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Test of the reduced width amphtude distribution from proton resonance studies
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Measurements of width and amplitude correlations allow sensitive tests of the amplitude distribu-
tion. Experimental results show an apparent discrepancy from the expected multivariate Gaussian
distribution. A test which shows that the disagreemept cannot be explained solely by the limited

sample sizes is presented.

I. INTRODUCTION

The use of low-energy, high-resolution beams to study
compound nuclear resonances permits study of statistical
properties such as the distributions of energy levels and of
widths (see, e.g., Ref. 1). The statistical model of nuclear
spectra assumes that the reduced width amplitudes, y~„
for the decay of resonances A, into channel c have a
Gaussian distribution centered at zero; this assumption
leads to the Porter- Thomas distribution for reduced
widths y~, . Reduced widths for elastic scattering are well
reproduced by the Porter-Thomas distribution for both
neutron and proton resonances.

More sensitive tests of the statistical model are possible
if one studies the amplitude distribution. By studying in-
elastic proton scattering from resonances, Dittrich et al.
have shown that both the magnitudes and relative signs of
the decay amplitudes can be determined. Study of a
group of resonances then produces not only a value for
the width correlation p(y„yd) but also a value for the
amplitude correlation p(y„yd). Here, p is the linear
correlation coefficient

1/2

p(xy)= g(x; —x)(y; —y)/ g(x; —x) g(y; —y)~

For the amplitude correlations y, =y~ ——0 is assumed.
A general treatment of the joint distribution of ampli-

tudes in different channels predicts that the reduced
width amplitudes should have a multivariate Gaussian
distribution. For a single channel this distribution
reduces to a Gaussian. Any deviation from Gaussian
behavior would be most interesting, since the derivation of
Krieger and Porter assumes only the rotational invari-
ance of the Hamiltonian and the statistical independence
of levels. Because the absolute phases of the amplitudes
cannot be determined, a direct test of the distribution is
not possible. However, if the amplitudes are indeed mul-
tivariate Gaussian with first moments all zero, then

p'(y. yd)=p(y,', y~) . (2)

Thus, a comparison of width and amplitude correlations
provides a test of the joint probability distribution.

Data sufficient to determine correlations are available
for four different nuclei (" Sc, V, 'Mn, and Co) and

include resonances with J = —, , —,', and —,
' . ' For

resonances, only two inelastic channels are con-3

sidered, and each set of data provides one pair of correla-3+ 5+
tions; for —, and —, resonances, the analysis includes
three inelastic channels, and there are three different pair-
ings available.

Comparisons between experimental values, denoted by
r (x,y), of width and amplitude correlations show that Eq.
(2) appears to be violated in several cases; 9 however, in-
terpretation of these results is complicated by the need to
consider experimental errors in the reduced widths and re-
duced width amplitudes. Because the different inelastic
channels are, in general, correlated, the description of er-
rors for each resonance requires an 1V&% error matrix,
where X is the number of inelastic channels. Since the ex-
pression for the correlation coefficient in Eq. (1) does not
incorporate correlated errors, other methods for dealing
with them must be considered. Hofmann et al. ' used
Monte Carlo techniques to simulate the effects of errors;
they concluded that the inclusion of errors is indeed im-
portant and offers at least a partial explanation for devia-
tions from Eq. (2), although some of their assumptions are
not valid for these data. In the one case they consider in
detail (the —,

' resonances in Sc), the significance level of
the discrepancy for one pair of amplitudes was decreased
from 99% when errors were not included in the analysis
to 90—95 % when they were considered.

More recently, Harney"' examined the "finite-range-
of-data" (FRD) error inherent in cases involving a finite
number of resonances. He concluded that the FRD error
is so large as to preclude a test of Eq. (2) with any of the
present sets of data, but that the combination of all data'
yields results which can be reproduced by the multivariate
Gaussian distribution. The present paper presents a dif-
ferent evaluation of the FRD error, following the spirit of
Harney but choosing a different statistic to test Eq. (2).
This statistic produces vastly different results than does
Harney's and implies that the apparent deviations from a
Gaussian distribution cannot be explained solely as re-
Aecting the limited sample sizes.

Section II examines briefly the formalism of error prop-
agation and discusses the basic difference between the
current method of choosing a statistic and Harney's. Sec-
tion III presents tests of the Porter-Thomas distribution
using both methods, while Sec. IV examines the question
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of the amplitude distribution. A summary of the tests,
methods, and results is given in Sec. V.

II. THE FINITE-RANGE-OF-DATA ERROR

The question to be examined in this paper is as follows:
If the amplitudes are multivariate Gaussian, how much
variation from Eq. (2) should one expect to find as a
consequence of the finite number of resonances studied?
It should be noted that this error is the minimum value to
be anticipated in such a test, since no experimental errors
are included. Nonetheless, it is of considerable impor-
tance and can in some cases (see, e.g. , Sec. IV) be of such a
magnitude as to make sensitive comparisons impossible.

The necessary equations for evaluating the FRD error
have been given by Harney" and will only briefly be re-
viewed here. If U (y ~,y2, . . .,y„) is a function of statistical
variables Iy; I, then for small fluctuations of Iy; I,

U(y) =U(y)+ g R;(y; —y;),
i=1

where

It is also convenient to define

cr„=u (y) —U (y) =RECUR (6)

where R is the column vector with elements R;. The
procedure for evaluating the FRD error for any statistic is
thus as follows: Specify the Iy;J, evaluate R and K~
from Eqs. (4) and (5), and then evaluate the variance from
Eq. (6).

Of course, from the experimental data one cannot
determine the ensemble averages; therefore, they must be
replaced by the finite averages (y;) obtained from the
measurement. The FRD error represents the precision
with which one can expect a relation [e.g., Eq. (2)] to hold
when expressed in terms of the estimates (y; ) .

Cxiven an equality a =b there are two methods one can
choose to define a simple statistic (with known expecta-
tion value) to test this relation. The ratio a/5 has expec-
tation value 1, while the difference a bhas —expectation
value 0. In Secs. III and IV I will examine the two
methods for two different cases.

(&, ) J. =(y; y—; )(y, y—, ) .

In all cases the overbar denotes an ensemble average. The
variance of U is then given by

TABLE I. Tests of the Porter-Thomas distribution using both ratio and difference methods. Data
are inelastic proton reduced widths (Refs. 6 and 9). Errors quoted in v and z are one standard devia-
tion.

Compound
nucleus

45Sc

5 +
2

37

53

Channel
I',s'

1—3.
~ 2

1—5
0—5

7 2

2—3
7 2

2—5
7 2

Ratio v

0.79+0.27

0.55+0.27

0.62+0.22

1.08+0.22

0.72+0.22

Difference z
keV

—0.04+0.05
—0.25+0.15
—0.08+0.05

0.03+0.09
—0.05+0.04

49V 3
2

3 +
2

5 +
2

70

30

45

1—3
7 2

1—5
~ 2

0—3
7 2

2—3
7 2

2—5

0—5
7 2

3
7 2

2—5
7 2

0.87+0.20

1.04+0.20

0.86+0.30

0.64+0.30

0.86+0.30
0.61+0.24

0.64+0.24

0.65+0.24

—0.08+0.13

0.06+0.30
—0.03+0.07
—0.11+0.09
—0.15+0.34
—0.14+0.09
—0.03+0.02
—0.05+0.03

"Mn 3
2 24

38

I—3
2

1—5
2

0—5
7 2

2—3
7 2

2—5
2

0.78+0.33

0.89+0.33

1.03+0.26

1.28+0.26
0.87+0.26

—0.09+0.14
—0.06+0.19

0.03+0.21

0.35+0.34
—0.11+0.22

"Co 77 0—5
7 2

2—3
~ 2

2—5
~ 2

1.16+0.19

1.13+0.19

1.66+0.19

0.12+0.14

0.14+0.19

0.83+0.24
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III. TESTS OF THE PORTER- THOMAS
DISTRIBUTION

Consider first the Porter-Thomas distribution: The
variables I r, j are expected to be Gaussian. It is a general
property of the Gaussian distribution that—k

2k (2k 1 )11
2 (7)

and, in particular,—2
4 2

'Ve = 3'Vc (8)

Harney" defines y1= &r, & and y2 = &r, &, constructs the
ratio

Experimental values of z and o, are also included in Table
I.

Comparison of the two methods reveals several interest-
ing features. The ratio is of course dimensionless,
whereas the difference is not. Also, in this case o., de-

pends on an experimental parameter (r, ), whereas o.„does
not. While these two factors certainly make the ratio
more aesthetically pleasing, the content of the two
methods appears to be the same: For every case the ratio
of the FRD error to the deviation from the expected value
is essentially independent of the choice of statistic. The
one case where the Porter-Thomas distribution appears to
disagree badly with the data (l'=0, s'= —, in Co) shows
equally poor results for the two methods. For this case
the conclusion is that the two statistics provide the same
information.

and shows that the FRD error is

cr, =8/3N, (10) IV. TESTS OF THE AMPLITUDE DISTRIBUTION

where N is the number of resonances. The experimental
values of U and o., are given in Table I for the inelastic
proton widths of Refs. 6 and 9.

For the difference method, define

z (3 1 y2) =3 1 33 2

Next, consider the amplitude distribution and, in partic-
ular, tests of Eq. (2). Following Harney, define

2 2

—2

48y, 6y,
K,='
R =(1,—6r, ), (12)

y.= &rd —&
ys =—&r'&

y6—= &rd&

(13)

—4
o.,=24r, /N . To test Eq. (2) using a ratio, Harney utilizes the statistic

U =—«'(r„r~)/«(r', rd ) =b 1(ys —y 3)'"(y6—y4)'"1/b 3y4(y2 —y3y4)1

and shows that the FRD error is

(14)

o„'=—g (p), (15)

with

g2( )
—4+ 4p

—2 8+3 4

Here p is the linear correlation coefficient between r, and rd (evaluated with ensemble averages).
To use a difference method, define

z =«'(r„r—d ) «(r,', r~—) =y1/y3y4 b2 y3—y4 j/[—(y s —
y 3)(y6 —y4) ]'",

where the Iy; I are again those from Eq. (13). Elements of the K~ matrix are given in Ref. 11; if one takes

(16)

2 = 2C=zc D=rd

then the gradient vector is

R = (2K/CD, —1/2CD, (CD 3K ) /2C D, (CD 3K2)/—2CD2, K2/4C—3D,K2/4CD3), (18)
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100

o, = f—(p),

where

f (p) =—3p' —8p~+4p'+1 .

(19)
IO

g( )

The functions g(p) and f(p) are compared in Fig. 1;
note the singularity of g(p) at p=0 which causes the
FRD error to be very large for small values of p. It is this
fact which led Harney to conclude that an effective test of
Eq. (2) was not possible with the present data. " However,
no such singularity exists for the difference method, and
o, is a we11-defined quantity having a maximum value of
1.51/N at p=0. 51.

The effects of the different methods are exhibited in
Table II, where the statistics U and z are tabulated for the
available data. There is ambiguity in the experimental es-
timate for p, since one could use either r(y„yd) or
r(y„yd)'r; here the average of the two values has been
used [setting r (y„yd ) =0 in the one case where it is nega-
tive experimentallyj. For the ratio many of the standard
deviations are quite large due to the singularity at p=O.
This is not so for the differences. The statistic U has four
values which differ by more than two standard deviations
from the expected value of 1; no values differ by as much
as three standard deviations. The difference statistic, on
the other hand, has five values (out of 18) which differ by
three or more standard deviations from the value 0.
Clearly, the two statistics do show major differences in
this case.

O. I

I,2

f(p)
0.4

0 I I

0.2 0.4 0.6 0.8 l .0

FIG. 1. The functions g(p) and f(p) obtained in evaluating
the FRD error for the amplitude distribution for ratio and
difference methods, respectively. Note the logarithmic scale for
g (p).

A further test of Eq. (2) (Ref. 12) can be performed by
calculating weighted means of all 18 values from Table II
for each statistic. Using the inverse variance as the
weighting factor gives

TABLE II. Tests of the multivariate Gaussian distribution using both ratio and difference methods. Data are taken from Refs. 6
and 9. The value of p used to evaluate o.„and o., is the average of «(y„yd ) and «(y„yd )'

Compound
nucleus

4'Sc

49V

5'Mn

"Co

3
2
5 +
2

3
2
3 +
2

3
2
5 +
2

5 +
2

37

53

70

30

45

77

Channel c
l', s'

1—3
7 2

0—5
7

0—
7 2

2—3

1—3
7 2

0—3
7 2

0—3

2—3

0—5
~ 2

0—5

2—3
7 2

1—3
~ 2

0—5
~ 2

0—5
~ 2

2—3
7 2

0—5
~ 2

0—5
7 2

2—3
7 2

Channel d
l', s'

1—5
2—3

2—5
7 2

2—5
~ 2

1—5
7 2

2—3
~ 2

2—5
~ 2

2—5

2—3

2—5
~ 2

2—5
~ 2

1—5
& 2

2—3

2—5
~ 2

2—5
7 2

2—3
~ 2

2—5
7 2

2—5

«(y„yd)
—0.66

0.22

0.06
—0.09

0.84
—0.51
—0.65
—0.06

0.88

0.01

0.34

0.62

0.58

0.55

0.38

0.62

0.38

«(y,', y', )

0.23

0.67

—0.08'

0.51

0.43

0.85

0.15

0.4S

0.71

0.28

0.04
0.90
0.56

0.33

0.79

0.51

0.27

Ratio U

1.89+0.62

0.07+0.62

1.92+0.43
—0.04+ 1S3

0.02+0.90
1.64+0.33

0.31+0.38

2.82+0.83

0.01+1.29

1.09+0.14

0.00+2.29

2.89+3.13

0.43+0.25

0.60+0.43

0.92+0.63

0.18+0.34

0.75+0.29

0.53+0.69

Difference z

0.21+0.20
—0.62+0.17

0.25+0.16

0.08+0.14
—0.50+0.14

0.28+0.19
—0.60+0.20

0.27+0.22
—0.44+0.18

0.06+0.10
—0.28+0.17

0.08+0.23
—0.51+0.15
—0.21+0.19
—0.03+0.20
—0.65+0.13
—0.13+0.13
—0.13+0.14

' This value has been assumed to be zero for the evaluation of errors.
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V=u = g U;/o„ g 1/tr, (21)

2V= 1/o, (22)

The result is V=0.91+0.09. This result differs slightly
from Harney's because the errors have been evaluated
with a different correlation, the weighting factors are dif-
ferent, and all correlations have been treated as indepen-
dent. Nonetheless, the result is essentially the same, and
one concludes that overall the data are in agreement with
the value V = I expected from a multivariate Gaussian
distribution.

For the difference statistic, the weighted mean is
Z = —0.18+0.04, clearly in disagreement with the ex-
pected value Z =0. The two methods will be compared
further in Sec. V.

V. CONCLUSIONS

For the Porter-Thomas distribution, an approach em-

ploying a difference to test equality gives basically the
same result as one employing a ratio. In light of this, it
appears that the two methods in general are equally good
and that the choice of one or the other should be dictated
by the specific problem. For the Porter-Thomas case the
ratio is probably preferable since, as discussed earlier, one
then deals with a dimensionless quantity and the FRD er-
ror is independent of any experimental measurement.
However, for the amplitude distribution neither of these

arguments holds: Both methods yield a dimensionless
quantity, and each r"equires an experimental estimate of p
to evaluate the FRD error.

The major difference between these two different ways
of evaluating the amplitude data then becomes the singu-
larity in g(p). The form of g(p) practically guarantees
that a significant deviation from Eq. (2) cannot be ob-
served except for large values of p. The singularity also
ensures that measurements with small values of p are
given relatively little weight when computing the weight-
ed mean. Utilizing a difference removes the singularity at
p=0 and leads to a more equal weighting of all experi-
ments. However, this brings into question the validity of
the assumption of Gaussian errors which is inherent in

Eqs. (21) and (22); Monte Carlo calculations' '" have sug-
gested, for example, that in some cases (particularly those
with small p) the ratio U has an asymmetric distribution.
If this is so, then Eq. (22) will underestimate the variance
of the weighted mean. Presumably the difference statistic
also shows asymmetric distributions, and in this case the
problem may be more serious, since the measurements
with smaller p are given relatively greater weight. How-
ever, it seems unlikely that this effect is sufficient to ac-
count for the discrepancy of more than four standard de-
viations.

One must remember that the FRD error discussed in
this paper is only the minimum error in a quantity such as
z, since experimental errors in the widths and amplitudes
used to determine z are not included. Therefore, it does
not seem reasonable to say that this analysis disproves the
Gaussian assumption. I only wish to assert that it does
not appear that the observed deviations can be the result
of the limited sample sizes.

Final1y, I wish to point out one other method that can
be used to consider the effects of errors and limited sam-
ple sizes in these measurements, namely the bootstrap
method of Efron. ' This approach provides a fairly direct
incorporation of the effect of a finite sample size. It also
has the advantage that no assumption is made about the
underlying distributions (unlike the analytical results of
Sec. II). With this method, confidence intervals for any
desired percentage can be generated. The 99%%uo intervals
for the difference statistic are included in Ref. 6 for all
data discussed here except those for Co; those intervals
are [—0.81,—0.17], [—0.49, +0.16], and [—0.44,
+0.35] (corresponding to the values —0.65, —0.13, and
—0. 13, respectively, from Table II). With this test, three
(of 18) sets of data appear to violate the Gaussian distri-
bution at the 99%%uo level of confidence. More detailed
studies on the effects of experimental error on the deter-
mination of the correlation coefficients appear to be
necessary to resolve the Gaussian question.
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