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Method of continued fractions for on- and off-shell t matrix of local and nonlocal potentials
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The method of continued fractions recently proposed by the authors is generalized to an off-shell
t-matrix calculation for any nonlocal nonsymmetric interaction. The efficiency of the method is
demonstrated for some examples in nuclear physics. The method is not only very efficient, but
yields very accurate results when it is combined with the Romberg extrapolation method. A new
separable approximation of a potential and the off-shell t matrix is proposed in connection with the
method of continued fractions.

I. INTRODUCTION

In various scattering problems which appear in nuclear
physics, we have to calculate on- or off-shell scattering
matrix ( t-matrix) elements for local or nonlocal potentials.
In particular, for handling three-body problems in
momentum space, calculations of off-shell t-matrix ele-
ments are required, In the present paper, we propose a
very efficient method with a simple algorithm for calcula-
tion. The method is an off-shell extension of the method
of continued fractions (MCF), proposed by us for atomic
physics. ' This method is very efficient for obtaining a
convergent value. Also, we can handle the scattering
problem for a nonlocal potential witk the same simplicity
and the same rapidity of convergence as for a local poten-
tial. Examples in the present paper show that this proper-
ty is not lost by the extension to off shell. Thus we expect
the method will be very useful for handling nuclear
scattering problems such as three-body scattering, a clus-
ter model, or nuclear reactions.

Since Refs. 1 and 2 were aimed at use in atomic phys-
ics, here we recapitulate the MCF for the on-shell t ma-
trix and give some examples in nuclear physics. A self-
contained description is given in Sec. II. In Sec. III, the
method is extended to the off-shell t matrix. In Sec. IV,
we propose a new separable expansion of the t matrix.
This expansion is closely related to the MCF. The MCF
is not only very efficient, but attains a very accurate result
if it is combined with the Romberg extrapolation tech-
nique, which is discussed in the Appendix.

II. METHOD OF CONTINUED FRACTIONS
ON ENERGY SHELL

Let us denote the potential-by V and the initial plane
wave state by

~

k &, where the momentum k is related to
the energy E of the system by E=(A' /2m)k . The
Lippmann-Schwinger equation that we have to solve is
given by

~y&= ~k&+G, (E)v~y&.
If we define the wave matrix Q(E) by

~
y& =Q(E)

~

k &,

this matrix satisfies the equation

Q( E)= 1+6o(E)VQ(E) .

As usual, the scattering matrix ( t matrix) is defined by

t(E)= VQ(E) .

(3)

(4)

If we put Eq (5) into. Eq. (3), it is expressed in terms of
these functions as

1

&k
f V[k& —&k

f Vi

(9)

If we note that & k
~

VQ~ is expressed as

&J
~

VQ, =&k
~
V+&y,

~
V, ,

where

Eq. (9) reads

k V k —k V
1

(12)

Hereafter, we omit E for simplicity, unless there is fear of
confusion. To solve Eq. (3), first we define a potential V&

by

Vik&&k i
V

&k
i
Vik&

We define functions
f
kt & and

f P& &, and the wave ma-
trix Q~ by equations similar to Eqs. (1) and (3),

ik, &=G,Vik&,

I
tt'i& =Qt

I
kt &=

I kt &+Go Vi
I ft&

1
B& ——1+Gp V

1 —Gp V)
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We use this equation together with Eq. (5) on the right-
hand side of Eq. (4) to obtain

(v
f
k&+v,

f y, &)(&y, f v, +&k
f

v)

&k
f

V fk) —&k
f

V fP, )

The on-shell t-matrix element & k
f
t (E)

f

k ) is obtained
from Eqs. (13) and (21) with the result

&k
f
t(E)

f
k) = &k

f
V

f
k)

where t& is defined by

ti ——ViQ) . (14)

1

&k fVfk) —&k fvfcb, )

(26)
Equation (7) takes the form of Eq. (1), provided that

f
k )

and V in Eq. (1) are replaced by
f

k~ ) and V, in Eq. (7).
Therefore, if we define a set of potentials Vt, the wave
functions

f
k; ) and

f P; ), and the matrix t; for
i =0, 1,2, . . . by

Therefore, the quantity that we have to calculate is
& k

f
V

f Pl ). We define

and

v, fk, )&k, fv,
'+' '

&k, fv, fk, )

fk, +, &=G, V, fk, &,

fP;)=0; fk;), (17) &k, , f
v, , fy+, )=&k,

f
v, fk, ),

(15)

(16)
We put Eq. (25) into Eq. (27) using an identity

(27)

(28)

t, —VEQ, ,

we obtain the following equations:

(18) which is obtained from Eqs. (16), (23), and (25); we get r;
in a form of continued fractions,

1

&k,
f v, fk, ) &k,

f
v, fy—, , )

&k,
f

v, fk, )'
r, =&k, , f

V, , fk, )+ (29)

X &kt
f V~Qt+g (19)

and

(v;
f
k;)+ v;+] f tt;+]))(&y;+$ f v~+]+ &k;

f
v )

'+'
&k,

f
v, fk, ) —&k,

f
v, fy, +, )

(20)

v, fk&=&I
f
v, =o,

and, as a result, we have

Q, fk)= fk) .

(21)

(22)

This property is a special case of more general properties
for n &i,

As we see from Eq. (5), V~ and
f

k ) have an orthogonali-
ty relationship

If we use Eqs. (26)—(28), we can calculate the on-shell t-
matrix element. Also, we obtain the wave function from
Eqs. (2), (9), (19), and (28). Here, we should note that this
method is applicable to local as well as to nonlocal poten-
tials.

As an example, Table I shows the on-shell t-matrix ele-
ment of the Reid soft core potential for the '5 state at 12
MeV. We see a quick convergence of this method. To ac-
count for the rapidity of the convergence, the relevance of
this method to the Neumann series as well as to the
Schwinger variational principle was demonstrated in Refs.
1 and 2.

The method is especially useful for treating a nonlocal
potential. As an example, we take the n-d elastic scatter-
ing, neglecting the breakup effect. Due to the exchange
of particles, this three-body problem is equivalent to a
two-body. scattering from a nonlocal nonsymmetric poten-
tial U (y &,y z ),

and

V;,
f
k„)=&k„

f
V;,=0,

0;, fk„)= fk„) .

(23)

(24)

TABLE I. The on-shell matrix element (k
f
t(E+ie}

f
k)

for the Reid 'S soft-core potential at E =12 MeV. X denotes
the number of iterations.

1f~'= f"'+ f~+'
&k,

f v, f
k, & &k,

f
v, fy„, &

~&k,
f

v, fk, ) . (25)

Operating 0;, given by Eq. (19), to the left of the function
f k;), and using Eqs. (23) and (24), we obtain an equation

for the function
f P; ),

Re(k ft fk)
0.0098

—0.1755
—0.9259
—0.9262
—0.9187
—0.9186

Im(k ft fk)
9.6X10-'
0.0167
1.011
1.007
1.070
1.071



72 J. HORACEK AND T. SASAKAWA 32

TABLE II. The phase shift for the scattering from the nonlocal, nonsymmetric potential (30). The
phase shift for the s wave is related to the on-shell It.-matrix element by tan5= —(I /O)& k 1K(E) 1k ),
where

1

k ) =sinkr.

Z„„(MeV) 0.25

32.02
32.18

1.0

57.48
57.76

5.0

91.35
91.42
91.41

10.0

99.87
99.58
99.57

50.0

62.01
61.95
61.99

100.0

20.56
20.65
20.72

Exact 32.1812 57.7597 91.4119 99.5748 62.0006 20.7192

g~ (4/3)(y&+y I /2)
U(yi, y2)=, ,

xidxlg(xi ) V(x, )P(+1x, +(4/3)(y, —y~) 1), (30)

where P denotes the wave function of the deuteron and
V(x) the nucleon-nucleon potential. Here we take a regu-
larized potential fitted to Si scattering data,

with
1 pp &

= 1p & & qo 1

=
& q 1. In the same way that led

to Eq. (26), we get the off-shell t-matrix element in a form

V(x) =Ac [ p, e '+p3e '+(p, —p2)e ' ]/x, (31)

14'& =
I q &+Go«) V

I 4& . (32)

The potential V;+& and the iterated states are defined
by

V Iq &&p I
V

with Ac =197 MeVfm, p&
——3.1344, p2 ——1.5502 fm

and p3 ——7.4616. Table II shows the phase shift calculat-
ed from the K matrix, for which PGo (P the principal
value of Cauchy) is taken in place of Go which appeared
throughout this section. The convergence is remarkable.

III. EXTENSION TO OFF-ENERGY SHELL

We extend the method of continued fractions written in
Sec. II to the off-shell t matrix &p 1t (E) 1q &. In place of
Eq. (1), we must solve the off-shell Lippmann-Schwinger
equation

(35)

In analogy to Eq. (29), the off-shell quantity defined by

(36)

is expressed as continued fractions,

., =&p, , 1V;, 1q, &+
&

(37)

Equations (36) and (37) are used in Eq. (35) to obtain the
off-shell t-matrix element.

Tables III and IV show the off-shell t- (IC-)matrix ele-
ment for the Reid soft core potential of the 3S state and
the nonlocal potential given by Eq. (30), respectively, for
various negative (positive) energies E, with p =0. 153
fm ' and q =0.567 fm '. Again, we see very rapid con-
vergence.

In concluding this section, we remark that the wave
function may be expressed as

1q;+& & =Go(E) V; 1q; &,

&p;, 1
=&p;1 viG (E),

(34) IA&= lq&+li(pq k)lqi&

+I (p q k) 2(p q'k)
1
q2&+ (38)

TABLE III. The off-shell t- (X-)matrix element (p 1t(E) q & ((p 1K(E)1q &) for the Reid soft-core
potential for negative (positive) energies, with p =0.153 fm and q =0.567 fm '. X denotes the num-
ber of iterations.

1

2
3x

5
6
7
8
9

0.006 277
—0.104087
—0.932 045
—0.981 165
—0.980 558
—0.982 401
—0.982 407
—0.982 407
—0.982 407

—12 MeV

0.004 985
—0.147 002
—1.295 101
—1.358 811
—1.367 944
—1.369 785
—1.369 794
—1.369 794
—1.369 797

12 MeV

0.007 286
—0.187083
—1.433 601
—1.382 999
—1.521 227
—1.522 469
—1.522 477
—1.522 482
—1.522 482

72 MeV

0.003 253
—0.190969
—0.710423
—0.725 580
—0.726 555
—0.727 039
—0.727038
—0.727 042
—0.727 042
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TABLE IV. The off-shell t (-K-}matrix element &p
I

t (E)
I q & ( &p I

E(E}
I q & ) for the nonlocal, non-

symmetric potential (30) for negative (positive) energies E, with p =0.153 fm ' and q =0.567 fm
denotes the number of iterations.

E (MeV) —72

—11.36
—11.36
—11.38
—11.38

106.9
83.87
83.65
83.65

12

—2.438
—0.4984

0.3404
0.3405

—5.369
—5.331
—5.331
—5.331

with

&p; I
v;

I q;&

&p; I
v; lq;& —&p; I

v; I++i&
(39)

IV. SEPARABLE APPROXIMATION
TO THE t MATRIX

If we sum up Eqs. (13) and (20) for i = 1,2, . . . , X —1,
we get the t matrix in a form

"-'(V lk &+V+il4+~&)(&&+~I V+~+&k
&k;

I
V, lk;& —&k;I V;IP;

Equation (40) has the following properties. For X =1,
it is equal to Eq. (13). If we use Eqs. (21) and (22), we ob-
tain

and

&p Iti lk&=&p
I
vini lk&=&p

I vi lk&=o (41)

&I It, Iq&=o. (42)

From these, we see in Eq. (13) that firstly the separable
term gives the correct result for the half-off-shell t ma-
trices &p I

t (E)
I
k & and & k

I

t (E) q &, and secondly, since
the denominator of Eq. (13) is equal to the denominator of

I

(40)

I

the on-shell t matrix, all poles of the t matrix are involved
in the separable term of Eq. (13), namely, in the first term
on the right-hand side of Eq. (40).

When the contribution from V~ is negligibly small, the
continued fractions (29) practically terminate at r~
which reads

r~ i = &kx 21 V~-2
I
kx i &

&4 il Vtv il4-i&
&kx-il Vx-ilk~ i& &ktv il Vtv—il ~&

Therefore, if Vz is small, Eq. (40) is approximated by a
sum of separable terms as

~ —' (v~
I
k;&+v~+)

I P;+)&)(&P;+) I v~+)+&k; I v, )

& k, I V,
I
k, &

—
& k,

I V, Icjb, „&

with

V~ ——0. (43)

Equation (43) is the separable expansion that we pro-
pose. We believe that Eq. (43) takes the simplest form
among various separable approximations of the off-shell t
matrix. By virtue of Eqs. (23) and (24), we have the
equations

Therefore, the separable expansion (43) yields the correct
half-off-shell behavior. [This means that the expansion
(43) is not actually separable at half-off-shell. ]

Finally, we remark that the potential Vis approximated
by a separable form as

&p It lk&=&p
I

V~I lk&=&p
I
v lk&=o ««~1.

(44)

Vlk&&k IV
&k

I
vlk& &k,

I
v, lk, &

VJv —1 I ktv —1 & & klV —& I Vtv —1

&kx-i
I
vx-i I x-i&

(45)

This expression is obtained by summing up Eq. (15) for
i =0, 1,2, . . . , X —1, and setting Vz ——0.

Table V shows the result of calculations of the off-shell

—2.015 55
—2.031 09

Exact 2.948 35 —5.95602 —2.031 09

TABLE V. The off-shell K matrix calculated by the separ-
able approximation (43) of the square well potential given in the
text {Ref. 6) with p =0.153 fm ' and q =0.567 fm
denotes the number of separable terms.

N E (MeV) 12 24

1 2.949 00 —5.955 95
2 2.948 36 —5.956 04
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TABLE VI. The off-shell E matrix calculated by the separ-
able approximation (43) of the square well potential given in the
text (Ref. 6) with p =0.567 fm ' and q =1.405 fm '. X
denotes the number of separable terms.

b h M —1

f f (x)dx =—[f(a)+ g f(a +h)+f(b)]+F~(f),
i=1

(A 1)

E {MeV)

1.081 05
1.050 12
1.05004

—2.642 26
—2.645 28
—2.645 28

—0.841 970
—0.819085
—0.819 116

where M denotes the number of mesh points. The error
term EM(f) is expressed as

Exact 1.05004 —2.645 27 —0.819 113
CXp CX4 iX6

Mf 2+ 4+ 6+ (A2)

IC-matrix element &p lK(E) l q&, with the separable ex-
pansion (43) for the K matrix. We used a square well po-
tential fitted to low energy triplet N-N scattering data;
V= —Vo r (R; V=O r )R Vo=31 28 MeV
R =2.205 fm. Here we chose the values p =0.153 fm
q =0.567 fm ' for a few different values of E. The first
term of the expansion, which is equal to the Kowalski-
Noyes approximation, is already a very good approxima-
tion to the exact &p l

t(E) lq&. The addition of the
second separable term brings the result almost to the exact
value. The two-term separable expansion yields the re-
sults which are correct up to five or six significant figures.
This remains true, even if we move into a more off-shell
region. Table VI shows the result for p =0.567 fm ' and

q =1.405 fm
With an increasing number of separable terms, and for

more singular potentials like the Reid potential, roundoff
errors start to appear, which result in poor convergence.
Nevertheless, the first two or three terms approximate the
t matrix with high accuracy.

V. CONCLUSION

The method of continued fractions for calculations of
off-shell (and, of course, on-shell) t-matrix elements for
local and nonlocal potentials as well as the related separ-
able expansion yields very rapid convergence with simple
algorithms compared with other methods. If the method
of continued fractions is combined with the Romberg ex-
trapolation technique, very high accuracy is easily at-
tained. This is demonstrated in the Appendix.

where the constants a2; depend on the function f (x).
Since our expression for the t matrix Eq. (35) with Eq.
(37) and the truncation by

l q~+ i & for
l P~+ & & at a suit-

able number X, .

re+i=&p~
l

Vx
l q~+i&, (A3)

is a finite rational function of such integrals, the same er-
ror term must be applied to the truncated t matrix. We
denote by &p l

t (E)
l q &M an off-shell t-matrix elenient for

which M mesh-point calculations are performed for all in-
tegrals &p; l V, l q; & and &p; l

V~
l q;+i &. Then, the t

matrix element &p l
t (E)

l q & is expressed as

&p
I
r«) lq&=&7 I

r«)
I q&M+, +,+ . .

Since calculations of many such off-shell t matrices are
needed, for instance, in a three-body problem in momen-
tum space, we are forced to save time in calculating each
off-shell t-matrix element. On the other hand, we are re-
quired to perform very accurate calculations of these ma-
trix elements. These contradicting requirements are satis-
fied if we use the Romberg extrapolation technique. The
idea of this technique is very simple. We calculate the t
matrix twice: First, the calculation is performed for M
mesh points, and then the same calculation is performed
but with 2M mesh points. With these two 'calculations,
we get

APPENDIX: EXTRAPOLATION TECHNIQUE

In the text, we have demonstrated that we can calculate
the off-shell r (or E-)matrix elements ve-ry quickly by the
method of continued fractions. All matrix elements
&p; l V; l q; & and &p; l

V; l q;+i & are integrals involving the
Green's function Go (or PGO). This Cxreen's function is
continuous, but its derivative is discontinuous at r =r .
Numerical experiences show that the best method for
treating such an integral is the simple trapezoidal rule,

M

29
57

113
225
449

Exponential

—1.419 127 07
—1.411 246 78
—1.411 269 80
—1.411 269 76
—1.411 269 76

Yukawa

—1.245 452 31
—1.235 308 11
—.1.235 390 64
—1.235 39043
—1.235 39043

Reid

—0.739 180697
—0.726 925 287
—0.727 042 226
—0.727 041 766
—0.727 041 766

TABLE VII. The off-shell E matrix element of the exponen-
tial, Yukawa, and Reid potentials, for p =0.153 fm

q =0.567 fm ', and E =1.736 fm (72 MeV). M denotes the
maximal number of mesh points used in each calculation. The
values are obtained by using Eq. (A4) for M =29, and Eq. (A5)
for M =57, 113, 225, and 449.
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&p It«) Iq&= 3 |4&p It«) lq&.M —&p lt«) Iq&Ml

b4 b6+ 4+, +-- (A5)

In Eq. (A5), the leading term of the error behaves as
0(M ), contrary to 0(M ) in Eq. (A4). If we repeat
this procedure, we obtain very precise results with a small
number of calculations.

The efficiency, of this technique is manifested in Table

VII, where the K-matrix element &p
~

K(E)
~

q& is calcu-
lated for the exponential, ' Yukawa, " and Reid soft core
potentials for F. = 12 MeV, p =0.153 fm ', and

q =0.567 fm '. %'e see that 113 mesh points are suffi-
cient to get results which are accurate up to eight (seven,
six) digits for the exponential (Yukawa, Reid soft-core)
potential. The difference between these results are due to
the fact that the exponential (Yukawa, Reid soft-core) po-
tential is a monotonic (monotonic, nonmonotonic) func-
tion which is nonsingular (singular, singular) at the origin.
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