^{198,199,200,201,202,204}Hg(n,γ) cross sections and the termination of s-process nucleosynthesis

H. Beer

Kernforschungszentrum Karlsruhe, Institut für Kernphysik III, D-7500 Karlsruhe 1, Federal Republic of Germany

R. L. Macklin

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 29 November 1984)

The neutron capture cross sections of ^{198,199,200,201,202,204}Hg(n, γ) were measured in the energy range 2.6 to 500 keV. The average capture cross sections were calculated and fitted in terms of strength functions. Resonance parameters for the observed resonances were determined by a shape analysis. Maxwellian averaged capture cross sections were computed for thermal energies kT between 5 and 100 keV. The solar mercury abundance was determined to be 0.34 ± 0.04 relative to Si=10⁶. The termination of *s*-process nucleosynthesis at lead and bismuth was investigated. The abundances of ^{206,207,208}Pb were reproduced introducing a strong fluence component of the *s* process in addition to normal *s*- and *r*-process nucleosynthesis. The radiogenic ²⁰⁷Pb abundance was determined and the *r*-process age was calculated via ²³⁵U. Using Fowler's exponential model, an age T = 4.6 Gyr $+\Delta = 17.2\pm 2.6$ Gyr was obtained.

I. INTRODUCTION

One of the basic processes in the buildup of heavy elements, the slow neutron capture nucleosynthesis, terminates at the isotopes of lead and bismuth, where via the following α unstable nuclei all further neutron capture transformations are cycled back to the main isotopes of lead.

Just on the brink of this termination cycling the mercury isotopes are situated which form, therefore, the starting point for the *s*- and *r*-process analysis of lead and bismuth.

With regard to these considerations, it is unfortunate that mercury is a highly volatile element, the solar abundance of which could, therefore, hardly be determined via meteorite analyses.¹ However, the complete set of stable mercury capture cross sections from this work allows via *s*- and *r*-process systematics the unambiguous calculation of this quantity, which is in itself already of basic importance.

In the present study we display in Sec. II—IV the measurement and analysis of the stable mercury capture cross sections, and we give resolved resonance parameters and strength functions from a statistical model fit and Maxwellian averaged capture cross sections. In Sec. V the solar mercury abundance and a decomposition of the isotopic mercury abundances into its s and r contributions are presented.

Finally a calculation of the s-process path termination via Hg, T1, Pb, and Bi is performed where the information deduced from the mercury isotopes is of basic importance. The calculations follow the concepts developed by Clayton and Rassbach² and Ward and Clayton.³ The decomposition of the lead isotopes into the different nucleosynthetic contributions yielded the radiogenic 207 Pb abundance which was used to study the 235 U cosmic clock.

II. EXPERIMENTAL TECHNIQUE

A. Measurement

The mercury measurements were performed at the Oak Ridge Linear Accelerator (ORELA) in the neutron energy range 2.6–500 keV using the time-of-flight method. The accelerator repetition rate was adjusted to 500 and 800 Hz, respectively, for individual mercury samples, and an electron burst width of 5 ns full width at half maximum was maintained. The generated neutron beam from a water-cooled tantalum target⁴ was filtered by ¹⁰B (0.0269 atoms/b) to avoid an overlap of slow neutrons with the next neutron burst, and confined to a suitable beam profile at the sample position by a series of Cu collimators. The neutron burst from the target impinged on the sample to be investigated after a flight path of 40.12 m. The prompt capture gamma-ray cacade released by the capture event was counted by a pair of hexafluorobenzene (C_6F_6) scintillation detectors placed symmetrically outside the neutron beam and viewing the sample edge on. The neutron beam was monitored by a 0.5 mm thick ⁶Li glass detector 430 mm in front of the sample. The stability of this detector was frequently checked by a 241 Am α source.

The mercury samples consisted of HgO powder pressed to tablets of quadratic dimensions $(26 \times 26 \text{ mm})$ by means of Lucite powder as a binder. The individual sample characteristics are listed in Table I. The samples were exposed to the neutron beam in a 6.4 μ m thick Mylar foil bag.

The capture events were accumulated twodimensionally into 128 pulse height and 18 000 time-offlight channels. For the pulse height a sharp digital threshold was set at 153 keV.

The time-of-flight data were collected in four different sections with 1, 2, 4, and 8 ns per channel. The energy calibration of the time-of-flight channels was performed

32 738

Main	Weight HgO	Lucite added	Thickness d^{a}		Isot	opic com	positions	(%) ^b	
isotope	(mg)	(mg)	(cm)	198	199	200	201	202	204
198	2141	238	0.07	75.51	6.98	6.09	3.14	6.77	1.52
199	1052	117	0.04	1.58	91.48	4.97	0.76	1.05	0.16
200	3442	383	0.11	2.58	6.48	74.83	5.43	9.33	1.35
201	1715	191	0.055	0.24	0.52	3.12	89.00	6.70	0.42
202	3172	352	0.095	0.06	0.17	0.53	1.38	97.58	0.28
204	4655	517	0.145	0.07	0.14	0.26	0.23	1.10	98.20

TABLE I. Hg sample characteristics.

^aThe dimensions of the samples were $2.6 \times 2.6 \times d$ cm.

^bThe content on ¹⁹⁶Hg was < 0.05%.

by well-known resonances in $^{27}A1$ at 5.903 keV and 1.094 MeV. The pulse height scale was frequently checked with the Compton edge of the 4.43 MeV gamma line of a PuBe source whose total count rate was also used to check the stability of the detector efficiency.

B. Pulse height weighting and flux normalization

In order to derive the total capture cross section from the measurement of the prompt gamma radiation, the recorded capture event must be independent of the details of the cascade. This is achieved by pulse height weighting.^{5,6} This procedure results in an efficiency of the detectors which is proportional to the excitation energy (neutron separation energy plus center of mass energy of the incident neutron). The capture events C(I) were multiplied by the weighting function W(I) and summed over the pulse height channels *I*. As the sample in practice is not isotopically pure (Table I), the resulting quantity is related to all isotopic mercury capture cross sections σ_j by the following expression:

$$\sum C(I)W(I) = k\Phi NMSK_{\gamma} \sum_{j} \sigma_{j}H_{j}E_{j}^{*}, \qquad (1a)$$

with the excitation energy

$$E_j^* = E_{Bj} + E_n \frac{A}{A+1} . \tag{1b}$$

k is a normalization constant, Φ the neutron flux, N the total number of mercury atoms, MS the correction factor for neutron multiple scattering and self-shielding, and K_{γ} the correction for gamma-ray self-absorption in the sample. H_j designates the abundance of isotope j and E_{bj} the respective neutron separation energy, E_n is the neutron kinetic energy, and A is the target mass number. In order to obtain a detector efficiency proportional to the excitation energy E^* , the weighting function W(I) has to fulfill the following equation:

$$\sum_{i} \sum_{I} P(E_{\gamma i}) S(E_{\gamma i}, I) W(I) = k \sum_{i} E_{\gamma i} = k E^* , \qquad (2)$$

where P is the interaction probability of a gamma ray of energy $E_{\gamma i}$ and S is the probability that it will produce a pulse of height I in the detector. S and W are specific properties of the detection system given elsewhere.⁷ The normalization constant k is determined by means of the saturated resonance technique using the 4.9 eV resonance of $^{197}Au.^8$ For this resonance we can write, according to Eq. (1a),

$$\sum_{I} C_{Au}(I) W(I) = k \Phi(E_n = 4.9 \text{ eV}) Y_{Au} E_{Au}^* , \qquad (3)$$

where Y_{Au} is the gold capture yield. As for this resonance with $\Gamma_{\gamma} \gg \Gamma_n$, the capture yield of a sample of 0.0029 atoms/b is effectively one because virtually all neutrons are captured, we can normalize the neutron flux determined via the observed yield of the ⁶Li glass monitor:

$$k\Phi(E_{\rm n}) = \frac{k\Phi(E_{\rm n} = 4.9\,{\rm eV})}{Y_{\rm Li}(E_{\rm n} = 4.9\,{\rm eV})} Y_{\rm Li}(E_{\rm n}) \,. \tag{4}$$

As the normalization procedure is dependent on the discriminator settings of the associated electronics, it is periodically reevaluated, especially when the PuBe source calibrations indicate a significant change in detector efficiency.

III. DATA REDUCTION

Before addition of the capture events to the stored data, the linear pulse of the detector was transmitted to an online computer to perform the pulse height weighting. For the final stored data in the first step the flight time scale was converted to an energy scale. The data were corrected for dead time and the background events were subtracted. The accelerator-independent background was calculated in two ways: (i) from the time interval where the ${}^{10}B$ filter is nearly black and (ii) from the periods where the accelerator was off. The accelerator-dependent background was obtained from several runs with no sample in the neutron beam and the time-independent background subtracted. Additional background from neutrons scattered in the sample and captured in the structural material of the detection system (fluorine of the scintillator, Al housing of the detectors) was taken into account firstly as a subtracted background proportional to the potential scattering of the sample and secondly for individual resonances using the tabulated correction factors.9 Further corrections to be determined were neutron multiple scattering and self-shielding¹⁰ and the gamma absorption of the cas-cade in the sample. (Typical values for these corrections are given in Table VIII).

in the second			
<i>E</i> _0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	E ₀	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$
(eV)	(meV)	(eV)	(meV)
3 1 2 2	13.4 ± 1.8	7 055	78.2± 9.0
3 1 3 1	32.6 ± 3.1	7 157	31.7 ± 4.8
3 1 3 8	46.3 ± 1.6	7 2 5 3	24.3 ± 6.2
3 2 7 1	61.5 ± 1.6	7 485	24.5 ± 6.7
3 294	7.1 ± 1.6	7 518	144.4 ± 11.1
3 383	108.7 ± 2.0	7 557	23.7 ± 7.0
3 626	10.3 ± 1.6	7 613	132.5 ± 11.7
3 638	$35.5\pm\ 2.6$	7 846	$60.4\pm$ 8.5
3 797	$95.5\pm\ 2.0$	7 865	81.3 ± 9.3
3911	8.3 ± 1.5	8 100	137.0 ± 11.0
4 1 5 2	79.5± 4.9	8 146	26.0 ± 6.6
4 2 8 2	$10.8\pm\ 2.5$	8 2 9 6	25.1 ± 6.2
4 3 1 3	76.0 ± 4.6	8 4 1 1	110.7 ± 10.1
4 3 5 9	$14.9\pm$ 2.9	8 467	115.1 ± 11.6
4 553	$93.3\pm$ 5.8	8 584	63.2 ± 12.5
4 6 7 3	106.7 ± 4.9	8 598	77.0 ± 10.3
4 703	$9.7\pm~2.2$	8 777	60.8 ± 9.0
4 769	24.3 ± 2.7	8 796	71.4 ± 9.4
4878	$13.4\pm\ 2.1$	8 843	163.1 ± 12.7
4 963	$53.9\pm$ 3.8	9 082	87.1 ± 11.3
5 183	109.9 ± 5.3	9 670	41.1 ± 9.7
5 488	96.2 ± 5.9	9 698	80.4 ± 13.7
5 641	111.3 ± 6.1	9 719	70.9 ± 12.2
5 763	98.0± 6.1	9 928	100.3 ± 11.9
5 889	34.1 ± 6.9	10 278	74.7 ± 10.8
6174	$65.8\pm$ 5.7	10477	88.9 ± 10.0
6201	21.8 ± 3.8	10 497	83.2 ± 11.6
6 3 4 3	64.5 ± 6.5	10786	109.6 ± 11.7
6 4 5 2	19.7 ± 4.0	10 877	74.8 ± 10.3
6 528	22.1 ± 3.7	11 11 1	67.8 ± 15.1
6 561	99.6± 7.7	11 127	84.4 ± 11.8
6 6 4 5	29.7 ± 3.9	11 462	110.4 ± 13.5
6 689	93.6 ± 6.7	11616	76.3 ± 11.6
6982	15.0 ± 5.1	11 734	$23.7\pm$ 8.5

TABLE II. ¹⁹⁸Hg(n, γ) resonances. The stated uncertainty is statistical only.

TABLE III. ¹⁹⁹Hg(n, γ) resonances. The stated uncertainty is statistical only. (d) indicates a probable doublet or multiplet.

E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	gΓ _n	Γγ
(eV)	(meV)	(eV)	(meV)
3088	155.8± 2.8		
3170	40.8 ± 1.6		
3212	143.3 ± 2.9		
3234	144.5 ± 2.9		
3325	157.0 ± 2.9		
3469	13.1 ± 1.5		
3543	127.5 ± 2.8		
3562	49.5 ± 2.0		
3607	129.8 ± 3.0		
3714	175.2 ± 4.0		
3741	$92.5\pm\ 2.8$		
3795	4.2 ± 4.0		
3797	11.5 ± 3.5		
3856	34.3 ± 2.0		
3970	131.9 ± 3.5		

	TA	ABLE III. (Continued).	· .
E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	gΓ _n	Γγ
(eV) ,	(meV)	(e V)	(meV)
4015	69.8± 8.3	6.0±1.0	283.5±34.0
4088	125.4 ± 3.6		
4160	149.0± 3.9		
4194	13.2 ± 1.6		
4342	26.7 ± 1.9		
4365	168.0 ± 5.1		
4371	18.9 ± 4.5		
4414	156.3 ± 3.5		
4434	22.0 ± 1.6		
4508	21.2 ± 1.8		
1559	108.9 ± 3.7		
4571	130.4 ± 3.9		
4661	68.7 ± 2.6		
1786	117.7 ± 3.4		
1847	65.2 ± 2.8		
956	157.1 ± 3.9		
1994	160.1 ± 10.1	8.41 ± 0.73	218.0±13.8
5092	23.9 ± 1.9		
5118	125.7 ± 3.3		
5207	78.3 ± 2.8		
374	104.3 ± 3.4		
5389	38.4 ± 2.8		
486	145.4 ± 3.9		
612	19.0 ± 2.2		
633	51.8 ± 2.8		
686	141.2 ± 4.5		
5779	184.9 ± 11.6	4.52 ± 0.48	257.7 ± 17.3
5957	105.9 ± 4.3		
6011	34.0 ± 2.8		
5081	15.6 ± 2.4		
6147	40.1 ± 4.8		
5158	105.4 ± 4.5		
5314	104.7 ± 4.2		
6403	54.2 ± 3.8		
6437	184.5 ± 5.9		
480	132.7 ± 5.0		
565	64.1 ± 3.9		
626	54.1 ± 4.0		
726	79.3 ± 4.3		
0774	127.9± 5.2		
0851	41.0 ± 4.3		
869	128.7 ± 5.6		
916(d)	98.0±12.9		
989	138.3 ± 6.1		
051	143.0 ± 6.1		
1/6	25.6 ± 3.4		
259	260.2 ± 25.2	19.2±2.5	361.1 ± 32.4
323	98.6± 5.7		
490	129.9± 5.4		
268	177.2± 6.8		
133	1/2.2± 7.0		
769	89.2± 5.5		
189	54.6± 4.4	· · · · · · · · · · · · · · · · · · ·	
920	1/8.3± /.0		
010	9/.2± 3.4		
11/	1/5.9± /.0		
137	$14/.3\pm 6.2$		
282	18.9 ± 4.5		

-

E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	$g\Gamma_n$	Γ_{γ}
(e V)	(meV)	(eV)	(meV)
8305	142.7 ± 6.4		
8361	148.3 ± 6.5		
8398	30.1 ± 3.8		
8472	131.2 ± 6.2		
8510	17.0 ± 3.6		

TABLE III. (Continued).

	TABLE IV. 200 Hg(n, γ) resonance	es. The stated uncertainty is statistical only.	
 F.	$g\Gamma_{n}\Gamma_{\gamma}$	σΓ	
10	·	8 ~ n	Γγ
(eV)	(meV)	(eV)	(meV)
2 871	9.5±1.6		
2881	14.9 ± 1.0		
2911	13.1 ± 1.7		
2 942	9.7 ± 1.8		
3015	11.4 ± 1.7		
3 0 3 8	12.0 ± 2.0		
3 2 5 1	82.8 ± 2.2		
3 355	7.9 ± 2.0		
3 764	87.0±2.1		
4274	51.1 ± 3.9		
4 303	70.5±4.9		
4 569	12.0 ± 3.3		
4 682	18.3 ± 2.3		
4812	10.0 ± 2.3		
4 992	13.9 ± 3.4		
5018	30.2 ± 5.6		
5024	77.2±7.6		
5 0 3 2	43.1±5.2		
5 174	30.2 ± 3.6		
5 249	313.4 ± 19.2	1.91 ± 0.15	375 ± 32
5 374	8.7±2.9		
5 8 5 8	51.3 ± 6.8		
6046	20.8 ± 5.0		
6174	47.3 ± 6.7		
6220	106.1 ± 10.3		
6722	170.7 ± 14.4		
6765	44.6±6.8		
7241	47.0 ± 7.6		
7 679	26.6 ± 7.1		
7 991	347.0+38.0	41.4+5.1	350 + 39
8 2 5 3	367.0+29.0	12.4+1.4	378 + 31
8 677	50.6±8.5		010101
8 845	39.5 ± 9.5		
8 9 3 9	234.2+20.1	2.0+0.4	265+26
9013	87.5 ± 10.8		200 - 20
9 1 7 3	122.0 ± 13.1		
9745	35.7 ± 11.6		
10 193	50.5 ± 13.2		
10 530	238.3+24.8		
10979	107.4 + 19.1		
11004	57.9+16.1		

E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma_{n}}$	$g\Gamma_n$	Γ_{γ}
(eV)	(meV)	(e V)	(meV)
3 2 3 5	193.0± 6.0	2.58±0.14	393±14
3 455	5.0± 1.3		
3 517	5.2 ± 1.3		
3 562	236.0 ± 7.0	3.0 ±0.17	482±18
3719	76.6± 5.3		
3 792	157.0± 6.5	4.17 ± 0.30	308 ± 14
3 9 3 3	12.4 ± 4.4		
3 945	164.0± 7.5	6.47 ± 0.45	317±16
4 069	105.5 ± 5.3		
4 1 2 1	19.8 ± 3.6		
4 1 2 8	26.6 ± 3.2		
4 2 4 6	146.0 ± 6.0	1.0 ± 0.1	322 ± 16
4278	157.4+ 6.4	3.0 + 0.3	313 ± 14
4 2 9 7	5.6 ± 2.2		010111
4 375	15.3 ± 2.7		
4 3 8 5	40.9 + 3.4		
4 4 9 4	127.8+ 5.6		
4 624	27.6 ± 3.1		
4773	54.9 ± 4.4		
4950	208.0 ± 11.0	1 26+0 10	170+25
4965	47.6+ 3.9	1.20±0.10	470133
5 149	367 + 52		
5 1 5 8	50.7 ± 5.2		
5 214	02.5 ± 5.0		
5362	50.5 ± 1.0		
5 201	112.5 ± 1.4		
5 402	13.0 ± 2.0		
5 5 9 2	$20.1\pm$ 3.8	0.02 + 0.10	0.70 . 00
5 382	125.1±10.4	0.93 ± 0.10	272±29
5//1	101.1±83.1	0.55.0.00	
5913	110.4 ± 23.8	0.75±0.33	243±77
5969(d)	305.0 ± 14.0	7.11±0.60	601 ± 31
6277	187.7 ± 12.4	1.0	435±35
6299	28.5 ± 5.1		
6 3 9 0	175.9 ± 12.0	1.0	402 ± 33
6 698	66.5 ± 7.4		
6 891	171.9 ± 13.0	1.0	391±36
6906	115.1 ± 13.0	1.0	245±31
6921	$36.9\pm$ 7.9		
7113	137.7±11.0	1.0	301 ± 28
7136	140.8 ± 11.8	1.0	309 ± 30
7 223	183.6±13.4	1.0	424 ± 38
7 338	18.6 ± 5.1		
7 365	174.2 ± 12.8	1.0	397±35
7 599	53.0 ± 7.8	1.0	105±16
7716	29.3 ± 10.9		
7 728	70.1 ± 12.4	2.0	137±25
7 807	48.1 ± 7.0	1.5	98 ± 14
7 928	102.7 ± 14.9	1.52 ± 0.31	207±35
7 964	24.9 ± 6.0		
8 049	$23.1\pm$ 5.3		· · · ·
8 104	44.3± 8.7	1.62 ± 0.36	86±18
8 1 5 7	95.8±14.8	1.19 ± 0.25	196±36
8 399	200.8 ± 19.4	1.36 ± 0.19	443+59
8 687	47.5± 7.0		
8 781	48.4+ 7.8	- -	
8 831	103.7+10.3		
8915	77.7 ± 9.4		
			· · · · · · · · · · · · · · · · · · ·

TABLE V. 201 Hg(n, γ) resonances. The stated uncertainty is statistical only. (d) indicates a probable doublet or multiplet.

E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	$g\Gamma_n$	Γ_{γ}			
(eV)	(meV)	(eV)	(meV)			
9075	261.4±19.0	3.43±0.41	533±44			
9 0 97	25.8 ± 9.3					
9 225	236.1±19.3	2.85 ± 0.35	485±46			
9 435	59.5± 9.4					
9 4 5 8	37.7 ± 6.9					
9 483	79.9±10.3					
9 591	210.5 ± 23.0	1.16 ± 0.18	484±78			
9 794	53.5± 8.7					
9 965	181.2 ± 14.7	1.2	402±38			
10 006	75.4 ± 10.1					
10 026	70.1 ± 10.4					
10 193	56.3± 9.1					
10221	135.9 ± 12.3					
10385	141.5 ± 13.1	0.9	316±35			
10422	88.8 ± 11.3					
10 644	107.3 ± 10.7					
10 906	147.2 ± 14.6					
10 945	225.8 ± 17.8	1.2	524±51			
11012	207.8±16.3	1.2	473±45			
11049	284.6±19.2	1.2	703 ± 62			

TABLE V. (Continued).

TABLE VI. ²⁰²Hg(n, γ) resonances. The stated uncertainty is statistical only.

E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	$g\Gamma_n$	Γγ
(eV)	(meV)	(eV)	(meV)
3 890	23.0± 0.9	·	
4087	20.3 ± 1.1		
4 167	655.0 ± 17.0	11.8 ± 0.4	694±19
7 427	101.2 ± 9.2		
7 829	71.9 ± 7.3		
7881	72.2 ± 8.7		
8961	68.4 ± 12.2		
8 977	247.9 ± 16.0		
8 994	71.1 ± 12.1		
9 600	34.3 ± 15.6		
9615	531.8 ± 10.8		
11 421	106.5 ± 13.2		
14 194	48.5± 21.6		
14 244	749.2± 59.4	24.7 ± 3.3	773±63
14 743	63.8± 19.0		
16421	174.7± 19.2		
16652	183.7 ± 19.8		
16773	$255.8\pm\ 25.0$		
17 344	75.2 ± 17.8		
18 565	135.4± 23.7		
24 405	217.5 ± 30.8		
24 727	$114.0\pm\ 20.6$		
25 309	661.5± 54.4		
25 969	297.1± 40.5		
26 693	106.5 ± 25.2		
28 426	380.4 ± 57.1		
28 690	196.8 ± 48.4		
29410	170.8 ± 40.6		
30 882	404.3± 58.4		
31 415	234.8 ± 46.9		

TABLE VI. (Continued).				
E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	gΓ _n	Γ_{γ}	
(eV)	(meV)	(eV)	(meV)	
32 643	277.0 ± 49.5			
32 730	260.7 ± 54.5			
35 367	179.2 ± 68.4			
37 332	345.6 ± 93.3			
37 401	386.3 ± 80.8			
39 4 1 3	858 ± 108			

TA	BLE	VI.	(Con	tinuea

	TABLE VII. 204 Hg(n, γ) resonances.	The stated uncertainty is statistical only.	
E_0	$\frac{g\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$	gΓ _n	Γγ
(eV)	(meV)	(eV)	(meV)
5 996	18.2± 3.6		
6015	133.5 ± 2.5		
7710	1867 ± 75	93.0±3.1	1905± 76
9 2 8 2	108.3 ± 8.2		
4318	182.9 ± 15.0		
6730	168.7 ± 13.4		
22 060	157.4± 15.9		
24 777	89.5± 17.6		
26 570	102.5 ± 22.3		
31 515	$203.6\pm\ 27.7$		
47010	442.8± 67.4		
47 154	1212 ± 120		
52 105	2196 ±353	30.2 ± 6.8	2369 ± 441
52757	2106 ±341	26.7±5.8	2294 ± 437
53 920	568 ±137		
70013	2558 ±337	30.0 ± 6.0	2796 ± 403
70 551	889 ±160		
32 742	850 ±187		
35 328	3450 ±553	45.9±9.1	3731±680
36 639	1205 ±310		
92 877	1858 ±375	30.0 ± 6.0	1980 ± 426
93 308	815 ±304		
97 910	1760 ±383		

The data reduction according to Eq. (1a) first yields an effective capture cross section $\sigma_{\rm eff}$ which is related to the isotopic cross sections by

$$\sigma_{\rm eff} = \sigma_x + \sum_j H_j \sigma_j E_j^* / H_x E_x^* , \qquad (5)$$

where x stands for the highly enriched isotope of the investigated sample to be determined. The samples used are thin enough that this linear approximation (omitting resonance saturation effects) is adequate in the energy range studied. The application of the excitation energy E_x^* at this step of analysis instead of an effective excitation energy has the advantage that in the resolved resonance region, the outstanding resonances of this main isotope are already correctly treated. As enriched samples of all six stable mercury isotopes except the very rare ¹⁹⁶Hg were measured and analyzed, the matrix implied by Eq. (5) could be inverted exactly to unscramble the individual isotopic capture cross sections we report.

IV. DATA ANALYSIS

A. Individual resonances

The level spacing of the mercury isotopes and the energy resolution of ORELA were sufficient to resolve individual resonances for all isotopes from 2.6 keV up to 100 keV for the isotope closest to nuclear shell closure, ²⁰⁴Hg. For a large number of resonances the total widths are found to be narrow compared to our energy resolution. Therefore only the quantity $g\Gamma_n\Gamma_{\gamma}/(\Gamma_n+\Gamma_{\gamma})$, which is proportional to the resonance area, could be extracted for these resonances. g designates the statistical spin factor (2J+1)/[2(2I+1)] with compound nucleus spin J and target spin I. Γ_n and Γ_γ are the neutron and radiation widths, respectively. For some resonances where $\Gamma_n + \Gamma_\gamma$ is larger than about an eighth of our resolution, separate values of $g\Gamma_n$ and Γ_γ could be extracted with some confi-

FIG. 1. Samples of ^{198,199}Hg(n,γ) yield data. The solid line is generated from the least squares fitting code LSFIT (Ref. 11) to extract resonance parameters. The fit is performed including Dopper broadening, resonance self-protection, multiple scattering, and both Gaussian and exponential resolution functions.

dence.

The resonance analysis was performed with the computer code LSFIT (Ref. 11), which provides a least squares fit of the resonances to a sum of Breit-Wigner single or multiple forms. Resonance energies, and $g\Gamma_n\Gamma_{\gamma}/(\Gamma_n+\Gamma_{\gamma})$ or $g\Gamma_n$ and Γ_{γ} values for the individual isotopes, are given in Tables II–VII. Resonances marked with a *d* are suspected to be multiplets according to an asymmetric shape of the observed peak. A few illustrations of the fits obtained are shown in Figs. 1–3.

B. Average capture cross sections

For the determination of the effective mercury cross sections in the whole measured energy region, the sample yield data were binned to smear out individual resonance fluctuations. This procedure provides adequate data for a parametrization in terms of strength functions. The computer code FITACS (Ref. 12) was used for this kind of parametrization.

The effective capture cross sections of the individual isotopes averaged over various energy intervals are given

FIG. 2. Samples of 200,201 Hg(n, γ) yield data. For information about the fitting procedure (solid line) see Fig. 1.

in Table IX. Figures 4 and 5 show the statistical model fits of the average cross sections, and the average resonance parameters of these fits are summarized in Table X.

C. Systematic uncertainties

Systematic uncertainties originate mainly from the saturated resonance technique and the shape of the ${}^{6}\text{Li}(n,\alpha)$ cross section, procedures essential to create an absolute capture cross section. Other important uncertainties inherent to the method come from the pulse height weighting technique, the corrections for multiple scattering and self-shielding, and the correction for gamma-ray absorption in the sample. The various uncertainties are summarized in Table VIII. A detailed consideration of the uncertainties in flux determination as a function of neutron energy has been given recently.¹³

D. Maxwellian averaged capture cross sections

Maxwellian averaged capture cross sections $\langle \sigma v \rangle / v_T$ were calculated from differential data by numerical integration according to

TABLE VIII. Corrections and uncertainties.

	Correction (%)	Uncertainty (%)
Saturated resonance calibration	· · · · · · · · · · · · · · · · · · ·	3
Snape of "L1 (n, α) cross section at 50 keV		1
at 250 keV		2
Pulse height weighting technique		- 1
Neutron sensitivity	(198)25	(198)3.2
of detection system	(199)10	(199)1.6
for averages over unanalyzed resonances	(200)44	(200)6.5
around 30 keV ^a	(201)18	(201)2.3
	(198)66	(198)6.8
	(199)51	(199)4.5
Background subtraction	(200)64	(200)6.6
	(201)42	(201)2.3
Dead time	<1.2	< 0.02
Neutron multiple scattering and self-shielding		
for averages over unanalyzed resonances around 30 keV	0.6–1.1	0.1-0.2
Gamma-ray self-absorption	0.9-3.5	< 0.3
	assumed same as	
Detector bias extrapolation $(E_{\text{bias}} = 153 \text{ keV})$	for weighted calibration	0.4
Misalignment of sample		< 0.2
Uncertainty in detector efficiency		
by gain drifts of electronics		< 0.4
Resonance shape		
(unknown spin, resolution function)		< 3

^aFor individual resonances (e.g., Table VII 7710 eV) $\leq 6\%$ correction with uncertainty of half the correction included in quadrature in the parameter table.

E_n	σ (mb)							
(keV)	198	199	200	201	202	204		
3								
	496.1	1489.8	290.4	1232.0				
4								
	402.5	1238.3	286.8	1041.3	312.3	45.5		
6			100.0	001.0	01.0	(21.2		
0	340.1	938.8	190.8	881.0	91.9	031.2		
8	759 7	752 7	278 1	617.6	247 3	136.0		
10	238.7	155.1	270.1	017.0	247.5	150.0		
10	247.4	607.6	148.8	584.0	119.7	48.1		
15								
	179.0	432.7	91.7	467.3	69.8	39.6		
20								
	141.6	350.2	113.3	339.6	66.5	61.3		
30			1					
	127.1	262.5	88.6	226.2	51.7	30.7		
40	142.2	201 6	07.0	172.2	91.0	38 /		
60	142.2	201.0	02.0	172.5	01.9	50.4		
00	126.0	248 5	93.8	129.7	58.9	42.4		
80	120.0	210.0	2010					
	103.8	222.6	80.7	100.4	70.8	27.9		

TABLE IX. Histogram of the average neutron capture cross sections of ^{198,199,200,201,202,204}Hg.

204
204
26.6
20.2
30.3
19.9
1
16.0
12.3

TABLE IX. (Continued)

TABLE X. Average resonance parameters from a statistical model fit.

Target nucleus		Strength function $S_I \times 10^4$		$\Gamma_{\gamma l}/D_l \times 10^4$	
A_Z	l = 1	l=2	l=3	l = 1	l=2
¹⁹⁸ Hg	0.43±0.20	0.12±0.04	0.38±0.13	8 ±2	38 ±10
¹⁹⁹ Hg	2.68 ± 0.33	0.46 ± 0.03	0.08 ± 0.03	21 ±2	74 ± 7
²⁰⁰ Hg	0.13 ± 0.06	0.15 ± 0.07	0.15 ± 0.07	6.3±0.3	10.7 ± 0.6
²⁰¹ Hg	2.65 ± 0.43	0.75 ± 0.15	2.21 ± 0.62	24 ±3	49 ± 7
²⁰² Hg	0.17±0.31	0.12±0.10	0.17±0.13	2.5±0.2	7.4± 0.3

0.6 0.4 0.2+ CAPTURE CROSS SECTION (b) 0.1 ¹⁹⁸Hg(n,γ) 0.06 0.2 0.1 ²⁰⁰Hg(n,γ) 0.06 0.1± 0.06 0.04 202 Hg (n, γ) 0.02 0.01+ **1** 100 10 NEUTRON ENERGY (keV)

FIG. 3. Samples of 202,204 Hg(n, γ) yield data. For information about the fitting procedure (solid line) see Fig. 1.

FIG. 4. Effective cross sections of 198,200,202 Hg(n, γ). The curves are a statistical model fit to the data.

$$\frac{\langle \sigma v \rangle}{v_T} = \frac{2}{\sqrt{\pi}} \int_0^\infty \sigma(E_n) E_n \exp(-E_n/kT) dE_n / \int_0^\infty E_n \exp(-E_n/kT) dE_n$$

For the present range of temperatures (kT=5-100 keV), it is sufficient to carry out the integration over the limited energy interval below 500 keV without essential errors. The integration was performed in two steps corresponding to the cross section regions of resolved and unresolved resonances. For the range of resolved resonances it was convenient to use resonance parameters instead of the differential cross section. The corresponding modification of Eq. (6) for this case was taken from Macklin and Gibbons.¹⁴ The results of our calculations for $\langle \sigma v \rangle / v_T$, which in the following discussion will be simply designated as σ , are summarized in Table XI.

V. DISCUSSION

A. The solar mercury abundance

Mercury is one of few elements for which no reliable experimental data on its solar abundance are available, neither from meteorites nor from the spectrum of the sun.^{1,15} The isotopic abundances given by Anders and Ebihara,¹ Cameron,¹⁶ and Palme *et al.*¹⁷ are calculated by interpolation between neighboring elements. A more reliable procedure has been used by Walter and Beer¹⁸ based on the σN systematics of the s process. Normally the isotopic solar mercury abundances N_{\odot} are a mixture of two processes of nucleosynthesis, the s process with abundance N_s and the r process with abundance N_r . Only for ¹⁹⁸Hg, a pure s-process nuclide (Fig. 6), are σN systematics which refer to the s process directly applicable. As the capture cross section of ¹⁹⁸Hg was not measured, the (s+r) isotope ²⁰²Hg had to be used in conjunction with a reasonable *r*-process correction.

In this work the determination of the solar mercury abundance via the σN systematics with a measured ¹⁹⁸Hg

capture cross section is straightforward. A σN analysis based on newly evaluated cross sections and abundances has been carried out by Beer *et al.*¹⁹ [Fig. 9(a)]. According to this calculation we get N_s (¹⁹⁸Hg)= (0.034 ± 0.004)/10⁶ Si and therefore N_{\odot} (Hg)=(0.34 ± 0.04)/ 10⁶ Si. This result is 30% higher than the value derived by Walter and Beer.¹⁸ This difference mainly comes from a revision of the σN curve.¹⁹ The analysis of Walter and Beer¹⁸ had to rely on a $\sigma N(A)$ calculation²⁰ which was not yet updated concerning new cross sections and solar abundances.^{1,19}

The mercury isotopes ^{199,200,201,202,204}Hg are chiefly a mixture of (s+r)-process abundances besides an $\sim 1\%$ *p*-process contribution. The capture cross sections in conjunction with the respective $\sigma N(A)$ values can be used to decompose the isotopic abundances into their *s*- and *r*-process contributions. The *r*-process abundance follows from the solar abundance minus the *s*-process abundance which is obtained from the $\sigma N(A)$ values divided by the capture cross section. Table XII summarizes these results.

B. Termination of the s process

The termination of the s process is illustrated in Fig. 6. The isotopes of Hg and Pb and isotopes in their vicinity are shown in a section of the chart of nuclides. The s process path is represented by a solid line. Up to mass number A = 205 the abundances of the stable isotopes are pre-dominantly a mixture of the common (s + r) process. At 203 Hg $(T_{1/2} = 46.59 \text{ d})$, 204 Tl $(T_{1/2} = 3.78 \text{ yr})$, and 205 Pb $(T_{1/2} = 1.5 \times 10^7 \text{ yr})$, branchings of the s process can occur the absolute size of which is dependent on the s-process temperature and neutron density.

The situation is much more complicated at the stable isotopes 206,207,208 Pb and 209 Bi. The *s*-process path is ter-

Thermal							
energy kT	$\langle \sigma v \rangle / v_T$ (mb)						
(keV)	198	199	200	201	202	204	
5	588	1348	324	950	179	93	
10	318	755	198	593	106	63	
15	240	561	155	446	87	51	
20	205	467	135	361	80	46	
25	186	411	123	305	77	44	
30	173 ± 15	374±23	115 ± 12	264 ± 14	74+6	42+4	
35	165	346	110	234	72	40	
40	159	325	106	211	70	30	
45	154	307	102	192	68	38	
50	150	291	99	177	66	37	
70	142	244	90	137	61	33	
100	135	198	80	106	55	29	

TABLE XI. Maxwellian averaged capture cross sections of the stable mercury isotopes as a function of thermal energy kT.

(6)

FIG. 5. Effective cross sections of 199,201 Hg(n, γ). The curves are a statistical model fit to the data.

minated at ²¹⁰Bi ($T_{1/2} = 5$ d), and the *s*-process flow is cycled back via the ²¹⁰Po or ²¹¹Po α decay to ²⁰⁶Pb or ²⁰⁷Pb, respectively. Whether the α decay of ²¹¹Po is a strong alternative to the α decay of ²¹⁰Po ($T_{1/2} = 138$ d) depends on the neutron density and the resulting *s*-process capture time of ²¹⁰Po. Another possibility to partially bypass ²⁰⁶Pb in the α recycling exists through an isomeric state in ²¹⁰Bi^m ($T_{1/2} = 3 \times 10^6$ yr) which is significantly populated by neutron capture of ²⁰⁹Bi. If this initial population is *not quickly* destroyed in the hot stellar *s*-process environment by induced electromagnetic transitions, neutron capture to ²¹¹Bi and subsequent α and β decays lead to ²⁰⁷Pb.^{2,3}

In Fig. 6 it is indicated that there are three *r*-process contributions to the abundances of 206,207,208 Pb and 209 Bi: direct, short-lived transbismuth nuclei and long-lived decay of 232 Th and 235,238 U.

FIG. 6. Section of the chart of nuclides around Hg and Pb to illustrate the s-process termination with α recycling and the special r process and radiogenic U and Th components to ^{206,207,208}Pb and ²⁰⁹Bi.

FIG. 7. (a) The ^{206,207,208}Pb and ²⁰⁹Bi abundances and the corresponding number of terminal cycles (NTCY) are given as a function of τ_1 for kT=30 keV and an iron seed f_1N_{\odot} (⁵⁶Fe)=1.0/10⁶ Si. The average number of captured neutrons N_c is indicated on the upper scale. (b) The iron seed required to reproduce the strong ²⁰⁸Pb s-process component is shown as a function of τ_1 . On the right-hand scale the percentage of the strong s-process component relative to the main component for A < 206 is given. A contribution below 2% as indicated by the dashed line is within the uncertainty of the main s-process component (±4%).

^{206,207,208}Pb have eight, seven, and six short-lived transbismuth progenitors and radiogenic components from ²³⁸U, ²³⁵U, and ²³²Th, respectively, the sizes of which depend on the age of the *r*-process nucleosynthesis. The situation at ²⁰⁹Bi is somewhat different; the number of progenitors including ²³⁷Np ($T_{1/2}=2.14\times10^6$ yr) is ~12, the exact value depending on the fission cutoff of the *r* process.²⁹

As the transbismuth elements which lie in the *r*-process valley following the 126-neutron *r*-process peak at osmium are expected to show no outstanding structures besides fluctuations like the odd-even staggering, the total *r*-process yield of 206,207,208 Pb and 209 Bi is simply calculated by multiplying the direct *r*-process components of the lead isotopes and of 209 Bi with the number of short-lived transbismuth progenitors. The specific *r*-process component of 206,207,208 Pb and 209 Bi is obtained by extrapolating the relatively constant average level of *r*-process abundances reached at $A \sim 204$ to the mass numbers A = 206

TABLE XII. Isotopic abundances decomposed according to their nucleosynthetic s process and r process and radiogenic origin. For A < 206, N_s^1 , the main component, is practically identical with N_s . N_s^2 designates the strong s process component, N_r the r-process abundance, and N_r^t includes the transbismuth r-process contributions. The Tl and Bi solar isotope abundances are from Ref. 1, the respective Hg and Pb abundances are determined via ¹⁹⁸Hg and ²⁰⁴Pb, respectively, and the σN curve.

	N⊙	N_s^1	N _r	
¹⁹⁹ Hg	0.057±0.003	0.015 ±0.001	0.042±0.005	
²⁰⁰ Hg	0.079 ± 0.005	0.050 ±0.006	0.028 ± 0.009	
²⁰¹ Hg	0.045 ± 0.007	0.019 ±0.001	0.025 ± 0.004	
²⁰² Hg	0.101±0.009	0.077 ±0.006	0.024 ± 0.015	
²⁰³ T1	0.054 ± 0.005	0.039 ±0.003	0.015 ± 0.006	
²⁰⁴ Hg	0.024 ± 0.002	0.003 ± 0.0002^{a}	0.021 ± 0.002	
²⁰⁵ Tl	0.130 ± 0.013	0.083 ± 0.006	0.046 ± 0.014	
	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Bi
No	0.541±0.036	0.587 ±0.039	1.667±0.111	0.144 ±0.012
N_s^1	0.290 ± 0.022	0.272 ±0.026	0.809 ± 0.204	0.024 ± 0.004
Nr	0.024 ± 0.015	0.0068 ± 0.0017^{b}	0.024 ± 0.015	0.0068 ± 0.0017^{b}
N_r^t	0.192 ± 0.120	0.048 ±0.015 ^b	0.144±0.090	0.081 ± 0.026^{b}
$N_{\rm rad}$	0.04 ± 0.02	0.223 ± 0.054^{b}	0.022 ± 0.008	
N_s^2	0.02 ±0.13		0.69 ±0.25	
	0.033±0.017 ^b	0.044 ± 0.023^{b}		0.039 ± 0.023^{b}

^aCalculated assuming terrestrial half-life for ²⁰³Hg.

^bCalculated consistent with $N_s^2(^{208}\text{Pb}) = (0.69 \pm 0.25)/10^6 \text{ Si}.$

to 209. The radiogenic part from 238 U, 235 U, and 232 Th to 206,207,208 Pb can be calculated using one of the current *r*-process age determinations. $^{30-33}$

It was Seeger *et al.*²¹ who first showed that an exponential distribution of neutron exposures produces an adequate fit to the observed heavy *s*-process element abundances. These authors pointed out that the exponential distribution $\rho(\tau) \sim \exp(-\tau/\tau_0)$ of exposuress τ is a consequence of simple remixing models of the galaxy. The refined calculations^{19,20,22-24} exhibited that a single value of the exposure parameter τ_0 cannot simultaneously produce the following:

the bulk s-process material between A = 100 and 200; the rapid increase of abundance towards iron as well as the pointed lead peak at $A = 208.^{2,3}$

While the iron slope requires a small exposure parameter τ_0 , a strong value is needed for the lead peak compared to the τ_0 value of the bulk *s*-process material with mass numbers $100 \le A \le 200$.

In the following we shall show that for the termination of *s*-process nucleosynthesis, a two-component fit is required with parameters τ_0 and τ_1 for the main and strong component, respectively.

With our measured capture cross sections and data from literature on 206,207,208 Pb, 209 Bi, $^{25-27}$ and especially on 204 Pb, 28 the size of the strong fluence component for 206,207,208 Pb and 209 Bi was calculated by subtracting from the solar abundances of these isotopes the main *s* process abundances and the various relevant *r*-process components.

The main s process through 206,207,208 Pb and 209 Bi and the α recycling via the Po isotopes have been calculated

recently by Beer et al.¹⁹ The s-process temperature kTand neutron density n_n were determined via selected branchings to be kT = (18-28) keV and $n_n = (0.8-1.8) \times 10^8$ cm⁻³, respectively. This allows the branchings calculation of the main s-process component of 206,207,208 Pb and 209 Bi and the solar lead abundance via the capture cross section of ²⁰⁴Pb analogous to the mercury abundance determination with some confidence. From the good fit of s-only nuclei in the mass range A = 100-200¹⁹ it is clear that the strong s-process component may contribute significantly only to isotopic abundances at 206,207,208 Pb and 209 Bi through sizable α recycling. Therefore, it is expected that 204 Pb is only little affected. The influence of the s-process branchings at 203 Hg and ²⁰⁴Tl on ²⁰⁴Pb is very small, as in both cases the beta decay rates are greatly increased due to nonunique first forbidden beta decay from excited states which is, in this mass region, as fast as an allowed transition. Because of the small capture cross section of 210 Po (Ref. 34) and the strong temperature sensitivity of the ²¹⁰Bi^m isomer,³ practically no branching in the α recycling at the termination of the main s process occurs. In Table XII the various components of the studied isotopes are summarized. For lead a solar abundance of $(2.85\pm0.19)/10^6$ Si was obtained. This value is in agreement with the value of $3.15\pm0.25/10^6$ Si stated by Anders and Ebihara¹ from meteorites and the value $(2.3\pm0.5)/10^6$ Si determined from the spectrum of the sun.³⁵

The subtraction of the main s process, the r process, and the radiogenic contributions from the solar abundances 206,207,208 Pb and 209 Bi are significant only for 208 Pb, as only in this case the strong s process is as dominant as the main s-process component. The radiogenic 208 Pb contribution from 232 Th is small because of the long half-life of ²³²Th, and the *r* process of ²⁰⁸Pb $[(0.024\pm0.015)/10^6$ Si] estimated via N_r of ^{202,204}Hg [Fig. 9(b)] has to be multiplied only by six transbismuth progenitors. The various subtractions lead to a strong *s*-process abundance of $N_s^{2}(^{208}\text{Pb})=(0.69\pm0.25)/10^6$ Si. The corresponding calculations for ²⁰⁶Pb yielded only an upper limit for the strong *s*-process component (<0.15/10⁶ Si), and for the odd *A* isotopes ²⁰⁷Pb and ²⁰⁹Bi already the *r*-process contribution was difficult to estimate via ^{203,205}Tl [Fig. 9(b)]. For ²⁰⁷Pb a dominant radiogenic contribution from ²³⁵U is expected. A consistent description of the strong *s* process which reproduces ²⁰⁸Pb offers the possibility to determine the radiogenic ²⁰⁷Pb and use ²³⁵U as a cosmic clock.

C. The strong s-process component and the ²³⁵U cosmic clock

In order to investigate if the extra ²⁰⁸Pb abundances $[(0.69\pm0.25)/10^6$ Si] can really be ascribed to a strong *s*-process exposure, we superimpose two exponential forms $\rho(\tau)$ according to the formalism given in Ref. 23:

$$\rho(\tau) = G_0 \exp(-\tau/\tau_0) + G_1 \exp(-\tau/\tau_1) , \qquad (7)$$

with

$$G_{0,1}\tau_{0,1}=f_{0,1}N_{\odot}(56)$$
.

The product $fN_{\odot}(56)$ stands for the number of seed nuclei, with $N_{\odot}(56)$ the solar abundance of ⁵⁶Fe and f the fraction of ⁵⁶Fe required as seed. The values $\tau_0=0.3$ mb⁻¹, $f_0=0.048\%$ represent the parameters of the σN curve which reproduces the bulk of heavy elements for $100 \le A \le 205$, ¹⁹ and τ_1, f_1 the parameters characterizing

FIG. 8. The temperature dependence of the ^{206,207,208}Pb and ²⁰⁹Bi abundances from the strong fluence component is illustrated for the equilibrium values.

the strong exposure component. We have to attach as an additional condition to the strong fluence component the requirement that $\tau_1 \gg \tau_0$ and $f_1 \ll f_0$ which should ensure the production of 206,207,208 Pb and 209 Bi without appreciably affecting the σN curve at A < 206.

In Fig. 7(b) it is demonstrated that this is the case. The iron seed $f_1 N_{\odot} ({}^{56}\text{Fe})$ necessary to reproduce the ${}^{208}\text{Pb}$ abundance $N_s^2 = (0.69 \pm 0.25)/10^6$ Si is plotted as a function of τ_1 . On the right-hand ordinate the contribution of the strong s-process component to the main σN curve for A < 206 is indicated. It is shown that the ${}^{208}\text{Pb}$ can be reproduced conveniently for $\tau > 6$ mb⁻¹ and $0.7 \times 10^{-6} < f_1 < 1.8 \times 10^{-6}$ only with an additional strong s-process contribution of < 2% to the σN curve for A < 206. In Fig. 7(a) the individual abundances of ${}^{206,207,208}\text{Pb}$ and ${}^{209}\text{Bi}$ as a function of τ_1 are shown. The nuclei ${}^{206,207}\text{Pb}$ are close to the equilibrium values for $\tau_1 > 6$ mb⁻¹, 2 but this is different for ${}^{208}\text{Pb}$ and ${}^{209}\text{Bi}$.

The calculations in Fig. 7 were performed for kT = 30 keV. A variation of the temperature introduces an additional uncertainty. This is small for ²⁰⁸Pb ($\pm 5\%$) compared to the uncertainty in the experimental value of $N_s^2(^{208}\text{Pb})$ if we choose a reasonable temperature range of kT = 20-60 keV (Fig. 8). For ^{206,207}Pb and ²⁰⁹Bi the corresponding variation of the abundances is as large as the respective variation in the iron seed required to reproduce the ²⁰⁸Pb abundance. Using our conditions for τ_1 and f_1 , the strong *s*-process contributions for ^{206,207}Pb and ²⁰⁹Bi are calculated. The values found are summarized in Table XII. Their uncertainties include both the uncertainty from $N_s^2(^{208}\text{Pb})$ and the uncertainty concerning the temperature of the strong component.

As ^{209}Bi has no radiogenic component, $N_{\odot}(^{209}\text{Bi}) - N_s^1(^{209}\text{Bi}) - N_s^2(^{209}\text{Bi})$ must be ascribed to the r process. This component of ^{209}Bi provides also a good approximation for the total r-process yield N_r^t of ^{207}Pb if it is properly weighted by the different numbers of transbismuth progenitors. As $N_r^t(^{207}\text{Pb})$ as well as $N_s^2(^{207}\text{Pb})$ are minor components of the solar ^{207}Pb abundance, the radiogenic ^{207}Pb is determined conveniently via

$$N_{\odot}(^{207}\text{Pb}) - [N_s^{1}(^{207}\text{Pb}) + N_s^{2}(^{207}\text{Pb}) + N_r^{t}(^{207}\text{Pb})]$$

as $(0.223 \pm 0.054)/10^6$ Si.

Figure 9 shows a consistent analysis of lead and bismuth where the described procedure for the strong *s*-process component and the calculations of the main component from Ref. 19 have been applied.

With the ²³⁵U abundance of $(0.00573\pm0.00048)/10^6$ (Ref. 1) and the ²³⁵U decay rate λ , the *r*-process age can be calculated. Using Fowler's exponential model,

$$R = \frac{\lambda_r - \lambda}{\lambda_r} \frac{1 - \exp(-\lambda_r \Delta)}{\exp(-\lambda \Delta) - \exp(-\lambda_r \Delta)} - 1 , \qquad (8)$$

with $R = N_{rad} ({}^{207}\text{Pb}) / N_{\odot} ({}^{235}\text{U})$ and where λ_r is the supernova rate with $\lambda_r \Delta = 1/0.43$, the *r*-process age *T* was found to be T = 4.6 Gyr $+\Delta = 17.2 \pm 2.6$ Gyr. Δ is the time duration of the *r* process.

This value is in excellent agreement with the *r*-process age reported by Thielemann^{30,36} ($T = 17.6 \pm 4.0$ Gyr). Other earlier *r*-process age determinations³¹⁻³³ are some-

FIG. 9. (a) The product of s-process abundance times cross section as a function of mass number for kT=23 keV. The solid line is the result of the s-process calculation. The influence of the strong component is negligible, except above A=206. This is better visible on an extended scale (insert). The lower curve in the insert is the main component only, the upper curve the sum of main plus strong component. The symbols correspond to empirical values for s-only isotopes or to s-process-dominated isotopes near magic neutron shells. Significant branchings were identified due to the low empirical σN values ¹⁵²Gd, ¹⁶⁴Er ¹⁷⁰Yb, ¹⁸⁶Os, and ¹⁹²Pt. The ¹⁹⁸Hg and ²⁰⁴Pb are normalized to the σN curve. The branchings at ²⁰³Hg, ²⁰⁴Tl, and ²⁰⁵Pb are treated using neutron density and temperature from the other branchings. The half-life of ²⁰³Hg is assumed to be terrestrial. (b) *r*-process abundances are derived by subtracting the *s*-process components from the solar abundances. Note that Pb, Bi, U, and Th have been corrected for short-lived progenitors and the radioactive U and Th decay since *r*-process formation. The decomposition is consistent with the expected flat *r*-process abundance distribution for isotopes $202 \le A \le 238$. The abundances of ^{206,207,208}Pb and ²⁰⁹Bi with the main *s*-process component subtracted are shown too (open triangles).

what lower but still compatible within the quoted uncertainties. These older values have been, however, questioned in the light of new evidence.^{30,37,38}

As the half-life of 235 U is short compared to Δ , the 235 U

clock is sensitive to the time history of the *r*-process production function. Therefore, if we adopt $\Delta = 13 \pm 4$ Gyr from Thielemann,³⁰ we can estimate $\lambda_r \Delta$ as 1.197 $\leq \lambda_r \Delta \leq 3.520$. This means that within the framework of

the exponential model, the production rate of *r*-process nuclei at the time of solar system formation was only $(10.5^{+19.7}_{-7.5})\%$ of the initial rate.

VI. CONCLUSIONS

We have measured and analyzed the neutron capture cross sections of the stable mercury isotopes. Average resonance parameters were determined and Maxwellian averaged capture cross sections calculated. The capture cross section of ¹⁹⁸Hg yielded, in conjunction with an analysis of the main *s*-process nucleosynthesis, the solar mercury abundance, and the capture cross sections of ^{199,200,201,202,204}Hg allowed the decomposition of their isotope abundances into the *s*- and *r*-process components.

The r-process distribution curve from A = 199 to 204 lead us to an estimate of the r-process components of ^{206,208}Pb. In this way an important prerequisite for a consistent analysis of the termination of the s process was obtained. A further step formed the determination of the lead abundance similar to the procedure used for mercury. Within the quoted uncertainties the value obtained was in agreement with the Pb solar abundance from meteorite analysis¹ and the spectrum of the sun.³⁵ The decomposition of ²⁰⁸Pb according to the different processes of nucleosynthesis showed that a sizable abundance contribution is *not* accounted for either by the main s process or the r process or the radiogenic ²³²Th contribution. However, the adoption of an extra s-process component, a strong fluence component, can explain consistently this additional 208 Pb abundance. The *s* process from this strong fluence exposure is near its equilibrium value for 206,207 Pb.

The reproduction of ²⁰⁸Pb yielded constraints for the necessary iron seed and the average time integrated neutron flux τ_1 of this component. A fraction f_1 of solar ⁵⁶Fe between $(0.7-1.8) \times 10^{-6}$ and $\tau_1 > 6$ mb⁻¹ are required. These values were sufficiently accurate to con-sistently decompose ²⁰⁹Bi and ²⁰⁶Pb and to determine the radiogenic ²⁰⁷Pb abundance for an investigation of the ²³⁵U cosmic clock. The calculated *r*-process age is in excellent agreement with the result reported by Thielemann.³⁰ This agreement is remarkable, as our approach to determine the original ²³⁵U abundance is quite different from the analysis of Thielemann et al.²⁹ In Ref. 29 an r-process calculation is performed, whereas in this work the radiogenic ²⁰⁷Pb is determined similar to a suggestion of Clayton.³⁹ It should also be noted that Thielemann's³⁰ r-process age is mainly based on the two long-lived radionuclides ²³⁸U and ²³²Th, contrary to the present study performed on ²³⁵U.

ACKNOWLEDGMENTS

We would like to thank E. Anders for his information concerning the solar abundances of lead and bismuth. The assistance of B. J. Allen and the ORELA operation staff in data taking is gratefully acknowledged. One of us (H.B.) is grateful to the U. S. Department of Energy for funding a story at ORNL to carry out this work.

- ¹E. Anders and M. Ebihara, Geochim. Cosmochim. Acta 46, 2363 (1982).
- ²D. D. Clayton and M. E. Rassbach, Astrophys. J. 148, 69 (1967).
- ³R. A. Ward and D. D. Clayton (unpublished).
- ⁴R. L. Macklin, Nucl. Instrum. Methods **91**, 79 (1971).
- ⁵R. L. Macklin and J. H. Gibbons, Phys. Rev. 159, 1007 (1967).
- ⁶J. B. Czirr, Nucl. Instrum. Methods 72, 23 (1969).
- ⁷R. L. Macklin and B. J. Allen, Nucl. Instrum. Methods **91**, 565 (1971).
- ⁸R. L. Macklin, J. Halperin, and R. R. Winters, Nucl. Instrum. Methods 164, 213 (1979).
- ⁹R. L. Macklin and R. R. Winters (unpublished).
- ¹⁰R. L. Macklin, Nucl. Instrum. Methods 26, 213 (1964).
- ¹¹R. L. Macklin, Nucl. Instrum. Methods 59, 12 (1976).
- ¹²F. H. Fröhner (unpublished).
- ¹³R. L. Macklin, Nucl. Sci. Eng. 86, 362 (1984).
- ¹⁴R. L. Macklin and J. H. Gibbons, Rev. Mod. Phys. 37, 166 (1965).
- ¹⁵J. E. Ross and L. H. Aller, Science 191, 1223 (1976).
- ¹⁶A. G. W. Cameron, in Essays in Nuclear Astrophysics, edited by C. A. Barnes, D. D. Clayton, and D. N. Schramm (Cambridge University Press, Cambridge, 1983), p. 23.
- ¹⁷H. Palme, H. Suess, and H. D. Zeh, in Astronomy and Astrophysics, Vol. 2, edited by K. Schaifers and H. H. Voigt, Landolt-Börnstein (Springer, Berlin, 1981), p. 257.
- ¹⁸G. Walter and H. Beer, Astron. Astrophys. 123, 279 (1983).
- ¹⁹H. Beer, G. Walter, R. L. Macklin, and P. J. Patchett, Phys. Rev. C 30, 464 (1984).

- ²⁰F. Käppeler, H. Beer, K. Wisshak, D. D. Clayton, R. L. Macklin, and R. A. Ward, Astrophys. J. 257, 821 (1982).
- ²¹P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astrophys J. Suppl. Ser. 11, 121 (1965).
- ²²R. K. Ulrich, in *Explosive Nucleosynthesis*, edited by D. N. Schramm and W. D. Arnett (University of Texas Press, Austin, 1973), p. 139.
- ²³R. A. Ward, M. J. Newman, and D. D. Clayton, Astrophys. J. Suppl. Ser. 31, 33 (1976).
- ²⁴R. A. Ward and M. J. Newman, Astrophys. J. 219, 195 (1978).
- ²⁵B. J. Allen, R. L. Macklin, R. R. Winters, and C. Y. Fu, Phys. Rev. C 8, 1504 (1973).
- ²⁶R. L. Macklin, J. Halperin, and R. R. Winters, Astrophys. J. 217, 222 (1977).
- ²⁷R. L. Macklin and J. Halperin, Phys. Rev. C 14, 1389 (1976).
- ²⁸D. J. Horen, R. L. Macklin, J. A. Harvey, and N. W. Hill, Phys. Rev. C 29, 2126 (1984).
- ²⁹F.-K. Thielemann, J. Metzinger, and H. V. Klapdor, Z. Phys. A **309**, 301 (1983).
- ³⁰F.-K. Thielemann, in Proceedings of the 2nd Workshop On Nuclear Astrophysics, Ringberg Castle, 1983, Report MPA 90, 1983.
- ³¹S. E. Woosley and W. A. Fowler, Astrophys. J. 233, 411 (1979).
- ³²J. C. Browne and B. L. Berman, Phys. Rev. C 23, 1434 (1981).
- ³³R. R. Winters and R. L. Macklin, Phys. Rev. C 25, 208 (1982).
- ³⁴M. J. Harris, Astrophys. Space Sci. 77, 357 (1981).
- ³⁵O. Hauge and H. Sorli, Sol. Phys. 30, 301 (1973).

- ³⁶W. A. Fowler, Rev. Mod. Phys. 56, 149 (1984),
- ³⁷K. Yokoi, K. Takahashi, and M. Arnould, Astron. Astrophys. 117, 65 (1983).
- ³⁸M. Arnould, K. Takahashi, and K. Yokoi, Astron. Astrophys. 137, 51 (1984).
- ³⁹D. D. Clayton, Astrophys. J. 139, 637 (1964).