The failure of the microscopic potentials in
producing too little absorption is expressed also in the to-
tal nonelastic cross sections o.„, displayed in Fig. 5. In
comparison to phenomenological analyses, ' only about
55% of the total absorption cross section is reproduced by
our calculations.

Ol'OR

10=2
E = 26.1 MeV 0„,= 603 rnb

10

E =31.0 MeV
10=

0„, =699mb
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E =36.1 MeV
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120 180

FIG. 5. Comparison of the calculated elastic differential
cross sections with the experimental data of Ref. 1. , cal-
culation with first and second order potential. ———,calcula-
tion using onl'y the first order fish-bone potential.

C. Pauli principle and second order potential

The neglect of various reaction channels is not the only
reason for the too small absorption, because previous cal-
culations' which include the same number of intermedi-
ate states obtain larger values for o-„,. As mentioned
above, the main difference between our calculations and
previous ones' is the use of an intermediate Green's func-
tion which in our case is generated from the nonlocal
fish-bone optical potential. The structure of the ground
states of projectile and target is an essential input to this
fish-bone model via the norm-kernel eigenvalues. In our
special system, both the alpha particle and the Ca nu-
cleus have closed shells in their ground states. In this case
the number of totally forbidden states and the effect of
partly-Pauli-forbidden states become maximal in the a-Ca
cluster decomposition of the 3=44 nucleon system. In
intermediate states, however, at least one particle is excit-
ed, and we have no closed shell any longer. Hence, gen-
erally the number of totally-Pauli-forbidden states is re-
duced, and also the effect of partly-Pauli-forbidden states
on the propagator decreases. Therefore, the propagation
probability of the projectile in intermediate states will in-
crease and, therewith, also the Green's function and its
imaginary part.

An exact calculation would require the determination
of the resonating group potential for every intermediate
channel. The effort for such a calculation is not justified
compared to the other assumptions made in our model.
In order to get an estimate on the magnitude of this Pauli
reduction we made a very rough calculation. We assumed
that one nucleon of " Ca is highly excited and that the
corresponding hole state of Ca completely overlaps with
one nucleon wave function of the a particle. In this case
we have to apply the Pauli principle only to the He- Ca
system. We take the He- Ca norm kernel together with
the direct potential Vz" of Eq. (8) and construct the fish-
bone model for intermediate states. Then we calculate the

3He
corresponding Green's function G ' for an energy of
E—E&——10 MeV which essentially corresponds to the
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'average energy of the propagating a particle in intermedi-
ate states. In Fig. 6 we show the ratio

G3He r rRG(r)= (10)
G (r, r)

a/u„

10=
E = 26.1 MeV

I l I I I I I I

0 1 2 3 4 5 6 7 8 9
r (fm)

FICx. 6. Radial dependence of the ratio RG(~) at the locahza-
tion point r=r'.

at the localization point r=r'. Here, 6 denotes the
Green's function which has been obtained by the fish-bone
potential using the a- Ca (ground state) norm kernel. As
expected, the ratio RG is always greater than 1. Further-
Inore, we see that the correct treatment of the Pauli prin-
ciple will affect the imaginary potential 8'2 mainly at the
nuclear surface. In Fig. 7 we show calculations of the dif-
ferential cross sections where the imaginary potential W2
has been multiplied by different factors R. In particular,
we have calculated the case R =2 which corresponds to a
mean value of RG(r) over the whole radial range and the
case R =6 which represents the maximum of RG(r). The
resulting cross sections are strongly affected by the scaling
factor R, thus indicating the importance of the correct
treatment of the Pauli principle in the intermediate chan-
nels. It might be accidental, but for the average value
R =2 an improvement in the reproduction of the gross
structure is observed.

At this point it is opportune to discuss the promising
results"' obtained by local first order potentials, In both
Refs. 11 and 12 shallow phenomenological first order po-
tentials were used. A local potential can simulate a
totall'y-Pauli-forbidden state by introducing additional
bound states. In our fish-bone model, however, there are
for every partial wave more totally-Pauli-forbidden states
than there are bound states in the shallow potentials used
in Refs. 11 and 12. Therefore, one would expect that the
propagation probability is overestimated.

I

p ' e o
I

I

2-10- E = 31.0 MeV

-2-10-
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10—
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FIG. 7. Comparison of the experimental elastic differential
cross sections of Ref. 1 with microscopic calculations using dif.-

ferent scaling factors Ã for the second-order imaginary poten-
tial. , R =1, ———,Ã =2, and R =6.

VI. SUMMARY ANIL CONCLUSIONS

Starting from a nucleon-nucleon interaction we have
calculated the nonlocal optical potentials for n- Ca
scattering at 26.1, 31.0, and 36.1 MeV, using the nuclear
structure approach. While the Pauli principle has been
approximately taken into account in the first order term,
we have omitted the structure of the a particle in the
determination of the second order contributions. The
nucleon-nucleon interaction was normalized in order to
reproduce the rotational band in Ti. For this purpose
we have tested the applicability of the fish-bone optical
potentials to a- Ca scattering and found similar features
as in light cluster systems. The calculated second order
potentials are highly nonlocal, and a comparison with a
previous work" shows the sensitivity of the optical poten-
tials to the intermediate Green's functions.

A comparison of our calculated differential cross sec-
tions with experimental data is quite satisfactory. Al-
though there is no fitting parameter in our model (the re-
normalization of the nucleon-nucleon interaction has been
fixed to reproduce the 0+ and 1 resonances of Ti near
6.5 MeV) we successfully reproduce the gross structure of
the differential cross sections. The theoretically deter-
mined potentials underestimate the absorption in general.
There exist several reasons for this deficiency: (i) the non-
correct treatment of the Pauli principle in intermediate
channels; (ii) the neglect of other energetically open reac-
tion channels than inelastic channels, like, e.g., transfer
channels which may contribute significantly to the ab-
sorption; it is likely that especially transfer processes con-
tribute to the long range part of the absorption and thus
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carry a large weight; (iii) the uncertainty in the second or-
der real potential can also influence the absorption.

Concluding, one can say that the fish-bone model to-
gether with the nuclear structure approach is an effective
tool to describe elastic a- Ca scattering at low energies.
The complete nonlocal calculations eliminate the doubts
connected with localization procedures. But there remain
serious problems. First, one has to perform a Pauli-
correct calculation of the second order imaginary part.
Second, one has to include transfer channels, which most
probably are dominantly responsible for the missing ab-
sorption. Furthermore, a consistent and complete calcula-
tion of the second order real potential is required. In spite

of these problems we think that the model proposed is a
further step towards a better microscopic understanding
of alpha-particle-nucleus optical potentials.
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